Глинистые минералы примеры. Определение смачиваемости дисперсных минералов. Тяжелые почвы: тяжелосуглинистые и глинистые

Конспект

книги «Гидрофильность глин и глинистых минералов» Ф.Д.Овчаренко, которая была издана в Киеве Украинской Академией Наук в 1961 году .

Строение глин и конструкция глинистых минералов

П. А. Земятченский дает такое определение глины – это землистая минеральная масса, которая в смеси с водой может образовывать пластическое тесто, сохраняющее форму после высыхания и получающее твёрдость камня после обжига.

Другие авторы, такие как И. И. Гинзбург, В. И. Вернадский, и А. Е. Ферсман под термином «глина» понимали определённый минералогический состав и степень дисперсности массы. Они относили к глинам тонкодисперсные породы, которые состоят в основном из водных силикатов глинозема.

Различают:

  • Минералы крупных частиц, размер которых 0,01 мм и более. Это – минералы, которые перешли в осадочные породы из метаморфических и массивно-кристаллических или материнских пород и сохранились в процессе их разрушения. К ним можно отнести: полевые шпаты, кварц, слюды, пироксены и т. д., которые можно назвать первичными минералами, и которые совсем не присущи глине и глинистым породам.
  • Минералы мелких фракций, размер которых меньше 0,01 мм. Это тонкие частицы вторичных минералов, которые возникли в процессе разрушения первичных минералов. К тонким частицам относятся: монтмориллонит, нонтронит, иллит, каолинит, галлуазит и др. Это специфические минералы, которые присущи глинам и глинистым породам. Поэтому их называют глинистыми минералами. Глинистые минералы в разной степени имеют коллоидно-химические свойства. К этим свойствам относят: пептизацию, коагуляцию, адсорбцию, ионный обмен и др.

Глинистые минералы обладают поглотительной способностью и пластичностью.

По Гинзбургу и Петрову глиноземистые минералы систематизируются по группам:

  • группа каолинита: каолинит, накрит, диккит, монотермит, галлуазит;
  • группа монтмориллонита: бейделлит, монтмориллонит;
  • группа пирофиллита: пирофиллит;
  • группа аллофана: аллофан;
  • группа гидрослюды: гидромусковит, ливерьерит.

Р. Грим составил следующую классификацию глинистых минералов.

  • Аморфные глинистые минералы , включают в себя группу аллофанов.
  • Кристаллические глинистые минералы , которые имеют несколько видов:

Двухслойный тип.

Слоистые структуры минералов содержат слой кремнекислородных тетраэдров и слой алюмокислородных октаэдров. Они могут быть:

1) Изометрическими. Это группа каолинита – накрит, каолинит, и т.д.

2) Удлинёнными. Это группа галлуазита.

Трёхслойный тип.

Слоистые структуры таких минералов имеют два слоя кремнекислородных тетраэдров с расположенными между ними алюмокислородными октаэдрическими, диоктаэдрическими и триоктаэдрическими слоями. Они бывают:

1)С разбухающей кристаллической решеткой:

a)для изометрических: группа монтмориллонита (соконит, монтмориллонит, и др.), вермикулит;

b)для удлинённых: группа монтмориллонита, сапонит, нонтронит, гекторит.

2)С неразбухающей решеткой: группа иллита.

Смешано-слоистый тип.

Этот тип глинистых минералов состоит из группы хлорита.

Цепочные структуры

Это роговообманковые цепочки из кремнекислородных тетраэдров, соединенные между собой октаэдрическими группами, которые состоят из магния и алюминия в окружении гидроксила и кислорода.

Почти все глины рассматриваются как полиминеральные горные породы, глинистые минералы которых обладают характерными признаками, обусловливающими специфические физико-химические свойства глин.

Конституционная вода в глине показывает принадлежность минерала к установленной группе.

Свойства глинистых минералов определяются их высокодисперсным составом, строением кристаллической решетки, ионообменной и адсорбционной способностью, упругопластичностью и тиксотропностью.

Структура частицы минерала оказывает влияние на технические и физико-химические свойства глин и задает способ их взаимодействия с водой.

Взаимодействие глинистых частиц с водой является важнейшим условием при использовании глин в практических целях.

Гидросиликатные минералы состоят в основном из Al 2 O 3 SiO 2 H 2 O. Кремний и алюминий взаимосвязаны посредством кислородных атомов.

Ионная решетка глинистых минералов включает две структурные единицы. Первая — глинозем, состоящий из двух пластов атомов кислорода либо гидроксилов. Между ними заключены в октаэдрической координации атомы алюминия, которые находятся на равном расстоянии от кислорода или гидроксила.

Структурная единица такого типа соответствует гидраргиллиту Al 2 (ОН) 6 . Гидраргиллит — это пластинчатые, развитые кристаллы, которые плотно окружены атомами гидроксила. Между этими слоями находятся атомы алюминия.

Схематическое изображение отдельного октаэдра (а) и октаэдрической сетки структуры (б):

1- гидроксилы; 2 – алюминий, магний и т. д.

Если в структуре гидраргиллита алюминий заменить на магний – то получится слой брусита, который подобен минералу бруситу с элементарной ячейкой Mg(OH) 2 .

Второй единицей является гидрат кремнезёма, который состоит из тетраэдрических групп (SiO 4).

При образовании пространственной структуры атомы подчиняются правилу Паулинга, согласно которому заряды уравновешиваются зарядами атомов, находящихся с ними в непосредственной близости в кристалллической решетке.

Атом кремния имеет положительную валентность 4 и координационное число 4, поэтому взаимодействует с атомами кислорода с отрицательной электровалентностью (-2) и образует соединение SiO 4 .

По Р.Е. Гриму, в кремнекислородном слое каждый тетраэдр своими вершинами направлен в одну сторону, а основания расположены на одной плоскости. В структуре слоя выделяются три уровня: в первом уровне плоскости расположены атомы кислорода, во втором – кремния, в третьем уровне вершин тетраэдров – гидроксильные группы, расположенные над атомами кремния.

Схематический рисунок (по Гриму Р.Е.): (а) – одиночный кремнекислородный тетраэдр и (б) — сетка из кремнекислородных тетраэдров, которые расположены по гексагональному мотиву.

Связь между алюмокислородным и кремнекислородным слоями внутри пакета осуществляется электростатическими силами, а между пакетами – силами Ван-дер-Ваальса.

Основные типы решеток: 1:1 состоящий из одного слоя кремнезёма и одного слоя глинозёма; 2:1 состоящий из внутреннего слоя глинозёма и двух наружных слоёв кремнезёма. Расстояние между атомами кислорода в тетраэдрическом слое 2,55Å. Толщина такого элемента структуры 4,93Å.

При условии, когда четыре атома кислорода являются общими для нескольких атомов кремния, возникает пространственная решетка структуры, при этом образуются отрицательные заряды, которые компенсируются другими катионами.

Изоморфное замещение в кристалле одного атома другим, возможно при условии, когда эти атомы имеют сходные размеры, координационное число и одинаковую валентность.

В силикатах имеется отличие, при замещении решающее значение имеют размер и координация, а не валентность. Это наблюдается у цеолита, полевых шпатов, монтмориллонита и др. В этих минералах трёхвалентный алюминий замещает в центре тетраэдра четырёх валентный кремний. Алюминий замещается ионом меньшей валентности, например, двухвалентным магнием.

Такие замещения уравновешиваются адсорбированием катионов или другими зарядами решетки – гидроксильные группы замещаются атомами кислорода.

Глинистые минералы с типом решетки 1:1

Имеют сходные свойства. К таким минералам можно отнести галлуазит, каолинит и др.

Каолинит имеет структурную формулу (OH) 8 Si 4 Al 4 O 10 и слоистую структуру, которая состоит из одного кремнекислородного и одного алюмокислородного слоя, соединенных с помощью вершин тетраэдров и октаэдров в одну элементарную ячейку.

Галлуазит с такой же структурой как каолинит, но в гидратированном состоянии. Структурная формула имеет вид (OH) 8 Si 4 Al 4 O 10 ·4H 2 O. Длина элементарной ячейки в плоскости кислорода равна 8,93Å, а в плоскости гидроксила равна 8,62Å, что способствует образованию изогнутого, трубчатого строения структуры галлуазита. При дегидратации и потере двух молекул H 2 O, трубки разворачиваются, и структура приближается к типу структуры каолинита.

Глинистые минералы с типом решетки 2:1

Монтмориллонит имеет структурную формулу (OH) 4 Si 8 Al 4 O 20 ·nH 2 O. Во внешних слоях располагаются слои атомов кислорода, из-за чего между соседними структурными пакетами образуется очень слабая связь.

Такую связь легко нарушить внедрением в пространство между пакетов полярных молекул, которыми являются молекулы воды.

При внедрении полярных молекул происходит значительное расширение и набухание решетки относительно оси с , до полного отрыва отдельных пакетов. Разбухание монтмориллонита зависит от рода обменных катионов.

