Темное вещество вселенной. Тёмная материя — что это? Откуда появилась концепция тёмной материи

Известно, что тёмное вещество взаимодействует со «светящимся» (барионным), по крайней мере, гравитационным образом и представляет собой среду со средней космологической плотностью, в несколько раз превышающей плотность барионов. Последние захватываются в гравитационные ямы концентраций тёмной материи. Поэтому, хотя частицы тёмной материи и не взаимодействуют со светом, свет испускается оттуда, где есть тёмное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения тёмной материи по наблюдательным данным от радиодиапазона до рентгеновского излучения.

Непосредственное изучение распределения тёмной материи в скоплениях галактик стало возможным после получения их высокодетализированных изображений в 1990-х годах. При этом изображения более удалённых галактик, проецирующихся на скопление, оказываются искажёнными или даже расщепляются из-за эффекта гравитационного линзирования . По характеру этих искажений становится возможным восстановить распределение и величину массы внутри скопления независимо от наблюдений галактик самого скопления. Таким образом, прямым методом подтверждается наличие скрытой массы и тёмной материи в галактических скоплениях.

Опубликованное в 2012 году исследование движения более 400 звёзд, расположенных на расстояниях до 13 000 световых лет от Солнца, не нашло свидетельств присутствия тёмной материи в большом объёме пространства вокруг Солнца. Согласно предсказаниям теорий, среднее количество тёмной материи в окрестности Солнца должно было составить примерно 0,5 кг в объёме земного шара. Однако измерения дали значение 0,00±0,06 кг тёмной материи в этом объёме. Это означает, что попытки зарегистрировать тёмную материю на Земле, например, при редких взаимодействиях частиц темной материи с «обычной» материей, вряд ли могут быть успешными .

Кандидаты на роль темной материи

Барионная тёмная материя

Наиболее естественным кажется предположение, что тёмная материя состоит из обычного, барионного вещества, по каким-либо причинам слабо взаимодействующего электромагнитным образом и потому необнаружимого при исследовании, к примеру, линий излучения и поглощения. В состав тёмного вещества могут входить многие уже обнаруженные космические объекты, как то: тёмные галактические гало , коричневые карлики и массивные планеты, компактные объекты на конечных стадиях эволюции: белые карлики , нейтронные звёзды , чёрные дыры . Кроме того, такие гипотетические объекты, как кварковые звёзды , Q-звёзды и преонные звёзды также могут являться частью барионной тёмной материи.

Проблемы такого подхода проявляются в космологии Большого взрыва : если вся тёмная материя представлена барионами, то соотношение концентраций лёгких элементов после первичного нуклеосинтеза , наблюдаемое в самых старых астрономических объектах, должно быть другим, резко отличающимся от наблюдаемого. Кроме того, эксперименты по поиску гравитационного линзирования света звёзд нашей Галактики показывают, что достаточной концентрации крупных гравитирующих объектов типа планет или чёрных дыр для объяснения массы гало нашей Галактики не наблюдается, а мелкие объекты достаточной концентрации должны слишком сильно поглощать свет звёзд .

Небарионная тёмная материя

Теоретические модели предоставляют большой выбор возможных кандидатов на роль небарионной невидимой материи. Перечислим некоторые из них.

Лёгкие нейтрино

В отличие от остальных кандидатов, нейтрино обладают явным преимуществом: известно, что они существуют. Поскольку число нейтрино во Вселенной сравнимо с числом фотонов, то, обладая даже малой массой, нейтрино вполне могут определять динамику Вселенной. Для достижения , где - так называемая критическая плотность , необходимы нейтринные массы порядка эВ, где обозначает число типов легких нейтрино. Эксперименты, проводимые на сегодняшний день, дают оценку масс нейтрино порядка эВ. Таким образом, лёгкие нейтрино практически исключаются в качестве кандидата на доминирующую фракцию тёмной материи.

Тяжёлые нейтрино

Из данных о ширине распада Z-бозона следует, что число поколений слабо взаимодействующих частиц (в том числе нейтрино) равно 3. Таким образом, тяжёлые нейтрино (по крайней мере, с массой менее 45 ГэВ) с необходимостью являются т. н. «стерильными», то есть не взаимодействующими слабым образом частицами. Теоретические модели предсказывают массу в очень широком диапазоне значений (в зависимости от природы этого нейтрино). Из феноменологии для следует диапазон масс приблизительно эВ, таким образом, стерильные нейтрино вполне могут составлять существенную часть тёмной материи.

