Как найти площадь фигуры в фигуре. Как найти площадь фигуры. III. Изучение нового материала

Знания о том, как измерить Землю, появились еще в древности и постепенно оформились в науку геометрию. С греческого языка это слово так и переводится - «землемерие».

Мерой протяжённости плоского участка Земли по длине и ширине является площадь. В математике она обычно обозначается латинской буквой S (от англ. «square» - «площадь», «квадрат») или греческой буквой σ (сигма). S обозначает площадь фигуры на плоскости или площадь поверхности тела, а σ — площадь поперечного сечения провода в физике. Это основные символы, хотя могут быть и другие, например, в сфере сопротивления материалов, А - площадь сечения профиля.

Формулы расчета

Зная площади простых фигур, можно находить параметры более сложных . Античными математиками были выведены формулы, по которым можно легко их вычислять. Такими фигурами являются треугольник, четырёхугольник, многоугольник, круг.

Чтобы найти площадь сложной плоской фигуры, её разбивают на множество простых фигур, таких как треугольники, трапеции или прямоугольники. Затем математическими методами выводят формулу для площади этой фигуры. Подобный метод используют не только в геометрии, но и в математическом анализе для вычисления площадей фигур, ограниченных кривыми .

Треугольник

Начнём с самой простой фигуры - треугольника. Они бывают прямоугольные, равнобедренные и равносторонние. Возьмём любой треугольник ABC со сторонами AB=a, BC=b и AC=c (∆ ABC). Чтобы найти его площадь, вспомним известные из школьного курса математики теоремы синусов и косинусов. Отпуская все выкладки, придём к следующим формулам:

  • S=√ - известная всем формула Герона, где p=(a+b+c)/2 - полупериметр треугольника;
  • S=a h/2, где h - высота, опущенная на сторону a;
  • S=a b (sin γ)/2, где γ - угол между сторонами a и b;
  • S=a b/2, если ∆ ABC - прямоугольный (здесь a и b - катеты);
  • S=b² (sin (2 β))/2, если ∆ ABC - равнобедренный (здесь b - одно из «бёдер», β - угол между «бёдрами» треугольника);
  • S=a² √¾, если ∆ ABC - равносторонний (здесь a - сторона треугольника).

Четырёхугольник

Пусть имеется четырёхугольник ABCD, у которого AB=a, BC=b, CD=c, AD=d. Чтобы найти площадь S произвольного 4-угольника, нужно разделить его диагональю на два треугольника, площади которых S1 и S2 в общем случае не равны.

Затем по формулам вычислить их и сложить, т. е. S=S1+S2. Однако, если 4-угольник принадлежит к определённому классу, то его площадь можно найти по заранее известным формулам:

  • S=(a+c) h/2=e h, если 4-угольник - трапеция (здесь a и c - основания, e - средняя линия трапеции, h - высота, опущенная на одно из оснований трапеции;
  • S=a h=a b sin φ=d1 d2 (sin φ)/2, если ABCD - параллелограмм (здесь φ - угол между сторонами a и b, h - высота, опущенная на сторону a, d1 и d2 - диагонали);
  • S=a b=d²/2, если ABCD - прямоугольник (d - диагональ);
  • S=a² sin φ=P² (sin φ)/16=d1 d2/2, если ABCD - ромб (a - сторона ромба, φ - один из его углов, P - периметр);
  • S=a²=P²/16=d²/2, если ABCD - квадрат.

Многоугольник

Чтобы найти площадь n-угольника, математики разбивают его на простейшие равные фигуры -треугольники, находят площадь каждого из них и затем складывают. Но если многоугольник относится к классу правильных, то используют формулу:

S=a n h/2=a² n/=P²/, где n - количество вершин (или сторон) многоугольника, a - сторона n-угольника, P - его периметр, h - апофема, т. е. отрезок, проведённый из центра многоугольника к одной из его сторон под углом 90°.

Круг

Круг - это совершенный многоугольник, имеющий бесконечное число сторон . Нам необходимо вычислить предел выражения справа в формуле площади многоугольника при числе сторон n, стремящемуся к бесконечности. В этом случае периметр многоугольника превратится в длину окружности радиуса R, которая будет границей нашего круга, и станет равен P=2 π R. Подставим это выражение в указанную выше формулу. Мы получим:

S=(π² R² cos (180°/n))/(n sin (180°/n)).

Найдём предел этого выражения при n→∞. Чтобы это сделать, учтём, что lim (cos (180°/n)) при n→∞ равен cos 0°=1 (lim - знак предела), а lim = lim при n→∞ равен 1/π (мы перевели градусную меру в радианную, используя соотношение π рад=180°, и применили первый замечательный предел lim (sin x)/x=1 при x→∞). Подставив в последнее выражение для S полученные значения, придём к известной формуле:

S=π² R² 1 (1/π)=π R².

Единицы измерения

Применяются системные и внесистемные единицы измерения . Системные единицы относятся к СИ (Система Интернациональная). Это квадратный метр (кв. метр, м²) и единицы, производные от него: мм², см², км².

