Нуклеотид является структурным компонентом. Из чего состоит нуклеотид и что это такое. Структура молекулы ДНК

4.2.1. Первичной структурой нуклеиновых кислот называется последовательность расположения мононуклеотидов в цепи ДНК или РНК . Первичная структура нуклеиновых кислот стабилизируется 3",5"-фосфодиэфирными связями. Эти связи образуются при взаимодействии гидроксильной группы в 3"-положении пентозного остатка каждого нуклеотида с фосфатной группой соседнего нуклеотида (рисунок 3.2),

Таким образом, на одном конце полинуклеотидной цепи имеется свободная 5"-фосфатная группа (5"-конец), а на другом - свободная гидроксильная группа в 3"-положении (3"-конец). Нуклеотидные последовательности принято записывать в направлении от 5"-конца к 3"-концу.

Рисунок 4.2. Структура динуклеотида, в состав которого входят аденозин-5"-монофосфат и цитидин-5"-монофосфат.

4.2.2. ДНК (дезоксирибонуклеиновая кислота) содержится в клеточном ядре и имеет молекулярную массу порядка 1011 Да. В состав её нуклеотидов входят азотистые основания аденин, гуанин, цитозин, тимин , углевод дезоксирибоза и остатки фосфорной кислоты. Содержание азотистых оснований в молекуле ДНК определяют правила Чаргаффа:

1) количество пуриновых оснований равно количеству пиримидиновых (А + Г = Ц + Т) ;

2) количество аденина и цитозина равно количеству тимина и гуанина соответственно (А = Т; Ц = Г) ;

3) ДНК, выделенные из клеток различных биологических видов, отличаются друг от друга величиной коэффициента специфичности:

(Г + Ц) /(А + Т)

Эти закономерности в строении ДНК объясняются следующими особенностями её вторичной структуры:

1) молекула ДНК построена из двух полинуклеотидных цепей, связанных между собой водородными связями и ориентированных антипараллельно (то есть 3"-конец одной цепи расположен напротив 5"-конца другой цепи и наоборот);

2) водородные связи образуются между комплементарными парами азотистых оснований. Аденину комплементарен тимин; эта пара стабилизируется двумя водородными связями. Гуанину комплементарен цитозин; эта пара стабилизируется тремя водородными связями (см. рисунок б) . Чем больше в молекуле ДНК пар Г-Ц, тем больше её устойчивость к действию высоких температур и ионизирующего излучения;

Рисунок 3.3. Водородные связи между комплементарными азотистыми основаниями.

3) обе цепи ДНК закручены в спираль, имеющую общую ось. Азотистые основания обращены внутрь спирали; кроме водородных, между ними возникают также гидрофобные взаимодействия. Рибозофосфатные части расположены по периферии, образуя остов спирали (см. рисунок 3.4).


Рисунок 3.4. Схема строения ДНК.

4.2.3. РНК (рибонуклеиновая кислота) содержится преимущественно в цитоплазме клетки и имеет молекулярную массу в пределах 104 - 106 Да. В состав её нуклеотидов входят азотистые основания аденин, гуанин, цитозин, урацил , углевод рибоза и остатки фосфорной кислоты. В отличие от ДНК, молекулы РНК построены из одной полинуклеотидной цепи, в которой могут находиться комплементарные друг другу участки (рисунок 3.5). Эти участки могут взаимодействовать между собой, образуя двойные спирали, чередующиеся с неспирализованными участками.

Рисунок 3.5. Схема строения транспортной РНК.

По особенностям структуры и функции различают три основных типа РНК:

1) матричные (информационные) РНК (мРНК) передают информацию о структуре белка из клеточного ядра на рибосомы;

2) транспортные РНК (тРНК) осуществляют транспорт аминокислот к месту синтеза белка;

3) рибосомальные РНК (рРНК) входят в состав рибосом, участвуют в синтезе белка.

Нуклеотид

Нуклеотиды - природные соединения, из которых, как из кирпичей, построенные цепочки . Также нуклеотиды входят в состав важнейших коферментов (органические соединения небелковой природы - компоненты некоторых ферментов) и других биологически активных веществ, служат в клетках переносчиками энергии.