В Na-форме набухания значительны, в Н-форме и Са-форме набухание проявляется меньше. Это указывает на наличие в группе монтмориллонита минералов с различными соотношениями Si:Al. Так бейделлит с отношением Si:Al = 2, обозначается монтмориллонит-2, обычный бейделлит – монтмориллонит-3, а монтмориллонит с соотношением 4, как монтмориллонит-4 и т.д.

Конструкция SiO 2:Al 2 O 3 не всегда является тем фактором, по которому минерал можно отнести к определённой группе. Монтмориллонит и пирофиллит имеют одинаковое отношение SiO 2:Al 2 O 3 , но они имеют различную структуру.

У безводного монтмориллонита параметр с имеет 9,95Å, а у пирофиллита – 18,54Å. Такое изменение в размерах отображается на связях с водой: у монтмориллонита соседние пакеты связаны межпакетной водой, у пирофиллита нет.

В работах Маршалла и Гендрикса отмечается, что состав монтмориллонита отличается от теоретической формулы. Причиной этого является замещение в тетраэдрической решетке атома кремния на атом алюминия, а в октаэдрической решетке атома алюминия на атом магния, или атом железа, или атом цинка. Тогда структурная формула монтмориллонита выглядит следующим образом (OH) 4 Si 8 (Al 3,34 Mg 0,66)O 20 ·nH 2 O Na 0,66

В сапоните алюминий замещается на магний, в нонтроните алюминий замещается на железо, в волконскоите – алюминий на хром, в соконите – на цинк. В результате замещения появляется результирующий отрицательный заряд решетки, который уравновешивается обменными катионами, адсорбированными вокруг краёв структурных слоёв и между ними.

В минерале пирофиллит замещения отсутствуют, поэтому у него низкая способность к обмену ионов.

Физические и химические свойства любого дисперсного минерала связаны с кристаллохимической структурой. В глинистых минералах преобладают структуры со слоистыми решетками. Форма и размер глинистых частиц служат качественной характеристикой для оценки дисперсного минерала.

Для оценки глинистых материалов используется гранулометрический анализ. У глин содержание частиц диаметром менее 5 мкм больше 30%, у суглинков варьирует от 30 до 10%, у супесей менее 10%.

Минералогический состав исследуемых глин

Молекулярное отношение SiO 2:Al 2 O 3 для определения минералогического состава глин:

  • для монтмориллонитового состава SiO 2:Al 2 O 3 ≥ 4;
  • для бейделлитового SiO 2:Al 2 O 3 < 3;
  • для каолинитового SiO 2:Al 2 O 3 = 2

Минералогический состав глинистого вещества определяется пересчетом химического состава на структурные формулы.

Исходной расчетной формулой:

  • для минерала монтмориллонита является R 2 +3 (Si 4 О 10) (OH) 2 , где R +3 – Al 3+ и Fe 3+ ;
  • для каолинита Al 2 (Si 4 О 8)(ОН) 8 ;
  • для монотермита 0,2R·Al 2 О 3 ·3SiO 2 ·2H 2 O где R – К 2 О, Na 2 О, СаО, MgО

Для определения минералогического состава глинистого сырья применяется оптический, рентгенографический и термографический методы и метод органических красителей.

Применяемые органические красители: метиловый голубой, хризоидин и бензидин.

Каолины и каолинитовые глины окрашиваются метиловым голубым в светло-фиолетовый цвет. При добавлении двух-трёх капель насыщенного раствора хлористого калия, изменения фиолетового цвета не происходит.

Хризоидином осадок окрашивается в желтый цвет и прибавление двух-трёх капель 10% HCl вызывает изменения желтого осадка в красно-терракотовый. Бензидин окрашивает суспензию в серый цвет, что показывает наличие гидрослюды.

Метиловый голубой окрашивает монтмориллонитовые глины в интенсивно фиолетовый или фиолетово-синий цвет, который при добавлении КCl переходит в голубой или зеленовато-голубой цвет. Бейделлитовые глины в присутствии метилового голубого дают яркие и чистые зелёные цвета и слабо изменяются в сторону усиления зелёной окраски при добавке КCl.

Гидрослюдные глины при воздействии метилового голубого окрашиваются в фиолетово-синие и синие цвета, которые мало изменяются при добавлении КCl.

Связанная вода в глинах

Природа взаимодействия воды и глины

Существует несколько точек зрения относительно взаимодействия воды с глинистым минералом.

В. Брэгг убежден, что связи воды с глиной находятся в тесной взаимосвязи со структурой глинистого минерала. Для монтмориллонитовых глин присоединение воды поверхностью минерала вызывает увеличение длины оси С в кристаллической ячейке. Увеличивается количество молекул воды в отдельной ячейке с 8 до 21. Связывание молекул воды в кристаллической решетке сопровождается их уплотнением, и плотность такого слоя увеличивается до 1,3. Молекулы воды соединяются атомами кислорода на поверхности кристалла или проникают вглубь кристаллической решетки.

Терцаги исходит из того, что молекула воды это диполь и считает, что взаимодействие воды с отрицательно заряженной поверхностью глинистых частиц происходит путём наслоения положительных диполей воды на отрицательно заряженную поверхность глинистой частицы. Происходит послойное наложение диполей воды на поверхность глины. На первый слой ориентированных молекул наслаивается второй, затем третий. С удалением от поверхности глины процесс наслаивания ослабевает из-за теплового движения молекул воды и из-за снижения потенциала заряда поверхности.

Такая модель адсорбции полимолекулярной воды на поверхности был бы близок к реальности, если бы отдельные глинистые частицы имели плоскую поверхность. Но глинистые частицы не имеют такой поверхности из-за сложности структур в глинистых агрегатах.

П. П. Лазарев считает, что происходит не только смачивание твёрдых частиц глины, но еще происходит химическое притяжение воды глиной и возникают новые соединения.

И. В. Гребенщиков утверждает, что при взаимодействии с водой, на поверхности горных силикатных пород происходит образование слоя кремневой кислоты. Прочность связи плёнки с поверхностью составляет 200-700 кг/см 2 . Коллоидные плёнки кремневой кислоты имеют свойства схватываемости и цементации. Например, тонкоизмельченный кварц при воздействии на него воды, схватывается.

Н. Я. Денисов отмечает, что результатом взаимодействия воды с глинистыми гидрофильными минералами является образование на поверхности последних не плёнок из чистой воды, а плёнок более и менее структурированного коллоидного раствора. Материал для образования такого коллоидного раствора извлекается из разрыхлённого поверхностного слоя самих частиц. Такое гелеобразование на поверхности частиц, в виде коллоидных плёнок кремневой кислоты, ведет к возникновению тиксотропных структур.

В. С. Шаров считает, что распад глинистых частиц в воде это результат их химического взаимодействия с водой, при котором образуется коллоидгидрат. Скрепление частиц в куске высушенной глины является следствием того, что поверхностный слой глинистых частиц в тесте породы имеет растворённое состояние, и при высыхании частицы склеиваются друг с другом. Автор считает, что между поверхностью частицы и водой происходит химическое взаимодействие, на что указывает теплота смачивания и уменьшение объёма воды после смешивания двух материалов.

При растворении глина диссоциируется на катионы и макроанионы и образуются электролиты. Оводнённая масса глины представляет собой однофазный раствор, в котором невозможно разделить глинистые в виде твёрдой фазы и, соответственно, воду в виде жидкой фазы. В таком растворе присутствуют макроанионы, состоящие из мелких анионов, в которые переходят глинистые частицы после отделения от них катионов. В таком растворе нет воды, как отдельного вещества, а находятся слои катионного раствора, в котором вода имеет ориентацию и сжимается в электростатических полях катионов. Свойства такой воды отличаются от свойств вода в свободном состоянии.

Н. А. Огильви применил термодинамику растворов, и поэтому рассматривает глину как сложную однофазную молекулярно-коллоидную смесь с водой. Глинистые минералы – соли алюмокремниевых кислот, которые содержатся в определённых местах кристаллической решетки и способные к катионному обмену. В водной среде такие минералы распадаются на катионы и кристаллические анионы. Диссоциация происходит на столько ступеней, сколько слоёв имеется в структурном пакете. В раствор глин входят следующие компоненты: кристаллические частицы глинистого минерала, глинистые анионы, а также катионы с таким зарядом, который уравновешивает все анионы, в том числе и анионы воды и молекулы растворённых недиссоциированных веществ.

Кюн предложил теорию связывания воды не глинистыми частицами, а гидратированными обменными катионами, которые адсорбируются на поверхности глинистых частиц. Данная теория не подтвердилась исследованиями С. Н. Алёшина, Келли и др.

П. Фагелер поддерживает теорию Кюна и утверждает, что поглощение воды не обуславливается характером поверхности частиц, а зависит от числа и заряда ионов, адсорбированных частицами.

Янерт доказывал катионную теорию связывания воды глинами, но полученные им константы оказались не постоянными, и были опровергнуты А. А. Роде.

Альтен и Курмис предлагают концепцию адсорбции воды обменно-связанными, способными к гидратации катионами. И. Е. Дудавский и А. В. Терещенко поддерживают эту теорию.