В квадратных миллиметрах (мм²), например, измеряют площадь сечения проводов в электротехнике, в квадратных сантиметрах (см²) - сечения балки в строительной механике, в квадратных метрах (м²) - квартиры или дома, в квадратных километрах (км²) - территории в географии.

Однако иногда используются и внесистемные единицы измерения, такие, как: сотка, ар (а), гектар (га) и акр (ас). Приведём следующие соотношения:

  • 1 сотка=1 а=100 м²=0,01 га;
  • 1 га=100 а=100 соток=10000 м²=0,01 км²=2,471 ас;
  • 1 ас= 4046.856 м²=40,47 а=40,47 соток=0,405 га.

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Если вы планируете сделать ремонт самостоятельно, то у вас возникнет необходимость составить смету по строительным и отделочным материалам. Для этого вам понадобится рассчитать площадь помещения, в котором вы планируете произвести ремонтные работы. Главным помощником в этом выступает специально разработанная формула. Площадь помещения, а именно ее расчет, позволит вам сэкономить немалые деньги на строительных материалах и направить высвободившиеся денежные ресурсы в более нужное русло.

Геометрическая форма комнаты

Формула расчета площади помещения напрямую зависит от ее формы. Наиболее типичными для отечественных сооружений являются прямоугольные и квадратные комнаты. Однако в ходе перепланировки стандартная форма может искажаться. Комнаты бывают:

  • Прямоугольные.
  • Квадратные.
  • Сложной конфигурации (например, круглые).
  • С нишами и выступами.

Каждая из них имеет свои особенности расчета, но, как правило, используется одна и та же формула. Площадь помещения любой формы и размера, так или иначе, поддается вычислению.

Помещение прямоугольной или квадратной формы

Чтобы рассчитать площадь комнаты прямоугольной или квадратной формы, достаточно вспомнить школьные уроки геометрии. Поэтому для вас не должно составить особого труда определить площадь помещения. Формула расчета имеет вид:

S комнаты=A*B, где

А - длина помещения.

В - ширина помещения.

Для измерения этих величин вам понадобится обычная рулетка. Чтобы получить наиболее точные расчёты, стоит измерить стену с обеих сторон. Если значения не сходятся, возьмите за основу среднее значение получившихся данных. Но помните, что любые расчёты имеют свои погрешности, поэтому материал стоит закупать с запасом.

Помещение со сложной конфигурацией

Если ваша комната не попадает под определение «типичной», т.е. имеет форму круга, треугольника, многоугольника, то, возможно, для расчетов вам понадобится другая формула. Площадь помещения с такой характеристикой можно попробовать условно разделить на прямоугольные элементы и произвести расчеты стандартным путем. Если такой возможности у вас нет, тогда воспользуйтесь следующими методиками:

  • Формула нахождения площади круга:

S комн.=π*R 2 , где

R - радиус помещения.

  • Формула нахождения площади треугольника:

S комн.= √ (P(P - A) х (Р - В) х (Р - С)), где

Р - полупериметр треугольника.

А, В, С - длины его сторон.

Отсюда Р=А+В+С/2

Если в процессе расчета у вас возникли затруднения, то лучше не мучать себя и обратиться к профессионалам.

Площадь помещения с выступами и нишами

Зачастую стены украшают декоративными элементами в форме всевозможных ниш или выступов. Также их наличие может быть обусловлено необходимостью скрыть некоторые неэстетичные элементы вашей комнаты. Наличие выступов или ниш на вашей стене означает, что расчет следует проводить поэтапно. Т.е. сначала находится площадь ровного участка стены, а затем к нему прибавляется площадь ниши или выступа.

Площадь стены находится по формуле:

S стен = Р х С, где

Р - периметр

С - высота

Также нужно учитывать наличие окон и дверей. Их площадь необходимо отнять от получившегося значения.

Комната с многоуровневым потолком

Многоуровневый потолок не так сильно усложняет расчеты, как это кажется на первый взгляд. Если он имеет простую конструкцию, то можно произвести расчеты по принципу нахождения площади стен, осложненных нишами и выступами.

Однако если конструкция вашего потолка имеет дуго- и волнообразные элементы, то целесообразнее определить его площадь с помощью площади пола. Для этого необходимо:

  1. Найти размеры всех прямых участков стен.
  2. Найти площадь пола.
  3. Перемножить длину и высоту вертикальных участков.
  4. Суммировать получившееся значение с площадью пола.