Суперсимметричные частицы

В рамках суперсимметричных (SUSY) теорий существует по меньшей мере одна стабильная частица, которая является новым кандидатом на роль тёмной материи. Предполагается, что эта частица (LSP) не принимает участия в электромагнитном и сильном взаимодействиях. В качестве LSP-частицы могут выступать фотино , гравитино , хиггсино (суперпартнеры фотона , гравитона и бозона Хиггса соответственно), а также снейтрино, вино , и зино . В большинстве теорий LSP-частица представляет собой комбинацию перечисленных выше SUSY-частиц с массой порядка 10 ГэВ.

Космионы

Космионы были введены в физику для разрешения проблемы солнечных нейтрино, состоящей в существенном отличии потока нейтрино, детектируемых на Земле, от значения, предсказываемого стандартной моделью Солнца. Однако эта проблема нашла разрешение в рамках теории нейтринных осцилляций и эффекта Михеева - Смирнова - Вольфенштейна, так что космионы, по всей видимости, исключаются из претендентов на роль тёмной материи.

Топологические дефекты пространства-времени

Согласно современным космологическим представлениям энергия вакуума определяется неким локально однородным и изотропным скалярным полем. Это поле необходимо для описания так называемых фазовых переходов вакуума при расширении Вселенной, во время которых происходило последовательное нарушение симметрии, приводящее к разъединению фундаментальных взаимодействий. Фазовый переход - это скачок энергии вакуумного поля, стремящегося к своему основному состоянию (состоянию с минимальной энергией при данной температуре). Различные области пространства могли испытывать такой переход независимо, в результате чего образовывались области с определенной «выстроенностью» скалярного поля, которые, расширяясь, могли войти в соприкосновение друг с другом. В точках встречи областей с различной ориентацией могли образоваться стабильные топологические дефекты различной конфигурации: точечно-подобные частицы (в частности, магнитные монополи), линейные протяжённые объекты (космические струны), двумерные мембраны (доменные стенки), трехмерные дефекты (текстуры). Все эти объекты обладают, как правило, колоссальной массой и могли бы давать доминирующий вклад в тёмную материю. На текущий момент (2012 год) подобные объекты во Вселенной не обнаружены.

Классификация тёмной материи

В зависимости от скоростей частиц, из которых, предположительно, состоит тёмная материя, её можно разделить на несколько классов.

Горячая тёмная материя

Состоит из частиц, движущихся со скоростью, близкой к световой - вероятно, из нейтрино . Эти частицы имеют очень маленькую массу, но всё же не нулевую, и учитывая огромное количество нейтрино во Вселенной (300 частиц на 1 см³), это даёт огромную массу. В некоторых моделях на нейтрино приходится 10 % тёмной материи.

Эта материя из-за своей огромной скорости не может образовывать стабильные структуры, но может влиять на обычное вещество и другие виды тёмной материи.

Тёплая тёмная материя

Материю, движущуюся с релятивистскими скоростями, но ниже, чем у горячей тёмной материи, называют «тёплой». Скорости её частиц могут лежать в пределах от 0,1c до 0,95c. Некоторые данные, в частности, температурные колебания фонового микроволнового излучения, дают основания полагать, что такая форма материи может существовать.

Пока нет никаких кандидатов на роль составляющих тёплой тёмной материи, но возможно, стерильные нейтрино , которые должны двигаться медленнее обычных трёх ароматов нейтрино, могут стать одним из них.

Холодная тёмная материя

Тёмную материю, которая движется при классических скоростях , называют «холодной». Этот вид материи представляет наибольший интерес, так как, в отличие от тёплой и горячей тёмной материи, холодная может образовывать стабильные формирования, и даже целые тёмные галактики .

Пока частицы, подходящие на роль составных частей холодной тёмной материи, не обнаружены. В качестве кандидатов на роль холодной тёмной материи выступают слабо взаимодействующие массивные частицы - вимпы , такие как аксионы и суперсимметричные партнёры-фермионы лёгких бозонов - фотино , гравитино и другие.

Смешанная тёмная материя

В массовой культуре

  • В серии игр Mass Effect тёмная материя и тёмная энергия в форме так называемого «Нулевого элемента» необходимы для движения со сверхсветовыми скоростями. Некоторые люди, биотики, используя тёмную энергию, могут контролировать поля эффекта массы.
  • В мультсериале «Футурама » тёмная материя используется в качестве топлива для космического корабля компании «Межпланетный экспресс». Появляется материя на свет в виде испражнений инопланетной расы «зубастильонцы» и по плотности крайне велика.

См. также

Примечания

Литература

  • Сайт Modern Cosmology , содержащий в том числе подборку материалов по тёмной материи.
  • Г.В.Клапдор-Клайнгротхаус, А.Штаудт Неускорительная физика элементарных частиц. М.: Наука, Физматлит, 1997.