А. А. Роде опровергает выводы Фагелера, Альтена, Курмиса и Маттсона и пишет, что обменные катионы в удержании воды играют подчинённое и второстепенное значение. Первенство в связывании воды играет гидратация самой поверхности глинистых частиц.

Гендрикс, Нельсон и Александер применили в исследованиях поглощенной воды дифференциально-термический анализ. Они довели, что на поверхности глинистых частиц находится несколько гидратных слоёв воды, в частности монтмориллонита.

А. В. Думанский : отмечает существенное значение водородных связей в процессе взаимодействия между водой и поверхностью твёрдых фаз.

А. В. Кисилёв : рассматривает теорию адсорбции паров воды на поверхности силикагеля за счет водородных связей. Он высказал предположение, что на поверхности силикагеля образуется ксерогель кремневой кислоты. Ксерогель появляется в растворе и быстро конденсируется в виде мономеров ортокремневой кислоты. Конденсация происходит на вершинах кремнекислородных тетраэдров и далее идет полимеризация в большие цепи кремневой кислоты:

А. В. Кисилёв после исследований сделал вывод, что поверхность силикагеля покрыта гидроксилами. Адсорбционная способность зависит от количества гидроксилов, расположенных на ребрах и внешних углах кремнекислородных тетераэдров. Гидроксилы вступают в водородные связи с дипольными молекулами воды, связывают их и образуют адсорбционный монослой.

Комплексы на поверхности образуются из-за взаимодействия водородных связей молекул воды с протонизированным водородом гидроксилов алюмосиликатов.

При прокаливании происходит удаление гидроксилов и адсорбционная способность значительно снижается.

Прокаливание изменяет молекулярную структуру силикатов, но восстановление адсорбционной способности произойдёт при их обратной гидратации.

Выводы А. В. Кисилёва распространяются и на природные глинистые минералы.

С. П. Жденов : подтверждает теорию А. В. Кисилёва и добавляет, что за счет водородных связей протекают и более глубокие химические реакции. Количество водородных связей обуславливается удельной поверхностью и размерами пор.

Гендрикс и Джефферсон : вода адсорбируется на поверхности глинистых минералов в виде гексагональных групп. Возникновение гидроксильных групп вызвано тетераэдрическим расположением зарядов вокруг молекулы воды.

На рисунке изображено размещение кислорода и водорода в сетках воды (по Гендриксу и Джефферсону).

Гексагональная структура воды на поверхности глинистых минералов удерживается водородными связями между атомами водорода воды и кислорода поверхностного слоя минерала.

Так образуется несколько слоёв до тех пор, пока давление диссоциации для завершающего слоя будет уравновешено силами отрыва воды от поверхности минерала (тепловое движение молекул, давление паров над поверхность и т.д.).

На рисунке изображение сетки воды, которая согласно теории Гендрикса и Джефферсона, через водород связана с поверхностью глинистого минерала.

Баршад : показал, что молекулы воды с молекулами кислорода поверхностного слоя монтмориллонита образуют тетраэдры с рыхлой упаковкой молекул. Если степень гидратации высокая, то вода на поверхности монтмориллонита связывается в гексагональные конфигурации, которые соответствуют гексагональным кольцам кислорода на базальной поверхности монтмориллонита. Такая укладка молекул воды плотная, так как увеличивается количество молекул воды до шести на каждую элементарную ячейку монтмориллонита. Описанная Бардашом теория для чистой поверхности монтмориллонита и практически мало применима.

Определение смачиваемости дисперсных минералов

Смачиваемость твёрдых тел определяется поверхностным натяжением жидких сред и углом краевого смачивания.

Для образование новой поверхности совершается работа на преодоление сил внутреннего давления.

A = S · σ ,где:

A – работа образования новой поверхности;

S – образовавшаяся поверхность;

σ – поверхностное натяжение или удельная поверхностная энергия.

Для твёрдых тел нет достаточно точного метода измерения поверхностного натяжения.

Краевой угол смачивания θ .

Граница раздела трёх фаз: жидкость или 1; газ или 2; твёрдое тело или 3. Поверхностное натяжение обусловлено нескомпенсированностью молеулярных сил в поверхностных слоях. Поверхностное натяжение:

  • σ 32 – на границе раздела таких фаз, как твёрдое тело-газ;
  • σ 12 – на границе раздела таких фаз, как жидкость-газ;
  • σ 31 – на границе раздела таких фаз, как твёрдое тело-жидкость.

cos θ = (σ 32 — σ 31)/σ 32

Гидрофильные твёрдые тела θ 12 <90°.

Гидрофобные твёрдые тела θ 12 >90°.

Краевой угол смачивания очень трудно определить с достаточной точностью, т.к. на его величину оказывает влияние и структура поверхности, и адсорбированный на ней воздух, и электрический заряд поверхности, и загрязнённость её поверхности.

Б. В. Дегтярёвым предложена формула для определения краевого угла смачивания для порошков

cos θ = (l 2 8ηδ)/(4 rσt ) ,где:

l 2 – глубина пропитанного слоя, см;

η – вязкость пропитывающей жидкости, г/см·сек;

δ – пористость или отношение объёма пор ко всему объёму тела;

r – радиус капилляра, см;

σ – поверхностное натяжение пропитывающей жидкости, дин/см;

t – время пропитки.

Если известна удельная поверхность, то

cos θ = (l 2 dg δ )/(S 0 σ) ,где:

S 0 – удельная поверхность порошкового материала, см/см 3 ;

l 2 dg = ∆Р – капллярное давление, дин/см 2 .

Молекулярная поверхность, наличие присоединительных центров или радикалов и кристаллохимическая структура твёрдых тел напрямую связаны со смачиваемостью этих тел.

П. А. Ребиндер доказал, что очень мелкие порошки смачиваются жидкостью на границе с фазой воздуха хуже, чем тот же материал, но более крупнодисперснее. Это объясняется прочным удержанием на мелкодисперсных частицах адсорбированных воздушных плёнок.

Различные глинистые материалы характеризуются краевым углом смачивания на поверхности вода-воздух.

П. Е. Ребиндер с коллективом разработал критерий связности воды по величине свободной энергии связи через теплоту смачивания различных твёрдых тел в жидких средах.

Тепловой эффект связан со строением вещества, количеством полярных групп, через которые происходит связь молекул дисперсной среды.

О природе связанной воды

А. Ф. Лебедев различает следующие формы связанной влаги: вода кристаллическая, химически связанная вода, гигроскопическая вода, плёночная вода, гравитационная вода в фиде пара или в конденсированном состоянии. Автор не учитывал коллоидно-химического фактора, играющего основное значение.

Буйюкос различает такие типы воды:

1) воду гравитационную;

2) свободную воду (которая при температуре 0°С замерзает);

3) несвободную воду;

4) капиллярно-поглощенную воду (которая при температуре -4°С замерзает);

5) связанную воду (которая не замерзает до -78°С).

П. И. Андрианов предлагает схему различения почвенной влаги по количеству удерживающих влагу сил:

1) свободная влага (удерживающая сила менее 980 дин);

2) несвободная вода:

а) капиллярная (удерживающая сила 980-70000 дин);

б) агрегатообразная вода;

в) плёночная вода (70000 дин);

г) завядания;

д) гигроскопическая (>330000 дин).

Н. А. Качинский выделяет занятые поры:

1) прочносвязанная вода;

2) рыхлосвязанная вода;

3) капиллярная вода;

3) воздух.

С. И. Долганов подразделяет почвенную влагу:

1) вода, которая удерживается поверхностными силами почвы и сорбированными ионами – сорбированная вода;

2) вода, которая удерживается капиллярными силами – свободная влага;

3) вода, которая держится в порах почвы из-за различной упругости паров.

А. А. Роде разделяет так:

1) кристаллизационная влага;

2) вода в виде твёрдой фазы (лёд);

3) вода в виде пара;

4) прочно связанная вода, которая удерживается адсорбционными силами с выделением теплоты смачивания. Адсорбционная вода образует полимолекулярный слой с высокой плотностью и по механическим свойствам близка к твёрдому телу;

5) рыхлосвязанная вода. Этот тип складывается ориентированным расположением молекул воды третьего типа и воздействием обменных катионов, так называемая осмотическая вода. Этот слой имеет толщину десяток-сотен, а иногда и тысяч диаметров молекул воды. Плотность воды в этом слое, близка к плотности обычной воды;

6) свободная влага.

В. А. Приклонский различает связаную и свободную воду. Связаная вода подразделяется:

1) на воду, которая находится в кристаллической решетке минерала и входит в его химическую формулу;

2) вода, которая связывается на поверхности минерала;

3) вода, которая связана капиллярными силами.

И. И. Гинзбург определяет категории воды в монтмориллоните: гигроскопическая вода на поверхности минерала; межпакетная вода; конституционная или гидроксильная вода.

Гигроскопическая и межпакетная в сумме представляют собой воду набухания или сорбированную воду, конституционная вода – координационная, т.е. связана с иными компонентами кристаллической решетки.

