Дать классификацию углеводам привести примеры. Строение и классификация углеводов. Биологическая роль углеводов

Одну из наиболее важных функций в живых организмах выполняют углеводы. Они являются источником энергии и участвуют в метаболизме.

Общее описание

Другое название углеводов - сахара. Углеводы имеют два определения:

  • с точки зрения биологии - биологически активные вещества, являющиеся источником энергии для живых организмов, в том числе человека;
  • с точки зрения химии - органические соединения, состоящие из нескольких карбонильных (-СО) и гидроксильных (-ОН) групп.

Элементы, образующие углевод:

  • углерод;
  • водород;
  • кислород.

Общая формула углеводов - C n (H 2 O) m . Минимальное количество атомов углерода и кислорода - три. Соотношение водорода и кислорода всегда 2:1, как в молекуле воды.

Источником углеводов является процесс фотосинтеза. Углеводы составляют 80 % сухой растительной массы и 2-3 % - животной. Углеводы входят в состав АТФ - универсального источника энергии.

Виды

Углеводы - многочисленная группа органических веществ. Они классифицируются по двум признакам:

  • количеству атомов углерода;
  • количеству структурных единиц.

В зависимости от количества атомов углерода в одной молекуле (структурной единице) выделяют:

  • триозы;
  • тетрозы;
  • пентозы;
  • гексозы;
  • гептозы.

Молекула может включать до девяти атомов углерода. Наиболее значимыми являются пентозы (C 5 H 10 O 5) и гексозы (C 6 H 12 O 6). Пентозы являются компонентами нуклеиновых кислот. Гексозы входят в состав полисахаридов.

Рис. 1. Структура моносахарида.

По второму признаку классификации углеводы бывают:

  • простыми , состоящими из одной молекулы или структурной единицы (моносахариды);
  • сложными , включающими множество молекул (олигосахариды, полисахариды).

Особенности сложных структур описаны в таблице углеводов.

Рис. 2. Структура полисахарида.

Одна из наиболее значимых разновидностей олигосахаридов - дисахариды, состоящие из двух моносахаридов. Они служат источником глюкозы и выполняют строительную функцию в растениях.

Физические свойства

Моносахариды и олигосахариды имеют схожие физические свойства:

  • кристаллическое строение;
  • сладкий вкус;
  • растворимость в воде;
  • прозрачность;
  • нейтральная pH в растворе;
  • низкие температуры плавления и кипения.

Полисахариды - более сложные вещества. Они нерастворимы и не имеют сладкого привкуса. Целлюлоза - разновидность полисахарида, входящая в состав клеточных стенок растений. Аналогичный целлюлозе хитин входит в состав грибов и панцирей членистоногих. Крахмал накапливается в растениях и распадается на простые углеводы, которые являются источником энергии. В животных клетках резервную функцию выполняет гликоген.

Химические свойства

В зависимости от структуры каждому углеводу характерны особые химические свойства. Моносахариды, в частности глюкоза, подвергаются многоступенчатому окислению (в отсутствии и присутствии кислорода). В результате полного окисления образуется углекислый газ и вода:

C 6 H 12 O 6 + 6O 2 → 6CO 2 +6H 2 O.

В отсутствии кислорода под действием ферментов происходит брожение:

  • спиртовое -

    C 6 H 12 O 6 → 2C 2 H 5 OH (этанол) + 2CO 2 ;

  • молочнокислое -

    C 6 H 12 O 6 → 2CH 3 -CH(OH)-COOH (молочная кислота).

Иначе с кислородом взаимодействуют полисахариды, сгорая до углекислого газа и воды:

(C 6 H 10 O 5)n + 6O 2 → 6nCO 2 + 5nH 2 O.

Олигосахариды и полисахариды разлагаются до моносахаридов при гидролизе:

  • C 12 H 22 O 11 + H 2 O → C 6 H 12 O 6 + C 6 H 12 O 6 ;
  • (C 6 H 10 O 5)n + nH 2 O → nC 6 H 12 O 6 .

Глюкоза реагирует с гидроксидом меди (II) и аммиачным раствором оксида серебра (реакция серебряного зеркала):

  • CH 2 OH-(CHOH) 4 -CH=O + 2Cu(OH) 2 → CH 2 OH-(CHOH) 4 -COOH + Cu 2 O↓ + 2H 2 O;
  • CH 2 OH-(CHOH) 4 -CH=O + 2OH → CH 2 OH-(CHOH) 4 -COONH 4 + 2Ag↓ +3NH 3 + H 2 O.