Молекула каждого нуклеотида (мононуклеотид) состоит из трех химически различных частей.

1. Это пятиуглеродный сахар (пентоза):

Рибоза (в этом случае нуклеотиды называются рибонуклеотиды и входят в состав рибонуклеиновых кислот, или )

Или дезоксирибоза (нуклеотиды называются дезоксирибонуклеотиды и входят в состав дезоксирибонуклеиновой кислоты, или ).

2. Пуриновая или пиримидиновая азотистая основа связана с углеродным атомом сахара, образует соединение, которое называется нуклеозид.

3. Один, два или три остатки фосфорной кислоты , присоединенные эфирными связями к углероду сахара, образуют молекулу нуклеотида (в молекулах ДНК или РНК один остаток фосфорной кислоты).

Азотистые основания нуклеотидов ДНК - это пурины (аденин и гуанин) и пиримидиновые (цитозин и тимин). Нуклеотиды РНК содержат те же основы, что и ДНК, но тимин в них заменен близким по химическому строению урацилом.

Азотистые основания, и, соответственно, нуклеотиды, которые их включают, в биологической литературе принято обозначать начальными буквами (латинскими или украинскими/русскими) в соответствии с их названиями:
- - А (А);
- - G (Г);
- - С (Ц);
- тимин - Т (Т);
- урацил - U (У).
Сочетание двух нуклеотидов называется динуклеотид, нескольких - олигонуклеотид, множества - полинуклеотид или нуклеиновая кислота.

Помимо того что нуклеотиды образуют цепи ДНК и РНК, они являются коферментами, а нуклеотиды, несущие три остатка фосфорной кислоты (нуклеозидтрифосфат) - это источники химической энергии, которая заключенная в фосфатных связях. Чрезвычайно велика во всех процессах жизнедеятельности роль такого универсального переносчика энергии, как аденозинтрифосат (АТФ).

Нуклеотиды входят в состав: нуклеиновых кислот (полинуклеотиды), важнейших коферментов (НАД, НАДФ, ФАД, КоА) и других биологически активных соединений. Свободные нуклеотиды в виде нуклеозид моно-, ди-и трифосфата в значительных количествах содержатся в клетках. Нуклеозидтрифосфат - нуклеотиды, содержащие 3 остатка фосфорной кислоты, имеют богатый энергией аккумулирования в макроэргических связях. Особую роль играет АТФ - универсальный аккумулятор энергии. Высокоэнергетические фосфатные связи нуклеотидтрифосфатов используются в синтезе полисахаридов (уридинтрифосфат, АТФ), белков (ГТФ, АТФ), липидов (цитидинтрифосфат, АТФ). Нуклеозидтрифосфаты являются также субстратами для синтеза нуклеиновых кислот. Уридиндифосфат участвует в обмене углеводов, как переносчик остатков моносахаридов, цитидиндифосфат (переносчик остатков холина и этаноламина) - в обмене липидов.

Важную регуляторную роль в организме играют циклические нуклеотиды. Свободные нуклеозидмонофосфаты образуются путем синтеза или при гидролизе нуклеиновых к-т под действием нуклеаз. Последовательное фосфорилирование нуклеозидмонофосфатов приводит к образованию соответствующих нуклеотидтрифосфатов. Распад нуклеотидов происходит под действием нуклеотидазы (при этом образуются нуклеозиды), а также нуклеотидпирофосфорилазы, катализируют обратимую реакцию расщепления нуклеотидов к свободным основаниям и фосфорибозилпирофосфата.

Наряду с аминокислотами важнейшей группой азотистых веществ являются нуклеотиды. Их биологическое значение для жизнедеятельности организмов определяется тем, что они используются для построения молекул нуклеиновых кислот - дезоксирибонуклеиновой (ДНК) и рибонук-леиновой (РНК), входят в состав каталитических центров ферментов, участвуют в биоэнергетических процессах и синтезе углеводов, липидов, белков, алкалоидов и других веществ. Некоторые нуклеотиды способны выполнять регуляторные функции.