А. В. Думанский разделяет: вода, связанная химически; вода, связанная физически; вода свободная. Физическая вода – вода, удерживаемая молекулярными силами с выделением теплоты смачивания. Прочно связанная вода – вода мономолекулярного адсорбционного слоя, которая обладает упругостью форм.

П. А. Ребиндерт предложил метод квалификации связи – определение величины энергии связи, т.е. энергии обезвоживания, принятой в физико-химической термодинамике.

Свободная изотермическая энергия связи определяется

– ∆ F = RTln P s / P (w ) = – RTlnφ , где:

P s – величина давления насыщенного пара воды при температуре;

P(w ) – давление пара равновесного при этой же температуре над материалом указанной степени оводнения w . При уменьшении этой величины прочность связи, при данной степени оводнения — прочнее.

Если P(w ) = P s , или если в системе присутствует свободная влага, то отсутствует прочно связанная вода и тогда А = 0.

П. А. Ребиндер разделяет четыре вида связи воды с дисперсным матераилом:

1) химически связанная вода гидроксильных ионов, гидратов и кристаллогидратов;

2) связанная адсорбционно вода мономолекулярного слоя;

3) капиллярно связанная вода. Эта вода рассматривается как свободная, за исключением мономолекулярного слоя у стенки капилляра;

4) свободная влага или механически схваченная дисперсной структурой и вода, заполняющая пористое пространство.

Рассматривается толщина слоя связанной воды.

Дисперсные частицы удерживают на поверхности сольватную оболочку, которая состоит от десятков до десятков тысяч слоёв молекул воды и удержанию таких оболочек даются различные объяснения.

С. Н. Рыжов : толщина слоя связанной воды находится в зависимости от кривизны поверхности и от напряжения силового поля. При удалении от поверхности напряжение уменьшается больше у мелких частиц, т.к. у них больше радиус кривизны над поверхностью.

Видсое : с удалением от поверхности сила притяжения уменьшается и когда эта сила не способна удерживать слои воды, то прибавляемая вода становится свободной, сходит с поверхности и становится свободной.

А. В. Думанский, С. Бредли : в результате поляризации молекул воды образуется первый мономолекулярный слой, и последующие слои воды наращиваются под влиянием силового поля нижележащих слоёв.

Уравнение образования многослойной плёнки:

Tlg(P 0 / P a ) = K 1 K 3 а где:

P a – равновесная упругость пара над адсорбированным слоем;

P 0 – упругость, которую имеет пар над поверхностью свободной воды при такой же температуре;

K 1 – константа, зависящая от температуры;

K 3 – константа, которая не зависит от температуры (K 3 = 0,83);

а – число грамм-молей адсорбированных.

Для глин со сложной структурой формула Эйнштейна показывает на большую вязкость воды ультрапор, что подтверждает полимолекулярное строение слоёв адсорбированных слоёв воды.

Н. М. Чирков, Н. В. Фок и В. И. Гольданский : объяснили образование полимерных адсорбированных плёнок на поверхности слюды действующими на близком расстоянии силами ван-дер-ваальса и за счет дальнодействующих сил электрического двойного слоя.

А. В. Киселёв : считает, что толщина полимерных плёнок не превышает двух-трёх молекулярных слоёв.

Гаркис и Джура : считают, что энергия взаимодействия в системе твёрдая фаза – вода относится не только к одному мономолекулярному, но и нескольким последующим слоям.

Родевальд и Митчерлих : утверждают, что возникновение мономолекулярного слоя в наружном слое глинистых частиц вызвано крепкой водородной связью. Только вода мономолекулярного слоя имеет изменённое качество и удерживается особенно сильно. Полимолекулярные слои состоят из молекул воды, которая по физико-химическим свойствам не отличается от свойств несвязанной воды.

Свойства связанной воды

Из общего количества воды, в системе глина-вода, количество адсорбированной воды незначительно, но с повышение дисперсности, т.е. при увеличении удельной поверхности, удельный вес мономолекулярной воды увеличивается.

Поверхность минеральной глинистой частицы не гладкая и ориентированные молекулы воды располагаются не сплошными наслоениями, а присоединены к поверхности частицы в отдельных активных центрах цепочками. Эти цепочки простираются в жидкость, как водоросли, прикреплённые к морскому дну.

Ближние к поверхности молекулы воды являются связанными и имеют изменённые свойства, которые отличаются от свойств несвязанной воды.

Адсорбированная связанная вода, по различным источникам, имеет плотность от 1,19 до 1,71. Наибольшую плотность имеет вода мономолекулярного слоя, наименьшую – в удалённых от поверхности слоях.

Теплоёмкость связанной воды различна и меньше единицы, а её уплотнение приводит к уменьшению теплопроводности.

Снижение температуры замерзания воды Б. В. Дерягин

Заказать консультацию


Глинистые минералы представляют собой гидратированные алюмосиликаты, обычно с частичным замещением алюминия железом и магнием. Они тонкозернисты, обычно менее 5 мкм, а в некоторых случаях их размер измеряется миллимикронами.

Атомная структура большинства глинистых минералов сложена двумя единицами. Одна структурная единица состоит из двух слоев плотноупакованных кислородов или гидроксилов, в которых атомы алюминия, железа, или магния расположены в октаэдрической координации таким образом, что каждый из них находится на равном расстоянии от шести кислородов или гидроокислов. Вторая структурная единица образована кремнекислородными тетраэдрами. В каждом тетраэдре атом кремния одинаково удален от четырех кислородов или гидроксилов, расположенных в форме тетраэдра с атомом кремния в центре, чтобы сбалансировать структуру.

Кремнекислородные тетраэдры сгруппированы таким образом, что создают гексагональную сетку, которая бесконечно повторяется и образует лист состава Sі 4 O 6 (OH) 4 . Тетраэдры расположены так, что все их вершины обращены в одну сторону, а основания лежат в одной и той плоскости. Эту структуру можно рассматривать как структуру, состоящую из перфорированной плоскости кислородных атомов, расположенных в плоскости основания тетраэдрических групп; плоскости атомов кремния с атомами кремния, расположенными в полости в месте соединения трех атомов кислорода и, следовательно образующими гексагональную сетку; плоскости атомов гидроксила, в которой каждый гидроксил расположен непосредственно над кремнием на вершине тетраэдров.

Рис.1. Оксфордская глина (Юра) в Уэймуте (Англия)

Глинистые минералы относятся к двум группам. В каолинитовой группе минерал характеризуется двухэтажной (1:1 слой) решеткой, состоящей из одного октаэдрического или гиббситового слоя, связанного с одним кремнекислородным тетраэдрическим слоем. Эта решетка не расширяется в зависимости от изменяющегося содержания воды и замещения на железо или магний в гиббситовом слое неизвестны. Другая группа глинистых минералов характеризуется трехэтажной (2:1) решеткой. В этом типе решетки октаэдрический алюминиевый слой расположен между кремнекислородными тетраэдрическими слоями. Несколько важных глинистых минералов принадлежит к трехэтажной группе. В монтмориллоните эти трехэтажные ячейки свободно объединяются по оси С, а вода и катионы расположены между ними. Количество воды изменяется таким образом, что величина с варьируется от 9,6 до 21,4 о А. Минерал имеет разбухающую решетку.

Трехслойные соединения могут также объединяться калием, который благодаря соответствующему ионному диаметру и координационным свойствам связывают структуру воедино столь плотно, что расширение невозможно. Глинистая слюда, образованная таким образом, представляет собой иллит. Хлоритовая группа также имеет трехэтажную структуру, характеризующуюся внедрением бруситового слоя Mg(OH) 2 между трехэтажными элементами. В каждой структурной группе возможны многие варианты по составу. Хотя многим из них на основании состава даны специальные названия, можно считать, что каждая группа проявляет беспредельно широкий диапазон состава. Глинистые минералы классифицируются главным образом на основе их структуры.

Основные группы глинистых минералов

Группа каолинита. Главным членом группы каолинита является каолинит, имеет формулу (OH) 8 Al 4 Si 4 O 10 или Al 2 O 3 2SiO 2 2H 2 O. Старинное название этого минерала перешло от китайцев. Кау-линг - «высокая гора»; так называлось месторождение каолина.

Химический состав. Al 2 O 3 39.5%,SiO2 46,5%, H 2 O 14%. Уд. Вес 2,58-2,60. Облик кристаллов. Более или менее хорошо образованные пластинчатые кристаллы исключительно редки и малы по размерам (до 1мм). Весьма вероятно, что они относились не к каолину, а к диккиту или накриту. Чаще наблюдаются обломки обломки изогнутых столбчатых кристаллических образований, в увеличенном виде напонающих дождевых червей. Агрегаты рыхлые, чешуйчатые или плотные тонкозернистые.

Цвет. Отдельные чешуйки и пластинки бесцветны. Сплошные массы- белого цвета, нередко с желтым, буроватым, красноватым, иногда зеленоватым или голубоватым оттенком. Блеск отдельных чешуек и пластинок перламутровый, а сплошных масс - матовый. Твердость около 1. Отдельные чешуйки гибки, но не обладают упругостью. В сухом состоянии землистые массы кажутся тощими на ощупь.