Рис. 3. Реакция серебряного зеркала.

Что мы узнали?

Из темы химии 10 класса узнали об углеводах. Это биоорганические соединения, состоящие из одной или нескольких структурных единиц. Одна единица или молекула состоит из карбонильных и гидроксильных групп. Различают моносахариды, состоящие из одной молекулы, олигосахариды, включающие 2-10 молекул, и полисахариды - длинные цепочки из множества моносахаридов. Углеводы сладкие на вкус и хорошо растворимы в воде (исключение - полисахариды). Моносахариды растворяются в воде, окисляются, взаимодействуют с гидроксидом меди и аммиачным оксидом серебра. Полисахариды и олигосахариды подвергаются гидролизу. Полисахариды горят.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 263.

Классификация углеводов.

Углеводы


Моносахариды Дисахариды Полисахариды

Глюкоза Сахароза Целлюлоза

Фруктоза Мальтоза Крахмал

Рибоза Лактоза Гликоген

Дезоксирибоза

I . Моносахариды – простые углеводы, с формулой ( O) n .

В зависимости от количества атомов углерода в молекуле моносахариды называются триозами (3 атома), тетрозами (4 атома); пентозами (5 атомов) – рибоза, дезоксирибоза; и гексозами (6 атомов С) – глюкоза, фруктоза, галактоза.

Глюкоза содержится в крови (0,1-0,12%) и служит основным источником энергии для клеток и тканей организма. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ.

II. Дисахариды (олигосахариды) – сахара, образующиеся в результате объединения двух моносахаридов (гексоз), с потерей молекулы воды.

Наиболее важными из этой группы являются: сахароза (свекловичный сахар) и мальтоза (солодовый сахар) у растений, и лактоза – у животных (молочный сахар).

К дисахаридам относится пищевой сахар, получаемый из тростника свеклы. Он состоит из1 молекулы глюкозы и 1 молекулы фруктозы.

Моносахариды и дисахариды хорошо растворимы в воде, обладают сладким вкусом.

III. Полисахариды – сложные углеводы, образованные многими моносахаридами.

Общая формула ()n. Наибольшее биологическое значение имеют: крахмал, гликоген, целлюлоза, хитин. Полисахариды биополимеры, нерастворимы в воде, не имеют сладкого вкуса.

Кроме полисахаридов, состоящих из гексоз, существуют значительно более сложные длинные молекулы, содержащие аминный N (например: глюкозамин), который может быть ацетилирован (ацетилглюкозамин) или замещен на остатки серной или фосфорной кислоты.

Эти сложные полисахариды представляют следующие соединения:

ü нейтральные полисахариды , содержащие только ацетилглюкозамин. Пример: хитин – опорное вещество насекомых и ракообразных.

ü кислые мукополисахариды , содержащие в молекулах остатки серной и др. кислот. Пример: гепарин.

ü мукопротеиды (мукоиды) и гликопротеиды, представляют собой комплексы ацетилглюкозамина и др. углеводов с белками. Пример: вещества входящие в состав слюны и секрета слизистой желудка, также к гликопротеидам относятся яичный и сывороточный альбумины.

Свойства и функции углеводов:

1. Строительная (структурная) –

ü входят в состав оболочек растительных клеток (целлюлоза образует стенки растительных клеток) и формируют опорный скелет растений;

ü хитин – главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

2. Энергетическая функция (запасающая) –

ü углеводы являются основным источником энергии в клетках. При окислении 1 г глюкозы выделяет 17,6 кДж энергии;

ü крахмал является основным запасным веществом у растений, гликоген – у животных; служат энергетическим резервом.

Липиды.

Липиды – это сложные эфиры, образующиеся в результате реакции конденсации между жирными кислотами и каким-нибудь спиртом.

Реакция конденсации – это реакция, при которой происходит соединение двух веществ с выделением молекулы воды.

Липиды иногда называют жирами и жироподобные органические соединения, которые наряду с белками и углеводами обязательно присутствуют в клетках. Все они являются гидрофобными соединениями, т.е. нерастворимые в воде, но растворимы в неполярных органических растворителях (хлороформ, бензол, эфир, бензин, ацетон и др.)

Поступление липидов в клетку:

ü у растений синтезируются в каналах ЭПС.

ü у животных поступают с пищей, расщепляются и вновь синтезируются в собственные жиры.

Рис. Строение простого липида

Жир содержится в молоке всех млекопитающих животных, у некоторых до 40% (у самки дельфина). У некоторых растений большое количество жира находится в семенах и плодах (подсолнечник, грецкий орех).