Главные структурные компоненты нуклеотидов–азотистые основания, пентозы (рибоза или дезоксирибоза) и остаток ортофосфорной кислоты. В зависимости от углеводного компонента различают две группы нук-леотидов: рибонуклеотиды, содержащие остаток рибозы, и дезоксирибо-нуклеотиды, имеющие в своем составе остаток дезоксирибозы. Дезоксирибонуклеотиды используются организмами для синтеза ДНК, а рибонуклетиды входят в состав РНК, ферментов и макроэргических нук-леозидполифосфатов.

Рибоза и дезоксирибоза в составе нуклеотидов находятся в b-D-фура-нозной форме:

Нуклеотиды образуются из двух типов азотистых оснований – произ-водных пиримидина и пурина. Свойства оснований они проявляют в водном растворе при взаимодействии с молекулами воды. Из пиримидиновых осно-ваний наиболее важное значение имеют урацил, тимин и цитозин как основные структурные единицы нуклеотидов, образующих нуклеиновые кислоты. Кроме них, известны и другие основания - 5-метилцитозин, псевдоурацил, 5-оксиметилцитозин и др. 5-Метилцитозин и 5-оксиметилцитозин в небольшом количестве могут

Из пуриновых оснований наибольшее значение имеют аденин и гуанин, так как они используются для синтеза нуклеиновых кислот. В составе нуклеиновых кислот в небольшом количестве обнаружены также и другие основания, которые образуются в результате химической модификации аденина и гуанина: 7-метилгуанин, 2-метиладенин, N-диметилгуанин и др. Важными промежуточными метаболитами являются гипоксантин, ксантин, аллантоин. В некоторых растениях они могут накапливаться в свободном состоянии.

Все азотистые основания интенсивно поглощают ультрафиолетовый свет при длинах волн 200-280нм.

При соединении азотистых оснований с молекулой рибозы или дезоксирибозы образуются соединения, называемые нуклеозидами , так как между пентозой и основанием возникает гликозидная связь. Основания в данном случае можно рассматривать как агликоны по отношению к пентозе.

В нуклеозидах гликозидная связь возникает между первым углеродным атомом пентозы в b-фуранозной форме и азотом пуринового (в девятом положении) или пиримидинового (в первом положении) основания. Азотистые основания аденин, гуанин, цитозин и урацил образуют при со-единении с рибозой нуклеозиды - аденозин, гуанозин, цитидин и уридин,


а с дезоксирибозой – дезоксиаденозин, дезоксигуанозин, дезоксицитидин, дезоксиуридин. Тимин, соединяясь с дезоксирибозой, даёт дезоксити-мидин.

Азотистые основания и нуклеозиды могут накапливаться в растениях в значительном количестве при интенсивном распаде нуклеиновых кислот.

Фосфорнокислые эфиры нуклеозидов называют нуклеотидами . В составе нуклеотидов остатки ортофосфорной кислоты могут присоединяться к пятому или третьему атомам углерода рибозы или дезоксирибозы, а у некоторых рибонуклеотидов ещё и ко второму атому углерода рибозы. У свободных нуклеотидов фосфатная группа обычно находится у пятого углеродного атома рибозы или дезоксирибозы. В нейтральной среде остатки ортофосфорной кислоты в молекулах нуклеотидов сильно диссоциированы, вследствие чего могут присоединять катионы, поэтому при химическом выделении нуклеотиды кристаллизуются в виде солей.

Изучение пространственной структуры азотистых оснований методом рентгеноструктурного анализа показывает, что все они имеют почти плоскую конформацию. У них довольно легко происходит перегруппировка двойных связей, которая сопровождается таутомерными превращениями. Например, гуанин может существовать в виде двух таутомерных форм:

Плоскость гетероциклического ядра основания в структуре нуклеозидов и нуклеотидов может занимать в пространстве два положения по отношению к пентозе, образуя две противоположные конформации - син -конформацию и анти -конформацию. В анти -конформации структура азотистого основания развернута от пентозы, а в син -конформации ориентирована над её плоскостью. В свободном состоянии пиримидиновые нуклеотиды находятся преимущественно в анти -конформации, а пуриновые довольно легко переходят из одной формы в другую.