Аноксит подобен каолиниту, за исключением молекулярного соотношения SiO 2:Al 2 O 3 приблизительно равного трем вместо двух, что менее обычно. Диккит и накрит, сходные с каолинитом по составу, но с небольшими отличиями по форме кристаллов, также являются членами данной группы.

Монтмориллонитовая группа , получившая название по главному минералу группы, монтмориллониту, который имеет состав: (OH) 4 AL 4 Si 8 O 10 nH 2 O. Монтмориллонит назван по месту нахождения в Монтмориллоне (Франция). Химический состав непостоянный, сильно зависит от варьирующего содержания воды. По анализам чистых разностей устанавливаются следующие колебания (%): Al 2 O 3 11-22, Fe 2 O 3 0-5и больше (ферримонтмориллонит), MgO 4-9, CaO 0, 8-3, 5 и выше в кальциомонтмориллоните,SiO 2 48-56, H 2 O 12-24. Цвет монтмориллонита белый с сероватым, иногда синеватым оттенком, розовый, розово-красный, иногда зеленый. Блеск. В сухом состоянии матовый. Твердость отдельных чешуек неизвестна. Очень мягкий. Жирный.

Замечательной и чрезвычайно важной в практическом отношении особенностью минералов группы монтмориллонита является их свойство набухать в присутствии воды, а при нагревании постепенно отдавать адсорбированную воду. К минералам группы монтмориллонита относятся существенно магнезиальные, существенно алюминиевые и промежуточные между ними виды. Магний обычно замещает часть ионов алюминия в решетке. В монтмориллонитовую группу входят бейделит, который имеет молекулярное отношение SiO 2:Al 2 O 3 равное трем, и нонтронит, в котором окисное железо замещает алюминий.

Иллитовая, или глинисто-слюдистая группа включает иллит, который имеет общую формулу (OH) 4 Ky(Al 4 Fe 4 Mg 4 Mg 6) (Si 8-y Al y) O 20 , где «y» варьируется от 1 до 1,5. Иллит является разновидностью белых слюд, но отличается от них, вероятно, тем, что содержит меньше калия и больше воды, чем обычно свойственно слюдам. Кроме разновидностей иллита группа содержит глауконит.

Группа хлорита состоит из минералов богатых магнием, которые широко представлены в сланцах и в которых ионы двухвалентного железа занимают видное место. Хлорит имеет химический состав 5(Mg,Fe)O Al 2 O 3 3SiO 2 4H 2 O. Твердость 2-2,5. Удельный вес 2,0-2,8. Блеск от стеклянного до перламутрового. Цвет зеленый. Форма кристаллов – таблички, чешуйки, срастающиеся друзами.

Известно также множество «смешаннослойных» глинистых минералов. Структура этой группы является результатом упорядоченного или неупорядоченного расположения основных глинистых минеральных пакетов друг относительно друга по оси с. В некоторых из них отмечается переслаивание двух- и трехэтажных слоев. Подобные типы смешаннослойного строения обычно называют каолинит-иллитовыми, хлорит-иллитовыми и так далее, вместо того чтобы изобретать новые наименования для каждой смеси.

Помимо основных групп, перечисленных выше, некоторые глинистые минералы реже встречаются и имеют несколько отличную кристаллическую структуру, например, галлуазит (OH) 16 Al 4 Si 4 O 6 , а также менее гидратированный метагаллуазит (OH) 8 Al 4 Si 4 O 10 и аллофан, некристаллический взаимный раствор двуокиси кремния, окиси алюминия и воды в различных пропорциях. В некоторых случаях в глинах обнаруживают вермикулит и палыгорскит (сепиолит и аттапульгит).

Галлузиатовые минералы. Существуют две формы галлузиата, одна из которых имеет состав (OH) 8 Si 4 O 10 , а другая – (OH) 8 Si 4 O 10 4H 2 O. При относительно низких температурах (- + 60°С) последняя форма необратимо дегидратируется и переходит в первую форму. Галлузиатовые минералы построены последовательными слоями такого же структурного состава, как и слои, слагающие каолинит.

Высокогидратированная форма состоит из каолинитовых слоев, разделенных единичным молекулярным слоем водных молекул. Переход в дегидратированную форму вызывается потерей межслоевых водных молекул. По данным Бриндли, при низких температурах (60-75°С) происходит только частичная дегидратация, а для полного удаления межслоевых воды необходима температура порядка 400°С. При более низких температурах образуется частично дегидратированные формы, которые могут быть устойчивыми. В месторождениях галлузиат имеет тенденцию к частичной дегидратации, к образованию частично дегидратированного галлузиата, который в том случае, если месторождение крупное, постепенно переходит с глубиной в гидратированную форму.

Для обозначения различно гидратированного галлузиата существует ряд наименований. Низкогидратированная форма называется галлузиатом или метагаллузиатом, а более высокогидратированная форма – гидратированным галлузиатом, энделитом или галлузиатом.

Аллофановыми минералами являются те компоненты глинистых минералов, которые аморфны по отношению к рентгеновским лучам. Расположение тетраэдрических и октаэдрических единиц по отношению друг к другу в них недостаточно правильное, чтобы сделать возможной дифракцию, или отдельные структурные единицы, которые хорошо упорядочены, слишком малы по размеру, чтобы дать дифракционные эффекты.

Аллофановые компоненты не имеют обычно определенного химического состава или формы. Глины, содержащие аллофан, часто включает большие количества (+ 5%) фосфатного или сульфатного компонента. Кроме того, в них обычно относительно немного щелочей и щелочных земель, что приближает их к монтмориллониту, но последний имеет тенденцию содержать некоторое количество магния.

Вермикулит в глинистых минералах встречается в идее чрезвычайно мелких частиц в смеси с другими глинистыми минералами и часто смешаннослойных постройках. Определить его характерные свойства трудно, а часто невозможно. В связи сэтим до сих пор неизвестны диспергируемость его в воде, а также характерная форма и размер частиц. Структура вермикулита подобна структуре хлорита, за исключением того, что в структуре вермикулита межслоевые ионы магния гидратированы чаще, чем чем это имеет место в структуре брусита. Расположение молекул воды вокруг ионов магния и относительно большой заряд на поверхности кристаллической решетки по сравнению с монтмориллонитом, по-видимому, препятствуют набуханию минерала при обработке полярными молекулами. Однако межслоевая вода легко удаляется при нагревании до температуры порядка 100°С, а кристаллическая решетка минерала сжимается почти до 10 А 0 , подобно монтмориллониту, отличаясь в этом отношении от хлорита.

Визуально структуру аттапульгита можно представить в виде пучка брусочкоподобных структурных единиц, закономерно скрепленных вместе их длинными сторонами. Наружная сторона такого пучка брусочкоподобных частиц будет иметь вид «плато и каналов» или желобов, а их внутренняя часть будет состоять из чередующихся твердых брусочков и вытягнутых каналов с угловатым поперечным сечением.

Структура сепиолита сходна со структурой аттапульгита, отличаясь от нее главным образом размером брусочковидных структурных единиц и замещениями в пределах структуры. В сепиолите эти брусочкоподобные структурные единицы примерно на 50% шире, чем в аттапульгите. В структуре сепиолита существуют редкие замещения ионов магния или кремния. Встречается в волокнистых разновидностях с древовидным асбестом, в гидротермальных жилах, а также в виде землистых масс в озерных и морских отложениях.

Палыгорскиты давно известны под названиями «горная бумага», «горный картон», «горное дерево». Палыгорскиты являются алюмомагнезиальными силикатами, к которых алюминий и магний присутствуют приблизительно в равных количествах. Для этих минералов характерно волокнистое строение.



построенные из слоев атомов в тетраэдрической и октаэдрической координации, известных как тетраэдрические и октаэдрические сетки.

Тетраэдрические сетки представляют собой слои тетраэдров SiО4 , которые имеют три общих кислорода с соседними тетраэдрами. Эти базальные кислороды образуют гексагональный рисунок. Четвертый (апикальный) кислород каждого тетраэдра располагается на перпендикуляре, проходящем через центр базального кислородного треугольника.

Октаэдрическая сетка построена из катионов, обычно алюминия, железа или магния, расположенных на равных расстояниях от шести анионов кислорода, в связи с чем сетка несет отрицательный заряд. Алюминий является распространенным катионом, и идеальный октаэдрический слой имеет состав гидроксида алюминия (Аl(OН)3 ) - минерала гиббсита. Если октаэдрические позиции заполняются трехвалентным алюминием, для достижения электронейтральности занимаются только две из каждых трех позиций и сетка классифицируется как диоктаэдрическая. Если двухвалентные катионы заполняют октаэдрические позиции, все доступные позиции заняты и сетка классифицируется как триоктаэдрическая. В результате сочетания этих трех сеток образуется основная структура глинистых минералов. Такое сочетание позволяет обобщить апикальный кислород тетраэдрической сетки и группы ОН, помещающиеся в центре гексагональных пустот основания тетраэдрической сетки, с октаэдрической сеткой. Различные группы глинистых минералов являются результатом различного рода расположений и взаимного обобщения ионов в тетраэдрической и октаэдрической сетках.