Рис. Строение олеиновой кислоты

Липиды не являются полимерами , т.к. они не состоят из повторяющихся звеньев (мономеров).

Компоненты липидов.

Жирные кислоты называют «жирными» потому, что некоторые члены этого ряда входят в состав жиров. Общая формула имеет вид R-СООН, где R – атом водорода или радикал типа – СН 3 , –С 2 Н 5 и др.

Длинная цепь из атомов углерода и водорода составляет гидрофобный углеводородный хвост .

Иногда в жирных кислотах имеется одна или несколько двойных связей (С = С). В этом случае жирные кислоты называются ненасыщенными . Если двойных связей нет, кислоты называются насыщенными .

Ненасыщенные жирные кислоты плавятся при низких температурах. Олеиновая кислота – основной компонент оливкового масла – при обычных температурах бывает жидкой (Т пл = 13,4 о С), тогда как пальмитиновая и стеариновая кислоты (Т пл = 63,1 о С и Т пл = 69,6 о С) при таких температурах остаются твердыми.

Спирты. Большая часть липидов представляет собой триглицериды. В их состав входит спирт глицерол.

Кроме жира, в клетках присутствуют вещества, обладающие, как и жиры, гидрофобными свойствами. Это – липоиды.

Липоиды (греч. «липос» - жир, «эйдос» - вид) – жироподобные вещества, у которых 1 молекула жирной кислоты заменена на .

Классификация липидов

Эфиры жирных кислот и глицерина Стероиды

(входит спирт холестерол)

Простые Сложные

Триглицериды Воска Фосфолипиды

Гликолипиды

Триглицериды – самые распространённые из липидов, встречающихся в природе. Их принято делить на жиры и масла, в зависимости от того, остаются ли они твердыми при комнатной температуре (жиры) или находятся в жидком состояние (масла). Температура плавления липида тем ниже, чем выше в нем доля ненасыщенных жирных кислот.

В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицералов, чем у обитателей южных широт. Поэтому тело их остается гибким и при понижении температуры среды.

Воска – сложные эфиры жирных кислот и многоатомных спиртов. Кожные железы животных способны вырабатывать воска, предохраняющие шерсть и перья от намокания. Пчелы строят соты из воска. У растений воска образуют защитный слой на поверхности плодов и листьев.

Фосфолипиды – соединения глицерина, жирных кислот и остатка фосфорной кислоты.


Рис. Строение фосфолипида.

Фосфатная голова – гидрофильна. Хвост не растворим в воде.

Гликолипиды – соединения липидов и углеводов. Гликолипиды и фосфолипиды входят в состав мембран.

Стероиды не содержат жирных кислот, и имеют в своем составе спирт холестерол.

К этой группе липидов (стеролы)относятся желчные кислоты, гормоны коры надпочечников (адренокортикотропные гормоны), половые гормоны, витамин D. Предшественником в синтезе этих веществ является холестерин. Как структурный компонент он входит в состав всех мембран.

К стеролам близки терпены, представителями которых являются гибереллины (ростовые вещества растений), каротиноиды (пигменты*), ментол и камфора (эфирные масла растений).

*Пигменты – разнообразные по химической структуре органические вещества, способные избирательно поглощать свет определенной длины волны.

ü Красящая: придают окраску клеткам тканей и органов (антоцианы у растений, меланин у животных).

ü Защита от ультрафиолета (каротиноиды у растений, меланин у животных).

ü Участие в фотосинтезе (хлорофилл и фикобиллины).

ü Транспорт и депонирование кислорода (гемоглобин крови и миоглобин мышц).

ü Участие в зрительном поцессе (родопсин и йодопсин).

Свойства и функции липидов:

1. Энергетическая функция. Липиды обеспечивают 25-30% всей энергии, необходимой организму. При расщеплении 1г. жиров до и освобождается 38,9 кДж энергии.

2. Запасающая функция. Запасными питательными веществами могут быть капли жира вне клетки. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жиры служат запасным источником энергии.

Пример: животные, впадающие в спячку, и растения накапливающие жиры и масла и расходуют их в процессе жизнедеятельности.

3. Строительная функция (структурная) – липиды образуют бимолекулярный слой служащий основой наружной клеточной мембраны, из них 75-95% фосфлипиды; гликолипиды входят в состав клеток мозга и нервных клеток.

4. Функция термоизоляции. Жиры плохо проводят тепло. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м.

5. Защитная функция: термо- и гидроизоляция, защита от ударов. Пример: воск предохраняет перья и шерсть животных от смачивания.