В связи с тем, что у нуклеотидов сильно выражены кислотные свойства, их называют кислотами с учетом названий азотистых оснований и углеводного компонента. Так, например, рибонуклеотид, имеющий остаток аденина, называют адениловой кислотой, или аденозинмонофосфатом (АМФ). Дезоксирибонуклеотид, образованный из тимина, называют дезокситимидиловой кислотой, или дезокситимидинмонофосфатом (дТМФ). Названия других нуклеотидов представлены в таблице 2.

В растениях найдены циклические формы нуклеотидов – адено-зинмонофосфата и гуанозинмонофосфата, которые по-видимому выполняют регуляторные функции. Строение циклического АМФ можно представить слудующей формулой:

2 . Названия важнейших нуклеотидов.

Молекула нуклеотида имеет в своем составе сахар, фосфат и азотистую основу. Как эти простые компоненты позволяют нуклеотидам объединяться вместе, чтобы создавать такие полимеры, как ДНК и РНК, а также молекулы, несущие энергию, такие как АТФ?

Нуклеотиды: часть структуры ДНК

Что такое нуклеотид? Чтобы это понять, нужно представить себе ДНК. Попав в ядро ​​клетки и распутав хромосомы, можно увидеть тонкую двойную нить. При масштабировании можно увидеть, что каждая из этих нитей состоит из небольших строительных блоков, называемых нуклеотидами.

Если ДНК выглядит как скрученная лестница, каждый строительный блок или нуклеотид включает половину ступени и немного вертикальной части лестницы. Другая половина ступени относится к соседней цепочке ДНК. Нуклеотиды также могут существовать сами по себе или быть частью других важных молекул, помимо ДНК. Например, энергетический носитель АТФ представляет собой форму нуклеотида.

Компоненты нуклеотида

В состав нуклеотида входят такие компоненты, как азотистая основа, сахар и один или несколько фосфатов. Стоит рассмотреть каждый их них более подробно:

  • Азотистое основание. Это может быть аденин, тимин, цитозин, гуанин, урацил. Они не являются кислотами, каждый из них содержит несколько атомов азота. Нуклеотиды могут соединяться друг с другом: цитозин всегда составляет пару с гуанином и адениновые пары с тимином в ДНК или урацил в РНК.
  • Следующим основным компонентом нуклеотида является сахар. Существует много видов сахара, но здесь важны два: рибоза - это сахар, который вы увидите в РНК. Существует версия рибозы, у которой отсутствует атом кислорода, и он будет называться сахарной дезоксирибозой. Это тип сахара в ДНК-нуклеотидах. Помните, что ДНК - это дезоксирибонуклеиновая кислота.
  • Последним основным фрагментом нуклеотида является фосфат. Фосфат представляет собой атом фосфора, связанный с четырьмя атомами кислорода. Связи между фосфатами являются очень высокой энергией и действуют как форма хранения энергии. Когда связь сломана, полученная энергия может быть использована для выполнения работы.

Типы нуклеотидов

Когда нуклеотиды полимеризуются или объединяются вместе, они образуют нуклеиновую кислоту, такую ​​как ДНК или РНК. Каждый нуклеотидный фосфат присоединяется к другому сахару, образуя сахар-фосфатную основу с азотистыми основаниями. Нуклеозид является частью нуклеотида, который состоит только из сахара и основания. Таким образом, мы можем говорить о нуклеотиде как о нуклеозиде и фосфатах:

  • Нуклеозид монофосфат представляет собой нуклеотид, который включает в себя один фосфат.
  • Нуклеозид дифосфат представляет собой нуклеотид, который включает в себя два фосфата.
  • Нуклеозид трифосфат представляет собой нуклеотид, который содержит три фосфата. Нуклеотиды являются строительными блоками ДНК и РНК.

Какие различают типы нуклеотидов, какова их структура и как изменение одного нуклеотида может повлиять на выживание организма?

Нуклеотид - это в биологии... (определение)

ДНК человека состоит из нуклеотидов, которые в основном представляют собой субэлементное измерение ДНК, выстраиваемое парами. Есть около 3 миллиардов этих пар, также называемых парами оснований. Какое можно дать определение нуклеотиду? Каждый сперматозоид и каждая яйцеклетка содержат примерно шесть миллиардов отдельных нуклеотидов в своем ядре, которые организованы в компактные молекулы ДНК. Это облегчает их хранение и перемещение.