Структура глинистых минералов 1: 1. Простейшим расположением тет-

раэдрических и октаэдрических сеток являются слои 1: 1. В состав таких 1: 1 минералов входит серпентин-каолинитовая группа глинистых минералов, из которых каолинит является, вероятно, наиболее известным. В каолините пакеты 1: 1 удерживаются вместе водородными связями, образующимися между ОН-группами верхнего слоя октаэдрической сетки и базальными кислородными атомами вышележащей тетраэдрической сетки. Водородные связи достаточно сильны, чтобы удерживать пакеты 1: 1 вместе, не позволяя катионам проникать между слоями.

3. Условия образования глинистых минералов

В обычном гранодиорите верхней коры в основном выветриваются с образованием глинистых минералов именно полевые шпаты. Поскольку они являются каркасными силикатами, образование слоистых силикатов должно включать промежуточную ступень. В эту ступень входит высвобождение кремния, алюминия и других катионов с последующей их перестройкой в структуру слоистых силикатов. Поскольку в промежуточной ступени участвуют ионы почвенных растворов, на тип образующегося глинистого минерала будут влиять рН почвенной влаги и степень выщелачивания (скорость потока воды).

Алюминий и кремний осаждаются в виде нерастворимых оксидов или оксигидроксидов в пределах обычных для почв значений рН. Другие почвенные

катионы и H2 SiO4 достаточно растворимы и поэтому могут выноситься с выветривающегося участка. Различие в поведении катионов количественно выра-

жается химическим показателем изменения (ХПИ), используя молекулярные соотношения

Al2 O3

ХПИ =

Al2 O3

Na2 O+ K2 O

где СаО- это СаО силикатов (т. е. исключаются Са-содержащие карбонаты и фосфаты).

В табл. 10 представлены показатели ХПИ для различных минералов и пород. Очевидно, что значения ХПИ, приближающиеся к 100, типичны для веществ, образующихся в условиях сильного выщелачивания, когда удаляются растворимые кальций, натрий и калий.

Таблица 10. Значения химического показателя изменения для различных материалов коры

Материал

Глинистые минералы

Каолинит

Другие силикаты

Плагиоклазовый полевой шпат

Калиевый полевой шпат

Слюда мусковит

Отложения

Баренцево море (алеврит)

Ил дельты Амазонки

Глинистые сланцы

Значения ХПИ, близкие к 100, типичны для каолинитовых глин, тогда как иллиты и смектиты имеют значения ХПИ около 75–85. В отличие от них, невыщелоченные полевые шпаты имеют значения ХПИ около 50.

На основании ХПИ можно предсказать, что каолинит будет образовываться в условиях сильного выщелачивания, что подтверждается наблюдениями в тропических режимах выветривания. На устойчивых земных поверхностях, где выветривание и выщелачивание продолжительны, на хорошо дренированных участках формируется каолинитовый, а в крайних случаях гиббситовый минералогический состав глин. Такие участки покрыты поверхностными отложениями, богатыми железом (латерит) и алюминием (боксит). Эти поверхностные отложения могут быть достаточно мощными и предотвращать последующее взаимодействие между поверхностными водами и подстилающей породой, снижая скорость ее дальнейшего выветривания.

Смектитовые глины, наоборот, образуются на слабодренированных участках. На базальтовом острове Гавайи тип почвенных глинистых минералов изменяется в последовательности «смектит - каолинит - гиббсит» с увеличением количества дождевых осадков. Подобная обобщенная зональность, основанная на степени выщелачивания, была предложена для распределения глинистых минералов по глубине в почвах.

Интенсивное выщелачивание благоприятствует образованию каолинита, поскольку катионы и H4 SiО4 выносятся и понижается отношение «кремний: алюминий», что способствует структурной организации 1: 1. При менее интенсивном выщелачивании отношение «кремний: алюминий» выше, что способствует образованию различных 2: 1-минералов в зависимости от поступающих катионов. Например, при выветривании базальта образуется много магния, формируются магниевые смектиты. В большинстве тропических сред с интенсивным выветриванием выносится весь кремний, что способствует образованию гиббсита, который можно рассматривать как структуру 0: 1 (т. е. присутствует только октаэдрическая сетка.

Силикаты состоят в основном из кремния (Si) и кислорода (О), обычно в сочетании с другими металлами. Основной структурной единицей силикатов

является тетраэдр SiО4 , в котором кремний расположен в середине тетраэдра из четырех ионов кислорода.

Силикаты классифицируются по степени сложности кремнийкислородных решеток. Мономерные силикаты построены из отдельных тетра-

эдров SiO4 , связанных с металлами. Цепочечные силикаты имеют два немостиковых атома кислорода, общее отношение Si: О равно 1: 3, что приводит к об-

щей формуле SiO3 . В каркасных силикатах каждый атом кислорода тетраэдрической группы обобщается между двумя тетраэдрами, образуется наполовину ковалентная трехмерная решетка.

Глинистые минералы - это слоистые силикаты, состоящие в основном из атомов кислорода, кремния и алюминия и построенные из слоев атомов в тетраэдрической и октаэдрической координации. Октаэдрическая сетка построена из катионов, обычно алюминия, железа или магния, расположенных на равных расстояниях от шести анионов кислорода (или ОН).

Простейшим расположением тетраэдрических и октаэдрических сеток являются слои 1: 1. Наиболее известным минералом типа 1: 1 является каолинит.

Контрольные вопросы

1. Из каких элементов состоят силикаты?

2. Какая структурная единица лежит в основе силикатов?

3. Как осуществляется связь отдельных тетраэдров в оливине?

4. Чему равно соотношение Si: О в цепочечных силикатах?

5. В чем отличие между глинистыми минералами и силикатами?

6. Как располагаются тетраэдрические и октаэдрические сетки в каолините?

7. Как называется минерал, химический состав которого отвечает формуле Al(OH) 3 и имеет только октаэдрическую сетку?

  • 5. Химическое выветривание. В чем оно выражается? Какие химические и структурные превращения происходят в ряду мусковит - гидромусковит- каолинит.
  • 6. Галогенез - понятие. Обстановка развития процесса. Основные этапы солеотложения. Соли- минеральный состав.
  • 7.Структуры биогенных пород. Минеральный состав биогенных пород.
  • 8. Вулканический тип литогенеза; характеристика, распространение на
  • 9. Как действует механизм физической дифференциации осадочного вещества, к образованию каких групп пород он приводит?
  • 10. Гумидный тип литогенеза, его характеристика. Какие генетические типы пород при этом возникают?
  • 11. Как действует механизм химической дифференциации осадочного вещества? к образованию каких пород она приводит?
  • 12. Диагенез. Характеристика. Диагенетические минералы, причины их возникновения.
  • 13. Как действует механизм биологической дифференциации осадочного вещества? Какие минералы и породы при этом образуются?
  • 14. Реликтовые минералы осадочных пород (перечень, условия сохранения на разных ступенях литогенеза, роль в осадочных породах).
  • 15. Генетическая классификация осадочных пород. По какому признаку классифицируются осадочные породы м.С. Швецовым? Какие классы осадочных пород при этом выделяются?
  • 16. Осадочная горная порода - определение. Формы геологических тел осадочных пород.
  • 17. По каким признакам систематизируются обломочные породы? Какие группы их выделяются?
  • 18. Какие виды осадочных пород используются в строительной индустрии (для производства каких стройматериалов?)?
  • 19. По каким признакам систематизируются хемогенные породы? Какие группы хемогенных пород выделяются?
  • 20. Какие осадочные породы используются для нужд агропромышленного комплекса? Где именно?
  • 21. По каким признакам систематизируются биогенные породы? Привести примеры.
  • Составные части осадочных пород
  • 23. Что такое полимиктовые обломочные породы? Какие среди них образуются группы? Какова геологическая обстановка их образования?
  • 24. Текстуры осадочных пород.
  • 27. Структурные признаки обломочных пород, примеры структур обломочных пород.
  • 28. Формы локализации полезных компонентов в осадках и осадочных породах.
  • 29. В какой последовательности изучаются и описываются обломочные породы?
  • 30. Бокситы. Минеральный состав. Условия образования. Формы залегания. Практическое использование.
  • 31. Кремнистые биогенные породы. Какими породообразующими организмами они формируются? Какие при этом образуются породы?
  • 32. Сульфатные породы. Минеральный состав. Условия образования. Формы залегания. Практическое использование.
  • 33. Условия растворения и выпадения в осадок карбонатных минералов (кальцита, доломита)? Структурные признаки карбонатных первично-осадочных пород.
  • 35. Биогенные карбонатные породы. Какими организмами они образуются? По каким признакам определяются скелеты этих организмов? Структурные разновидности.
  • 36. Соли. Минеральный состав. Условия образования соляных месторождений. Практическое использование.
  • 37. Какие осадочные породы являются полезными ископаемыми? Где они используются?
  • 38. Литология. Краткая история возникновения науки. Ее цели и задачи.
  • 39. Глинистые минералы (общие свойства). Чем объясняется влагоемкость глин? Их сорбционные свойства.
  • 40.Формы транспортирования продуктов физического выветривания.
  • 41. Глины. Минеральный состав. Генетические группы. Структуры и текстуры глин.
  • 42. Слойчатость и сланцеватость осадочных пород.
  • 43. Известняки. Минеральный состав. Генетические группы. Структуры известняков.
  • 44. Текстуры осадочных пород. Понятие. Группа текстур.
  • 45. Аридный тип литогенеза, его характеристика. Какие при этом возникают осадки? Распространение зон аридного литогенеза на земной поверхности.
  • 46. Структуры осадочных пород. Группы структур.
  • 47. Нивальный (ледовый) тип литогенеза, его характеристика. Какие при этом возникают осадки. Распространение на земной поверхности?
  • 48. Структуры осадочных пород. Группы структур.
  • 49. Принципы, подходы и виды классификаций осадочных пород.
  • 55.Стадиальный анализ. Его значение для изучения осадочных пород.
  • 56. Классификация структур карбонатных пород.
  • 57. Методы петрографического изучения осадочных пород, порядок их описания и наименования.
  • 58.Смешанные породы. Распространение в литосфере. Принципы классификации.
  • 39. Глинистые минералы (общие свойства). Чем объясняется влагоемкость глин? Их сорбционные свойства.