Ссылки

  • С. М. Биленький, Массы, смешивание и осцилляции нейтрино , УФН 173 1171-1186 (2003)
  • В. Н. Лукаш, Е. В. Михеева, Темная материя: от начальных условий до образования структуры Вселенной , УФН 177 1023-1028 (2007)
  • Д.И. Казаков "Темная материя" , из цикла лекций в проекте «ПостНаука» (видео)
  • Анатолий Черепащук. "Новые формы материи во Вселенной, ч. 1" - Тёмная масса и тёмная энергия , из цикла лекций «ACADEMIA» (видео)

Wikimedia Foundation . 2010 .

Смотреть что такое "Тёмная материя" в других словарях:

    ТЁМНАЯ МАТЕРИЯ - (ТМ) необычная материя нашей Вселенной, состоящая не из (см.), т. е. не из протонов, нейтронов, мезонов и др., и обнаруженная по сильнейшему гравитационному воздействию на космические объекты обычной барионной природы (звезды, галактики, чёрные… …

    Тёмная материя The Outer Limits: Dark Matters Жанр фантастика … Википедия

    У этого термина существуют и другие значения, см. Тёмная звезда. Тёмная звезда (англ. Dark star) это теоретически предсказанный тип звёзд, которые могли существовать на раннем этапе формирования Вселенной, ещё до того как могли… … Википедия

    МАТЕРИЯ - объективная реальность, существующая вне и независимо от человеческого сознания и отображаемая им (напр. живая и неживая М.). Единство мира в его материальности. В физике М. все виды существования (см.), которое может находиться в различных… … Большая политехническая энциклопедия

Тёмная материя — это еще одно из открытий человечества, сделанных, «на кончике пера». Ее никто и никогда не ощущал, она не излучает электромагнитных волн и не взаимодействует с ними. Уже больше полувека нет экспериментальных доказательств существования темной материи, приводятся лишь экспериментальные расчеты, якобы подтверждающие ее существование. Но на данный момент — это лишь гипотеза астрофизиков. Однако следует заметить, это одна из самых интригующих и весьма обоснованных научных гипотез.

Началось все в начале прошлого века: астрономы заметили, что картина мира, которую они наблюдают, не вписывается в теорию гравитации. Теоретически галактики, имея расчетную массу, вращаются быстрее, чем это должно быть.

Значит они(галактики) имеют гораздо большую массу, чем предполагают расчеты из сделанных наблюдений. Но раз они все-таки вращаются, то либо не верна теория гравитации, или эта теория не «работает» на таких объектах как галактики. Или же во Вселенной вещества больше, чем современные приборы могут обнаружить. Эта теория и стала более популярной среди ученых, а это неосязаемое гипотетическое вещество назвали тёмной материей.
Из расчетов получается, что темной материи в составе галактик примерно в 10 раз больше обычной и друг с другом разные материи взаимодействуют только на гравитационном уровне, то есть темная материя проявляет себя исключительно в виде массы.
Некоторые ученые предполагают, что часть тёмной материи - это обычное вещество, но не испускающее электромагнитного излучения. К таким объектам относят темные галактические гало, нейтронные звёзды и коричневые карлики, а также другие, пока гипотетические объекты космоса.

Если верить выводам учёных, то обычная материя (в основном, содержащаяся в галактиках) собирается
вокруг областей с самой плотной концентрации тёмной материи. На полученной пространст-
венной карте тёмная материя представляет собой неравномерную сеть из гигантских нитей, со вре-
менем увеличивающихся и пресекающихся в местах галактических скоплений.

Темную материю делят на несколько классов: горячую, теплую и холодную(это зависит от скорости частиц, из которых она состоит). Так выделяют горячую, тёплую и холодную тёмную материю. Наибольший интерес у ученых-астрономов вызывает именно холодная тёмная материя, так как она может образовывать стабильные объекты, например, целые тёмные галактики.
Теория тёмной материи вписывается и в теорию Большого взрыва. Поэтому ученые предполагают, что через 300 тысяч лет после взрыва сначала в огромном количестве стали скучиваться частицы темной материи, а после этого силой тяготения на них собирались частицы обычного вещества и формировались галактики.
Эти удивительные выводы означают, что масса обычного вещества составляет лишь несколько процентов от полной массы Вселенной !!!

То есть, видимый нам мир – это только маленькая часть того, из чего на самом деле состоит Вселенная. И что это за огромное «нечто» мы даже не можем представить.

Играет решающую роль в развитии Вселенной. Однако пока мало что известно об этой странной субстанции. Профессор Маттиас Бартельманн (Matthias Bartelmann) - Гейдельбергский институт теоретической астрофизики - объясняет, как проводились исследования тёмной материи, отвечая на ряд вопросов журналистов.