Итак, что такое нуклеотиды? Они действуют как особый язык, который используется для написания рецептов химических веществ, создаваемых вашим организмом, в частности белков. Большинство участков нуклеотидов называют нежелательной ДНК, потому что они ничего не кодируют. Тем не менее есть небольшая доля, которая имеет решающее значение для вашего выживания и делает вас такими, какие вы есть. Этот 2 % кода нуклеотидов для каждого белка, который ваш организм производит и имеет на участках ДНК, называемых генами. Каждый ген кодирует цепь аминокислот, которая приводит к образованию определенного белка.

Мутации, которые являются изменениями в ДНК-клетки, с участием одного нуклеотида, могут показаться тривиальными, учитывая, что в геноме человека так много нуклеотидов, но, когда они происходят на определенных генах, они могут привести к опасным для жизни заболеваниям. Чтобы лучше понять этот механизм, нужно сначала взглянуть на некоторые основы нуклеотидов.

Структура нуклеотидов

Нуклеотиды представляют собой мономеры (или строительные блоки) нуклеиновых кислот и состоят из 5-углеродного сахара, фосфатной группы и азотистого основания. Как уже было сказано, сахар и основание вместе образуют нуклеозид. Добавление фосфатной группы превращает молекулу в нуклеотид. Нуклеотиды называются в соответствии с азотистым основанием, которое они содержат, и сахаром, присоединенным к нему (например, дезоксирибозой в ДНК-нуклеотидах и рибозе в РНК). Какие нуклеотиды в ДНК и РНК? Всего существует восемь различных нуклеозидов в ДНК и РНК:

  • РНК: аденозин, гуанозин, цитидин, уридин.
  • ДНК: дезоксиаденозин, дезоксигуанозин, деоксицитидин, дезокситимидин.

Существуют и другие важные нуклеотиды, такие как те, которые участвуют в метаболизме (например, АТФ) и клеточной передаче сигналов (например, ГТФ).

Связывание нуклеотидов

Для создания цепей полимера (или нескольких единиц), которые приводят к образованию РНК и ДНК, нуклеотиды соединяются друг с другом через сахарофосфатный скелет, который образуется, когда фосфат одного нуклеотида присоединяется к сахару другого. Это возможно благодаря сильным ковалентным связям, называемым фосфодиэфирными связями.

Поскольку ДНК представляет собой двухцепочечную молекулу, две из этих полимерных цепей должны присоединяться друг к другу, как лестница. «Ступеньки» состоят из пар нуклеотидов, которые соединяют две стороны лестницы с помощью водородных связей. Что такое нуклеотид? Это структурная единица ДНК, которая состоит из азотистого основания и сахар-фосфатной основной цепи, состоящей из фосфатной группы и сахара. ДНК состоит из многих нуклеотидов, которые содержат и защищают генетические коды организма.

Нуклеиновые кислоты

Нуклеиновые кислоты являются биополимерами, которые наряду с белками играют важную роль в клетках всех живых организмов. Эти соединения ответственны за хранение, передачу и реализацию наследственной информации. Что такое нуклеотиды? Это мономеры нуклеиновых кислот.

Между частями нуклеотида возникают ковалентные химические связи, которые образуются в результате реакций конденсации. Такие реакции являются обратными гидролизу. Интересным фактом является то, что молекулы ДНК обычно не только длиннее, чем молекулы РНК, но и включают в себя две цепочки, которые соединены друг с другом при помощи водородных связей, возникающих между азотистыми основаниями.

Нуклеотиды — это сложные биологические вещества, которые играют ключевую роль во многих биологических процессах. Они служат основой для построения ДНК и РНК и, кроме того, отвечают за синтез белков и генетическую память, будучи универсальными источниками энергии. Нуклеотиды входят в состав коферментов, принимают участие в углеводном обмене и синтезе липидов. Кроме того, нуклеотиды являются компонентами активных форм витаминов, в основном группы В (рибофлавин, ниацин). Нуклеотиды способствуют формированию естественного микробиоценоза, предоставляют необходимую энергию для регенеративных процессов в кишечнике, влияют на созревание и нормализацию функционирования гепатоцитов.