    Глинистые минералы. В осадочных породах глининстые минералы распространены широко. Они составляют большую и сложную группу слоистых и слоисто-ленточных силикатов и алюмосиликатов. Структура их слоистая или слоисто-ленточная. Отдельные слои образованы связанными между собой тетраэдрами и октаэдрами. В вершинах тетраэдров располагаются ионы кислорода, в центре - кремния (иногда алюминия в четверной координации). В вершинах октаэдров располагаются ионы кислорода и гидроксила, в центре -

    алюминия, железа, магния (шестерная координация). Октаэдрические слои могут быть полностью заселены (триоктаэдрические) и частично - из каждых трех заселены два (диоктаэдрические). Эти слои образуют двухслойные (один слой тетраэдров и один слой октаэдров) и трехслойные (два слоя тетраэдров с заключенным между ними слоем октаэдров) пакеты. Связь между слоями осуществляется через кислород и гидроксил, являющиеся общими вершинами тетраэдров и октаэдров. Пространственная решетка каолинита представляет собой набор двухслойных пакетов толщи­ной (межплоскостное расстояние) 0,71-0,72 нм. Базальные отра­жения 001 первого порядка 0,71 --0,72, второго - 0,355-0,360, четвертого - 0,1775-0,1800 нм.

    У гидрослюды решетка состоит из набора трехслойных пакетов толщиной 1,0-1,02 нм. Базальные отражения ОО1 первого порядка 1,00-1,02, второго - 0,50-0,51, четвертого - 0,250-0,255 нм.

    Пространственная решетка монтмориллонита образована трех­слойными пакетами, между которыми заключены слои воды и об­менных катионов. Содержание последних может сильно изменяться, поэтому и межплоскостное расстояние у монтмориллонита изме­няется в широких пределах - от 0,96-1,001 нм при отсутствии воды и обменных катионов до 1,7-1,8 нм и более при высоком содержании воды и обменных катионов (среднее значение при нормальной влажности примерно равно 1,40-1,50 нм).

    Наряду с обычными глинистыми минералами существуют более сложные образования - смешанно-слойные сростки минералов. Пространственная решетка таких сростков состоит из пакетов, принадлежащих различным минералам: монтмориллониту и хлориту (У=2,80 нм), гидрослюде и каолиниту (й=1,70 нм), монтморилло­ниту и каолиниту (с1 = 2,10-2,30 нм) и др. Эти минеральные образо­вания представляют собой своеобразные «гибриды» и рядом ученых рассматриваются как эпитаксические срастания. В изучении их особенно большое значение имеет рентгеновский анализ - един­ственный метод, позволяющий выявлять эти сростки.

    По происхождению глинистые минералы могут быть как аутиген-ными, так и аллотигенными образованиями. Из-за высокой степени ■ дисперсности диагностика их затруднительна обычными методами кристаллооптического и химического анализа. Изучение глинистых минералов при массовой работе петрографа должно быть комплекс­ным с применением оптического, хроматического и капельного ана­лизов. Параллельно некоторая часть образцов должна изучаться точными методами: рентгеновским, термическим и электронномик-роскопическим. Сводка оптических и некоторых других свойств глинистых минералов дана в табл. 72-74.

    Общими чертами всех глинистых ми­нералов являются: 1) незначительные раз­меры их кристалликов; 2) химический со­став (АI2О3, SiO2, Н2О, иногда К, причем АI и Si в некоторых минералах замеща­ются другими элементами, особенно Мg, Fе); 3) пластинчатая или чешуйчатая фор­ма, обусловленная строением решетки, и 4) некоторые оптические свойства - не­высокие показатели преломления, боль­шей частью немного более высокие, реже немного более низкие, чем у канадского бальзама; у кристаллических-моноклин­ная сингония.

    Твердость (2,5) и уд. вес (2,40-2,59) определены точно только для каолинита. Цвет у каолинита и галлуазита белый (бесцветный), у других минералов этой группы иногда наблюдается желтоватая, красноватая, синеватая или зеленоватая окраска.

    СВОЙСТВА ГЛИНИСТЫХ ПОРОД

    Зная факторы, определяющие свойства глинистых пород, и методы оценки минерального состава и микроструктуры, попытаемся объяснить природу некоторых важных и весьма специфических свойств глин, имеющих большое значение в жизни людей.

    Набухаемость

    Под набухаемостью понимают способность глинистых пород увеличивать объем в процессе взаимодействия с водой или водными растворами. Процесс набухания сопровождается увеличением влажности, объема породы и возникновением давления набухания.

    Набухаемость глинистых пород является их важным свойством, которое необходимо учитывать при проведении строительных работ и эксплуатации инженерных сооружений. Недооценка набухающей способности глин может привести к серьезным последствиям и авариям. Объясняя природу набухания глин, следует отметить, что этот процесс проходит в две стадии: первая стадия - адсорбционное или внутрикристаллическое набухание, вторая - макроскопическое или "осмотическое" набухание. На первой стадии глинистая порода впитывает влагу за счет адсорбции молекул воды поверхностью глинистых частиц и межслоевыми промежутками кристаллической решетки глинистых минералов. Эта стадия практически не влияет на изменение объема породы. На второй стадии набухания поглощение влаги осуществляется с помощью осмотического давления. Оно возникает вблизи поверхности глинистых частиц за счет избыточной концентрации многочисленных обменных катионов отдиссоциированных (отошедших) с поверхности глинистых частиц в раствор. Основное увеличение объема набухающей глины происходит именно на этой макроскопической стадии.

    Величина и характер набухания глинистых пород определяются многими факторами, основными из которых являются минеральный состав, дисперсность и структура. Наибольшим набуханием обладают глинистые породы, в составе которых имеются глинистые минералы с подвижной кристаллической структурой (например, монтмориллонит), наименьшим - минералы с более жесткой кристаллической структурой (каолинит). Сильное влияние на набухание глин оказывает и их структура, при этом определяющее значение имеет характер структурных связей.

    Глинистые породы, обладающие преимущественной ориентацией структурных элементов, характеризуются ярко выраженной анизотропией набухания. Наибольшее набухание отмечается в направлении, перпендикулярном ориентации частиц. В ходе процесса набухания происходит существенная перестройка исходной микроструктуры глинистой породы.

    Особую трудность представляет рассмотрение прочностных свойств глинистых пород в связи с их специфическим поведением при взаимодействии с водой. Хорошо известна потеря прочности при увлажнении глин, когда они из плотных и высокопрочных пород превращаются в пластичные или жидкотекучие тела.

    группа водных силикатов, слагающих основную массу глин и определяющих их физико-химические, механические и др. свойства. Г. м. являются продуктом выветривания преимущественно алюмосиликатов и силикатов магматических и метаморфических горных пород на дневной поверхности. В процессе выветривания Г. м. испытывают стадийные преобразования структуры и химического состава в зависимости от изменения физико-химических условий среды выветривания и седиментации. Размеры частиц Г. м. в глинах большей частью не превышают 0,01 мм . По кристаллической структуре Г. м. относятся к слоистым или псевдослоистым силикатам. В кристаллических решётках типичных Г. м. чередуются сетки кремнекислородных тетраэдров (ионы кремния в четверной координации) с сетками гидроксильных октаэдров, в центре которых располагается атом алюминия, железа или магния, причём двухвалентный магний выполняет все октаэдры (триоктаэдрические силикаты), а трёхвалентный алюминий только два из трёх (диоктаэдрические силикаты).