6. Регуляторная функция (гормональная)

ü связана с тем, что многие жиры – компоненты витаминов (А, Д, Е и К) следовательно часть липидов принимают участие в обмене веществ.

ü Стероидные гормоны регулируют ряд процессов обмена веществ и размножения.

7. Функция источника воды.

ü При окислении 100 г жира образуется ≈105 г воды. Эта метаболическая вода очень важна для обитателей пустыни, в частности для верблюда, способного обходится без воды 10-12 дней; жир запасаемый в его горбе, используется для этой цели.

ü Необходимую для жизнедеятельности воду медведи, сурки и др. животные в спячке также получают в результате окисления жира.

Белки.

Белки – сложные органические соединения (биополимеры), состоящие из С, Н, О и N (иногда и S), мономерами которых являются аминокислоты.

Белки высокомолекулярны.

Молекулярная масса (Mm) = от 5 тыс. до 1 млн. дальтон и более. Так например: Mm этилового спирта = 46 Д; Mm одного из белков яйца = 36000 Д; Mm одного из белков мышц = 1500000 Д. Глобулин молока имеет Mm 42000 Д. Его формула –

Поступление белков в клетку:

ü у растений синтезируется на рибосомах из аминокислот которые образуются в клетках, из и карбоксильной группы, соединенных с различными радикалами.

ü у животных поступают с пищей, расщепляются до аминокислот, которые идут на синтез собственных белков.

В образовании белков участвуют 20 различных аминокислот.

Аминокислоты – низкомолекулярные органические соединения, в состав которых входят 1 или 2 аминогруппы (- ) и 1 или 2 карбоксильные группы (-COOH), обладающие щелочными (основными) и кислотными свойствами соответственно. Этим объясняются амфотерные свойства аминокислот, благодаря чему в клетках они играют роль буферных соединений.

Классификация аминокислот:

1) Моноаминомонокарбоновые: Глицин (Гли), Аланин (Ала), Валин (Вал), Лейцин (Лей), Изолейцин (Иле).

2) Моноаминодикарбоновые: Глютаминовая кислота (Глу), Аспаролиновая кислота (Асп)

3) Диаминомонокарбоновые: Аргинин (Арг), Лизин (Лиз), Оксилизин (Оли).

4) Гидроксилсодержащие: Треонин (Тре), Серин (Сер).

6) Ароматические: Фенилаланин (Фен), Пирозин (Пер).

7) Гетероциклические: Триптофан (Три), Пролин (Про), Оксипролин (Опр), Гистидин (Гис).

Поступление аминокислот в клетку:

ü у растений все необходимые аминокислоты синтезируются из , воды и аммиака.

ü у животных и человека утрачена способность синтезировать ряд протеиногенных аминокислот, которые стали для них незаменимыми – они должны поступать с пищей и кормом. [в классификации отмечены курсивом]. Заменимые аминокислоты – синтезируются в организме человека и животных в процессе биосинтеза.

Общая формула аминокислоты :

- CH - COOH

Все аминокислоты различаются только радикалами.

В настоящее время известно более 150 природных аминокислот с известными строением и функциями. Пример: γ-аминомасляная кислота обеспечивает процессы торможения в нервной системе. Многие аминокислоты являются предшественниками витаминов, а/б, гормонов и др. биологически-активных соединений.

Большинство аминокислот находятся в организме в свободном виде и только 20 из них входят в состав белков. Эти аминокислоты называются белковые или протеиногенные (образующие протеины). Им присуще свойство – способность при участии ферментов соединятся по аминным и карбоксильным группам и образовывать полипептидные цепи.

В состав которых зачастую входят три химических элемента: Карбон, Гидроген и Оксиген. Много углеводов кроме этих элементов содержат Фосфор, Сульфур и Нитроген. Данные биополимеры широко распространены в природе. Биосинтез углеводов в растениях осуществляется в результате фотосинтеза. Углеводы составляют около 80-90 % сухой массы растений.

В организме человека концентрация углеводов в пересчете на сухое вещество составляет около 2 % процентов. Углеводы являются основным источником химической энергии для организма. Расщепление углеводов имеет особое значение для функционирования некоторых органов. Например, отдельные органы удовлетворяют свои потребности преимущественно за счет расщепления глюкозы: головной мозг - на 80%, сердце - на 70 - 75%. Углеводы депонируются в тканях организма в виде запасных питательных веществ (гликоген). Некоторые из них выполняют опорные функции участвуют в защитных функциях, задерживают развитие микробов (слизи), является химической основой для построения молекул биополимеров, составными частями макроэргических соединений и т.д.