Нуклеотиды представляют собой низкомолекулярные соединения, состоящие из азотистых оснований (пурины, пиримидины), пентозного сахара (рибоза или дезоксирибоза) и 1—3 фосфатных групп.

Наиболее распространенные монофосфаты участвуют в метаболических процессах: пурины — аденозинмонофосфат (АМФ), гуанозинмонофосфат (ГМФ), пиримидины — цитидинмонофосфат (ЦМФ), уридинмонофосфат (УМФ) .

Чем же вызван интерес к проблеме содержания нуклеотидов в детском питании?

До последнего времени считалось, что все необходимые нуклеотиды синтезируются внутри организма, и их не рассматривали как незаменимые питательные вещества. Предполагалось, что нуклеотиды, поступающие с пищей, в основном оказывают «местное действие», определяя рост и развитие тонкого кишечника, обмен липидов и печеночную функцию. Однако последние исследования (материалы сессии ESPGAN, 1997) показали, что эти нуклеотиды становятся необходимыми, когда эндогенного запаса недостаточно : например, при заболеваниях, сопровождающихся энергетическим дефицитом, — тяжелых инфекциях, болезнях потребления, а также в неонатальном периоде, во время быстрого роста ребенка, при иммунодефицитных состояниях и гипоксических повреждениях. При этом общий объем эндогенного синтеза снижается, становится недостаточным для удовлетворения потребностей организма. В таких условиях поступление нуклеотидов с пищей «экономит» в организме расходы энергии для синтеза этих веществ и может оптимизировать функцию тканей. Так, врачи издавна советовали после длительных заболеваний использовать в пищу печень, молоко, мясо, бульоны, т. е. продукты, богатые нуклеотидами.

Дополнительная дотация нуклеотидов с пищей крайне важна при вскармливании младенцев. Нуклеотиды были выделены из женского молока около 30 лет назад. К настоящему времени идентифицированы 13 кислоторастворимых нуклеотидов в женском молоке. Давно известно, что состав женского молока и молока различных видов животных не идентичен. Однако многие годы было принято обращать внимание лишь на основные пищевые компоненты: белки, углеводы, липиды, минералы, витамины. Вместе с тем, нуклеотиды в женском молоке существенно отличаются, причем не только по количеству, но и по составу от нуклеотидов в коровьем молоке. Так, например, оротат, главный нуклеотид коровьего молока, содержащийся в значительных количествах даже в адаптированных молочных смесях, не присутствует в женском молоке.

Нуклеотиды являются компонентом небелковой азотной фракции грудного молока. Небелковый азот отвечает приблизительно за 25% общего азота в грудном молоке и содержит аминосахара и карнитин, которые играют особую роль в развитии новорожденных. Нуклеотидовый азот может способствовать наиболее эффективному употреблению белка у младенцев, вскармливаемых грудным молоком, получающих сравнительно меньше белка по сравнению с детьми, которых вскармливают искусственными смесями.

Было выявлено, что в женском молоке концентрация нуклеотидов превышает их содержание в сыворотке крови. Это говорит о том, что грудные железы женщины синтезируют дополнительное количество нуклеотидов, которые поступают в грудное молоко. Также имеются различия в содержании нуклеотидов по стадиям лактации. Так, наибольшее количество нуклеотидов в молоке определяется на 2-4-м месяце, и затем их содержание после 6-7-го месяца начинает постепенно снижаться.

Раннее зрелое молоко содержит преимущественно мононуклеотиды (АМФ, ЦМФ, ГМФ). Их количество в позднем зрелом молоке выше, чем в молозиве, однако меньше, чем в молоке первого месяца лактации.

Концентрация нуклеотидов в грудном молоке на порядок выше зимой, чем в аналогичные сроки кормления в летний период.