    Г. м. с двухэтажной структурой образованы тетраэдрической и октаэдрической сетками - группа Каолинита, например каолинит, диккит, накрит, галлуазит; Г. м. с трёхэтажной структурой состоят иэ двух внешних тетраэдрических и средней октаэдрической сеток - группа гидрослюд (См. Гидрослюды), например гидромусковит и глауконит (в межслоевых промежутках расположен атом калия); группа Монтмориллонита, например Al-moнтмориллонит и Fe-moнтмориллонит (нонтронит) (в межслоевых промежутках - вода и обменные катионы); группа хлоритов (См. Хлориты) - в структуре чередуются трёхэтажные слои и межслоевые промежутки (октаэдрические сетки). Известны также Г. м. более сложной структуры.

    Кристаллохимическим различиям в структуре Г. м. отвечают определённые отличия в их химическом составе. В силу этого свойства Г. м. резко различаются. Так, например, монтмориллонитовые минералы обладают очень высокой обменной способностью и адсорбционными свойствами, тогда как у каолинитовых минералов эти свойства выражены слабо. Г. м., относящиеся к группе гидрослюд, при нагревании резко увеличиваются в объёме. Для диагностики Г. м. используют инфракрасную спектроскопию, химический рентгеновский, электронографический, электронномикроскопический, термический методы.

    Лит.: Гинзбург И. И., Рукавишникова И. А., Минералы древней коры выветривания Урала, М., 1951; Рентгеновские методы изучения и структура глинистых минералов, пер. с англ., М., 1965.

    В. П. Петров.

    • - местные куры мясо-яичного направления. Выведены в Полтавской обл. Оперение палевое, концы маховых перьев и косицы хвоста чёрные...

      Сельско-хозяйственный энциклопедический словарь

    • - почвы, содержащие свыше 50-60% глины. Остальная часть состоит из песка, аморфной кремневой кислоты, гидрата окиси железа и обломков горных пород. Во влажном состоянии Г. п. пластичны...

      Сельскохозяйственный словарь-справочник

    • - см. также ПОРОДНЫЕ ГРУППЫ ГУСЕЙ Породная группа выведена в племзаводе "Пионер" Владимирской области...

      Породы сельскохозяйственных животных. Справочник

    • - см. также 14. ГУСИ Породная группа выведена в племзаводе “Пионер” Владимирской области...

      Генетические ресурсы сельскохозяйственных животных в России и сопредельных странах

    • - сложенные- преимущественно глинистыми м-лами. Термин часто неправильно применяется к осадкам, в составе которых преобладает пелитовая фракция. См. Илы пелитовые...

      Геологическая энциклопедия

    • - м-лы, хлориты, б. ч. богатые Fe и с повышенным содер. Аl. Мон. В совр. океанских осадках, в аргиллитах с гидрослюдами...

      Геологическая энциклопедия

    • - связанные в сухом состоянии грунты, для которых число пластичности > 0,01 ...

      Словарь геологических терминов

    • - вторичные водные силикаты, алюмосиликаты и ферросиликаты, а также простые окислы и гидраты окислов кремния, железа и алюминия, слагающие основную массу глин, аргиллитов и тонких фракций некоторых других осадочных...

      Словарь по гидрогеологии и инженерной геологии

    • - М., имеющие слоистую или слоисто-цепочечную структуру, класса водных силикатов и алюмосиликатов...
    • - гли́нистые пусты́ни обширные равнинные пространства, сложенные глинистыми или суглинистыми отложениями, поверхность которых испытала мощное дефляционное разрушение...

      Географическая энциклопедия

    • - см. Глины лечебные...

      Большой медицинский словарь

    • - Teofilak, 1965, - сложены в основном каолинитом, который иногда замещается сидеритом; присутствуют шамозит и кальцит. Ядром О. г. является преимущественно кварц. Встречены в батском ярусе Ще-тинского синклинория...

      Геологическая энциклопедия

    • - глинистые метам...

      Геологическая энциклопедия

    • - скопление глинистых частиц или их псевдокристаллов, не имеющее четких границ, на контактах тонкодисперсной массы с другими средами. Результат процесса сепарации...

      Толковый словарь по почвоведению

    • - содержащие около 35-45 % чистой глины, отличаются, в хозяйственном отношении, особыми характерными свойствами, которые довольно верно определяются самыми названиями этих почв: сырые, вязкие, липкие, холодные, тяжелые и,...

      Энциклопедический словарь Брокгауза и Евфрона

    • - группа водных силикатов, слагающих основную массу глин и определяющих их физико-химические, механические и др. свойства...

      Большая Советская энциклопедия

    "Глинистые минералы" в книгах

    МИНЕРАЛЫ

    Из книги Вернадский: жизнь, мысль, бессмертие автора Баландин Рудольф Константинович

    МИНЕРАЛЫ Минералогия XIX века во многом разделяла судьбу кристаллографии. Здесь также господствовали описания и классификации. Проводилась «бухгалтерская опись» минералов - занятие полезное, если оно не становится чрезмерным.Казалось, а чем еще заниматься минералогам?

    Минералы любви

    автора Гурвич Михаил Меерович

    Минералы любви

    Из книги Большая книга о питании для здоровья автора Гурвич Михаил Меерович

    Минералы и антиоксиданты

    автора Годуа Александра

    Минералы и антиоксиданты

    Из книги Ягоды годжи, семена чиа и зерна киноа для оздоровления и похудения автора Годуа Александра

    Глинистые грунты

    Из книги Современные работы по закладке фундамента. Виды работ, материалы, технологии автора Назарова Валентина Ивановна

    Глинистые грунты Глинистые грунты – это связанные грунты, для которых число пластичности Jp > 0,01. По содержанию песчаных частиц и числа пластичности глинистые грунты подразделяются на супесь, суглинок, глину (табл. 1).Таблица 1 Числом пластичности называют разницу

    41. Хлорофилл и минералы

    Из книги Глубина 11 тысяч метров. Солнце под водой автора Пикар Жак

    41. Хлорофилл и минералы Около 16.00, в ожидании новостей с Луны, определяю содержание хлорофилла и минералов в океанской воде, пользуясь прибором, который сконструировал для нас У. Иген, научный сотрудник Геоастрофизического отдела «Граммена».В океане хлорофилл

    Минералы

    Из книги Аюрведа и йога для женщин автора Варма Джульет

    Минералы Минералы, так же, как и металлы, излучают электромагнитные волны, особого рода вибрации. С целью профилактики заболеваний и оздоровления можно носить ювелирные украшения с минералами или настаивать воду на минералах и пить ее. Минералы способствуют активизации

    Тяжелые почвы: тяжелосуглинистые и глинистые

    Из книги Золотая книга богатого урожая автора Самсонов Сергей Анатольевич

    Тяжелые почвы: тяжелосуглинистые и глинистые В глинистых почвах мало воздуха, много воды, однако только небольшую ее часть растения могут использовать. Эти почвы, как правило, дренированы. При недостатке влаги на почве образуется прочная корка. Жизнедеятельность

    МИНЕРАЛЫ

    Из книги Салон красоты на дому автора Коробач Лариса Ростиславовна

    МИНЕРАЛЫ Минералы – это неорганические вещества, которые нужны организму в небольших количествах. Минералы содержатся в почве и воде, в продуктах органического происхождения. В организме минералы играют важную роль в обменных процессах, а также в синтезе белков,

    Глинистые почвы

    Из книги Как повысить плодородие почвы автора Хворостухина Светлана Александровна

    Глинистые почвы Глинистые почвы не случайно называются тяжелыми. Их главными отличительными свойствами являются повышенная плотность и вязкость. При увлажнении они чрезмерно слипаются и становятся почти непригодными для обработки и выращивания растений.Грунт данного

    Глинистые минералы

    Из книги Большая Советская Энциклопедия (ГЛ) автора БСЭ

    V. Минералы.

    Из книги Самоврачевание и скотолечение у русского старожилого населения Сибири автора Виноградов Георгий Семенович

    V. Минералы. Глина. Б?лая (перфи?льская) глина прим?няется какъ жаропонижающее средство: ею, напр., обкладываютъ обожженныя или опаренныя м?ста; ее?дятъ отъ изжоги; всякая глина, въ соединеніи съ олифой, тоже признается полезной при ожогахъ.Громо?ва стр?ла „водится у кажной

    Минералы

    Из книги Симфония для позвоночника. Профилактика и лечение заболеваний позвоночника и суставов автора Котешева Ирина Анатольевна

    Минералы Еще греческие ученые Платон, Геродот, Теофраст высказывали убеждение в целительных свойствах камня. Аристотель даже составил сборник легенд о камнях. Полный обзор имевшихся на то время сведений о камнях сделал в своей «Естественной истории в 37 книгах»

    Минералы

    Из книги Рельефный пресс за 3 месяца автора Толкачев Алексей Иванович

    Минералы После воды самыми важными для жизнедеятельности клеток веществами являются минералы. Минералы, которым следует уделить внимание, – это калий, натрий, магний и кальций, потому что именно они нужны человеку в больших количествах.В жизни клетки, а также за ее