Классификация углеводов.

Все углеводы делятся на две большие группы: моносахариды или монозы), полисахариды или полиозы), которые состоят из нескольких остатков молекул моносахаридов, связанных между собой.

Классификация углеводов: моносахариды.

Моносахариды, содержащие альдегидную группу, называют альдозами, а те, которые содержат кетонную группу, - кетозами. К простым углеводам относятся альдегидо- и кетоспирты с числом углеродных атомов не менее трех. По числу атомов карбона моноза деляться на триозы, тетрозы, пентозы, гексозы и т.д.

Триозы. Содержатся в тканях и биологических жидкостях в виде эфиров как продукты промежуточного обмена углеводов во время реакций гликолиза и брожения. Тетрозы. Наибольшее значение имеет эритроза, которая содержится в тканях в виде эфира ортофосфорной кислоты - продукта пентозного пути окисления углеводов. Пентозы. Большинство пентоз образуется в пищеварительном тракте человека в результате гидролиза пентозанов овощей и фруктов. Часть пентоз образуется в процессах промежуточного обмена, в частности в пентозном пути. В тканях пентозы находятся в свободном состоянии в виде эфиров ортофосфатнои кислоты, входящих в состав (АТФ), нуклеиновых кислот, коферментов (НАДФ, ФАД) и других важных биосоединений. Особого внимания заслуживают такие пентозы: арабиноза, рибоза, дезоксирибоза, ксилулоза. Гексозы. Встречаются в свободном состоянии, в составе полисахаридов и других соединений. Наиболее важными представителями данного класса углеводов являются глюкоза, фруктоза, галактоза, маноза.

Классификация углеводов: дисахариды.

Дисахариды - это углеводы, молекулы которых при гидролизе расщепляются на две молекулы гексоз. К дисахаридам относятся мальтоза, сахароза, трегалоза, лактоза.

При наименовании дисахаридов обычно пользуются названиями, которые сложились исторически (лактоза, мальтоза, сахароза), реже - рациональными и по номенклатуре IUPAC.

Дисахариды - твердые кристаллические вещества, хорошо растворимые в воде, оптически активные, сладкие на вкус, способные к кислотному или ферментативному гидролизу, могут образовывать эфиры.

Классификация углеводов: гомополисахариды и гетерополисахариды. В состав гомополисахаридов входит значительное количество остатков одного моносахарида: глюкозы, манозы, фруктозы, ксилозы и т.д. Они являются запасными (резервными) питательными веществами для организма (гликоген, инулин, крахмал). Молекулы гетерополисахаридов состоят из большого количества разных моносахаридов.

БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ.

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ.

СИНТЕЗ И РАСПАД ГЛИКОГЕНА.

Индивидуальное задание

студента биологического ф-та

группы 4120-2(б)

Менадиева Рамазана Исметовича

запорожье 2012

СОДЕРЖАНИЕ
1. Краткая справка об углеводах
2. Классификация углеводов
3. Структурно-функциональные особенности организации моно- и дисахари- дов: строение; нахождение в природе; получение; характеристика отдельных представителей
4. Биологическая роль биополимеров - полисахаридов
5. Химические свойства углеводов
6. Переваривание и всасывание

7. Синтез и распад гликогена
8. Выводы

9. Список литературы.

ВВЕДЕНИЕ

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn (Н2О) n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894). Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

3. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О) n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на: - альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C- . К ним, например, || относится фруктоза. В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза. Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы. Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев. Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6. Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток. В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции. Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче. Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов. Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С. Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара. Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде. Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С). При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь). Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы. Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11. Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах. Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях). Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %. Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза. Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы. Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных. В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез ). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.

Название «углеводы» является историческим. Первые представители этих веществ описывались суммарной формулой С m H 2 n O n или C m (H 2 O) n . Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

Классификация углеводов

Все известные углеводы можно подразделить на две большие группы – простые углеводы и сложные углеводы . Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С 3), тетрозы (С 4), пентозы (С 5), гексозы (С 6) и т.д.:


Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды , или полиозы ) представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды , степень полимеризации которых, как правило, меньше 10) и высокомолекулярные . Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu 2+ , Ag +) делят на восстанавливающие и невосстанавливающие . Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды . Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:


Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей. Основным углеводом, поступающим с пищей, является крахмал. Он содержится в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке). Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ. Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного. В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях:

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных. В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу , катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию. Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции. Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин . Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих. Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола. С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ. Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт. Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.