Эти данные могут свидетельствовать о том, что в клетках грудных желез происходит дополнительный синтез нуклеотидов, так как в первые месяцы жизни извне поступающие вещества поддерживают необходимый уровень метаболизма и энергетического обмена ребенка. Увеличение синтеза нуклеотидов в грудном молоке в зимний период является защитным механизмом: в это время года ребенок больше подвержен инфекции и легче развивается витаминная и минеральная недостаточность.

Как указывалось выше, состав и концентрация нуклеотидов в молоке всех видов млекопитающих различаются, но всегда их количество ниже, чем в грудном молоке. Это, по-видимому, связано с тем, что потребность в экзогенных нуклеотидах особенно высока у беззащитных детенышей .

Грудное молоко — это не только наиболее сбалансированный продукт для рационального развития ребенка, но и тонкая физиологическая система, способная меняться в зависимости от нужд ребенка. Грудное молоко еще долго будет всесторонне изучаться, причем не только количественный и качественный его состав, но и роль отдельных ингредиентов в функционировании систем растущего и формирующегося организма. Смеси для искусственного вскармливания грудных детей также будут совершенствоваться и постепенно превратятся в настоящие «заменители грудного молока». Данные о том, что нуклеотиды грудного молока имеют более широкое физиологическое значение для растущего и развивающегося организма, послужили основанием для введения их в смеси для детского питания и приближения по концентрации и составу к таковым в грудном молоке .

Следующим этапом исследований стала попытка установить влияние нуклеотидов, введенных в детские смеси, на созревание плода и развитие младенца.

Наиболее наглядными оказались данные об активации иммунной системы ребенка . Как известно, IgG регистрируется еще внутриутробно, IgM начинает синтезироваться сразу после рождения ребенка, IgA синтезируется наиболее медленно, и активный его синтез возникает к концу 2-3-го месяца жизни. Эффективность их выработки во многом определяется зрелостью иммунного ответа.

Для исследования были сформированы 3 группы: дети, получавшие только грудное молоко, только смеси с нуклеотидами и молочные смеси без нуклеотидов.

В результате было выявлено, что дети, получавшие формулы с нуклеотидными добавками, к концу 1-го месяца жизни и на 3-м месяце имели уровень синтеза иммуноглобулина М, примерно равный таковому у детей, находящихся на грудном вскармливании, но значительно более высокий, чем у детей, получавших простую смесь. Аналогичные результаты получены и при анализе уровня синтеза иммуноглобулина А .

Зрелость иммунной системы определяет эффективность вакцинопрофилактики, ведь способность к формированию иммунного ответа на прививку — это один из показателей выработки иммунитета на первом году жизни. Для примера исследовали уровень выработки антител к дифтерии у детей, находящихся на «нуклеотидной» формуле, грудном вскармливании и смесях без нуклеотидов. Уровень антител измерялся через 1 месяц после первой и после последней вакцинации. Установлено, что даже первые показатели были выше, а вторые — достоверно выше у детей, получавших смеси с нуклеотидами .

При исследовании влияния вскармливания смесью с нуклеотидами на физическое и психомоторное развитие детей отмечена тенденция к лучшей прибавке массы и более быстрому становлению моторной и психической функции .

Кроме того, есть данные, что дотация нуклеотидов способствует более быстрому созреванию нервной ткани, функций мозга и зрительного анализатора, что крайне актуально для недоношенных и морфофункционально незрелых детей, а также малышей с офтальмологическими проблемами .

Всем известны проблемы со становлением микробиоценоза у детей раннего возраста, особенно в первые месяцы. Это явления диспепсии, кишечные колики, повышенный метеоризм. Потребление «нуклеотидных» смесей позволяет быстрее нормализовать ситуацию, без необходимости коррекции пробиотиками. У детей, получавших смеси с нуклеотидами, реже отмечались дисфункция желудочно-кишечного тракта, неустойчивость стула, они легче переносили введение последующего прикорма.

Однако при применении смесей с нуклеотидами необходимо иметь в виду, что они сокращают частоту стула, поэтому детям с запорами их следует рекомендовать с осторожностью .

Особое значение эти смеси могут иметь у детей с гипотрофией, анемией, а также перенесших гипоксические нарушения в неонатальном периоде. Смеси с нуклеотидами помогают решить ряд проблем, возникающих при выхаживании недоношенных детей. В частности, речь идет о плохом аппетите и низкой прибавке массы тела в течение всего первого года жизни, кроме того, употребление смесей способствует более полноценному психомоторному развитию малышей .