Пошаговая инструкция по определению общей

площади помещения

  1. Освободите помещение от ненужных вещей. В процессе замеров вам понадобится свободный доступ ко всем участкам вашей комнаты, поэтому нужно избавиться от всего, что может этому препятствовать.
  2. Визуально разделите комнату на участки правильной и неправильной формы. Если ваше помещение имеет строго квадратную или прямоугольную форму, то этот этап можно пропустить.
  3. Сделайте произвольную схему помещения. Этот чертеж нужен для того, чтобы все данные были у вас всегда под рукой. Также он не даст вам возможности запутаться в многочисленных замерах.
  4. Замеры необходимо производить несколько раз. Это важное правило для исключения ошибок в подсчетах. Также если вы используете убедитесь, что луч лежит ровно на поверхности стены.
  5. Найдите общую площадь помещения. Формула общей площади помещения заключается в нахождении суммы всех площадей отдельных участков комнаты. Т.е. S общ.= S стен+S пола+S потолка

В геометрии площадь фигуры является одной из основных численных характеристик плоского тела. Что такое площадь, как ее определять у различных фигур, а также какие свойства она имеет - все эти вопросы мы рассмотрим в данной статье.

Что такое площадь: определение

Площадь фигуры - это число единичных квадратов в этой фигуре; неформально выражаясь, это размер фигуры. Чаще всего, площадь фигуры обозначается как «S». Её можно измерить с помощью палетки или прибора планиметр. Также площадь фигуры можно вычислить, зная основные ее размеры. Например, площадь треугольника можно вычислить по трем различным формулам:

Площадь прямоугольника равна произведению его ширины на длину, а площадь круга равна произведению квадрата радиуса на число π=3,14.

Свойства площади фигуры

  • площадь равна у равных фигур;
  • площадь всегда неотрицательна;
  • единицей измерения площади является площадь квадрата со стороной, равной 1 единице длины;
  • если фигура разделена на две части, то общая площадь фигуры равна сумме площадей составляющих ее частей;
  • фигуры, равные по площади, называются равновеликими;
  • если одна фигура принадлежит другой фигуре, то площадь первой не может превосходить площади второй.

Существует бесконечное количество плоских фигур самой разной формы, как правильных, так и неправильных. Общее свойство всех фигур - любая из них обладает площадью. Площади фигур - это размеры части плоскости, занимаемой этими фигурами, выраженные в определенных единицах. Величина эта всегда бывает выражена положительным числом. Единицей измерения служит площадь квадрата, чья сторона равняется единице длины (например, одному метру или одному сантиметру). Приблизительное значение площади любой фигуры можно вычислить, умножив количество единичных квадратов, на которые она разбита, на площадь одного квадрата.

Другие определения данного понятия выглядят следующим образом:

1. Площади простых фигур - скалярные положительные величины, удовлетворяющие условиям:

У равных фигур - равные величины площадей;

Если фигура делится на части (простые фигуры), то ее площадь - сумма площадей данных фигур;

Квадрат, имеющий стороной единицу измерения, служит единицей площади.

2. Площади фигур сложной формы (многоугольников) - положительные величины, имеющие свойства:

У равных многоугольников - одинаковые величины площадей;

В случае, если многоугольник составляют несколько других многоугольников, его площадь равняется сумме площадей последних. Это правило справедливо для неперекрывающихся многоугольников.

В качестве аксиомы принято утверждение, что площади фигур (многоугольников) - положительные величины.

Определение площади круга дается отдельно как величины, к которой стремится площадь вписанного в окружность данного круга - при том, что число его сторон стремится к бесконечности.

Площади фигур неправильной формы (произвольных фигур) не имеют определения, определяются лишь способы их вычисления.

Вычисление площадей уже в древности было важной практической задачей при определении размеров земельных участков. Правила вычисления площадей за несколько сотен лет были сформулированы греческими учеными и изложены в «Началах» Евклида как теоремы. Интересно, что правила определения площадей простых фигур в них - те же, что и в настоящее время. Площади имеющих криволинейный контур, рассчитывались с применением предельного перехода.

Вычисление площадей простых прямоугольника, квадрата), знакомых всем со школьной скамьи, достаточно просто. Необязательно даже запоминать содержащие буквенные обозначения формулы площадей фигур. Достаточно помнить несколько простых правил:

2. Площадь прямоугольника вычисляется умножением его длины на ширину. При этом необходимо, чтобы длина и ширина были выражены в одних и тех же единицах измерения.

3. Площадь сложной фигуры вычисляем, разделив ее на несколько простых и сложив полученные площади.

4. Диагональ прямоугольника делит его на два треугольника, чьи площади равны и равняются половине его площади.

5. Площадь треугольника вычисляется как половина произведения его высоты и основания.

6. Площадь круга равняется произведению квадрата радиуса на всем известное число «π».

7. Площадь параллелограмма вычисляем как произведение смежных сторон и синуса лежащего между ними угла.

8. Площадь ромба - ½ результата умножения диагоналей на синус внутреннего угла.

9. Площадь трапеции находим умножением ее высоты на длину средней линии, которая равняется среднему арифметическому оснований. Другой вариант определения площади трапеции - перемножить ее диагонали и синус лежащего между ними угла.

Детям в начальной школе для наглядности часто даются задания: найти площадь нарисованной на бумаге фигуры с помощью палетки или листа прозрачной бумаги, разграфленной на клеточки. Такой лист бумаги накладывается на измеряемую фигуру, считается число полных клеточек (единиц площади), поместившихся в ее контуре, затем число неполных, которое делится пополам.