Исходя из вышеизложенного применение смесей с нуклеотидными добавками для нас, врачей, представляет большой интерес. Рекомендовать эти смеси мы можем большому кругу детей, тем более что смеси не являются лечебными. Вместе с тем, мы считаем важным указать на возможность индивидуальных вкусовых реакций у детей раннего возраста, особенно при переводе ребенка с обычной смеси на нуклеотидсодержащую. Так, в некоторых случаях, даже при использовании смесей одной фирмы, мы отмечали у ребенка негативные реакции, вплоть до отказа от предлагаемой смеси. Однако все литературные источники утверждают, что нуклеотиды не только не влияют отрицательно на вкусовые качества, но и, напротив, улучшают их, не изменяя органолептических свойств смеси .

Представляем обзор смесей, содержащих нуклеотидные добавки и имеющихся на нашем рынке . Это сывороточные смеси фирмы «Фризленд Ньютришн» (Голландия) «Фрисолак», «Фрисомел», в которых содержатся 4 нуклеотида, идентичных нуклеотидам женского молока; сывороточная смесь «Мамекс» (Intern Nutrition, Дания), НАН («Нестле», Швейцария), «Энфамил» («Мид Джонсон», США), смесь «Симилак формула плюс» («Эббот Лабораториз», Испания/США). Количество и состав нуклеотидов в этих смесях разные, что определяется фирмой-производителем.

Все фирмы-изготовители стараются подобрать соотношение и состав нуклеотидов, приблизив его, насколько возможно технически и биохимически, к аналогичным показателям грудного молока. Совершенно ясно, что механический подход не является физиологическим. Безусловно, введение нуклеотидов в смеси для детского питания — это революционный шаг в производстве заменителей грудного молока, способствующий максимальному приближению к составу женского грудного молока. Однако никакая смесь пока не может считаться физиологически полностью идентичной этому единственному, универсальному и необходимому ребенку продукту.

Литература
  1. Gyorgy. P. Biochemical aspects. Am.Y.Clin. Nutr. 24(8), 970-975.
  2. Europan society for Pediatric Gastroenterology and Nutrition (ESPGAN). Committee on Nutrition: Guidelines on infant nutrition I. Recommendations on the composition of an adapted formula. Asta Paediatr Scand 1977; Suppl 262: 1-42.
  3. James L. Leach, Jeffreu H. Baxter, Bruce E. Molitor, Mary B. Ramstac, Marc L\ Masor. Все потенциально имеющиеся нуклеотиды материнского молока на стадии лактации//Американский журнал клинического питания. - Июнь 1995. - Т. 61. - №6. - С. 1224-30.
  4. Carver J. D., Pimental B., Cox WI, Barmess L. A. Dietary nucleotidi effects upon immune function in infаnts. Pediatrics 1991; 88; 359-363.
  5. Uauy. R., Stringel G., Thomas R. and Quan R . (1990) Effect of dietari nucleosides on growth and maturation of the developing gut in the rat. J. Pediatr. Gastroenterol. Nutr. 10, 497-503.
  6. Brunser O., Espinosa J., Araya М., Gruchet S. and Gil А. (1994) Effect of dietari nucleotide suppementation on diarrhoeal disease in infants. Asta Paediatr. 883. 188-191.
  7. Кешишян Е. С., Бердникова Е. К.//Смеси с нуклеотидными добавками для вскармливания детей первого года жизни//Детское питание XXI века. - С. 24.
  8. Дэвид. Новые технологии улучшения продуктов детского питания//Педиатрия. - 1997. - №1. - С. 61-62.
  9. Кешишян Е. С., Бердникова Е. К. Смеси с нуклеотидными добавками для вскармливания грудных детей. Ожидаемый эффект//Педиатрия. Consilium medicum. - Приложение №2. - 2002. - С. 27-30.

Е. С. Кешишян, доктор медицинских наук, профессор
Е. К. Бердникова
МНИИ педиатрии и детской хирургии Минздрава РФ, Москва