и каким образом она возникает?

Я понятия не имею! Пока никем. Вероятно, она состоит из тяжелых элементарных частиц. Но никто не знает, действительно ли это частицы. В любом случае, они очень отличаются от всего, что мы до этого знали.

Похоже на открытие целого нового вида животных?

Да, именно так, это хорошее сравнение.

Кто открыл темную материю и когда?

В 1933 году Фриц Цвикки (Fritz Zwicky) рассматривал движение галактик в галактических кластерах, которое зависит от общей массы скопления. Исследователь заметил, что галактики, учитывая их вычисленную массу, движутся очень быстро. Это был первый намек на темную материю. Никакой известной материей нельзя было объяснить, почему звезды в галактиках держатся вместе: они должны из-за свой высокой скорости обращения разлетаться.

Гравитационная линза Фото: Wissensschreiber

А какие еще есть доказательства?

Довольно хорошим доказательством является эффект гравитационной линзы. Далекие галактики кажутся нам искаженными, так как световые лучи отклоняются на своем пути от материи. Это напоминает взгляд через рифленое стекло. И эффект сильнее, чем он был бы, если существовала бы только видимая материя.

Как выглядит темная материя?

Её нельзя увидеть, так как отсутствует взаимодействие тёмной материи и электромагнитного излучения. Это означает, что она не отражает свет и не испускает никакого излучения.

А как вы тогда изучаете темную материю? Какие приборы необходимы для исследования?

Мы изучаем не конкретно темную материю, а лишь её проявления, например, эффект гравитационной линзы. Я теоретик. Собственно говоря, мне просто нужен мой компьютер, ручка и лист бумаги. Но я использую и данные больших телескопов на Гавайях и в Чили.

Можно ли изобразить темную материю?

Да, можно создать своего рода карту её распределения. Так же, как линии возвышенностей показывают на географической карте контуры горы, тут можно увидеть по плотности линий, где особенно много темной материи.

Когда она появилась?

Темная материя возникла либо непосредственно при Большом взрыве, либо 10000-100000 лет спустя. Но и это мы ещё изучаем.

Какое количество темной материи существует?

Этого никто не может точно сказать. Но, исходя из последних исследований, мы полагаем, что темной материи приблизительно в семь-восемь раз больше во Вселенной, чем видимой.

Компьютерное моделирование показывает распространение тёмной материи в виде паутины, причём её скопление мы видим на самых ярких участках
Фото: Volker Springel

Есть ли зависимость между тёмной энергией и тёмной материей?

Наверное, нет. Темная энергия обеспечивает ускоренное расширение Вселенной, тогда как темная материя удерживает вместе галактики.

Откуда она взялась?

Темная материя, вероятно, повсюду, только она распространена не равномерно - так же, как видимая материя, она образует сгустки.

Каково значение темной материи для нас и нашего мировоззрения?

Для повседневной жизни она не имеет значения. Но в астрофизике очень важна, так как играет решающую роль в развитии Вселенной.

Из чего состоит наша Вселенная? 4,9 % - видимая материя, 26,8 % тёмная материя, 68,3 % - тёмная энергия Фото: Wissensschreiber

Что она вызовет в будущем?

Наверное, больше ничего. Раньше для развития Вселенной она была очень важна. Сегодня она лишь по-прежнему удерживает вместе отдельные галактики. А так как Вселенная продолжает расширяться, то новым структурам из темной материи появляться становится все труднее.

Возможно ли будет в будущем напрямую отображать темную материю с помощью приборов?

Да, это возможно. Например, можно измерять колебания, которые возникают, когда частицы темной материи сталкиваются в кристалле с атомами. Аналогично происходит и в ускорителе частиц: если элементарные частицы, казалось бы, беспричинно летят в неожиданном направлении, то виной всему может быть неизвестная частица. Тогда это было бы еще одним доказательством существования темной материи. Представьте себе: вы стоите на футбольном поле и перед вами мяч. Он вдруг улетает безо всякой видимой причины. Его должно было сбить что-то невидимое.

А что вас в вашей работе интересует больше всего?

Меня привлекает предположение, согласно которому видимая материя является лишь малой долей всего, а мы не имеем никакого представления об остатке.

Спасибо, что Вы нашли время. Мы надеемся, что Вы вскоре узнаете ещё больше о темной материи!

Статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10 -29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 10 30 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter ») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Фотофакт

Скопление галактик (в левой нижней части участка, обведенного кружком) создает гравитационную линзу. Она искажает форму расположенных за линзой объектов — вытягивая их изображения в одном направлении. По величине и направлению вытягивания международная группа астрономов из Южной Европейской обсерватории, возглавляемая учеными из парижского Института астрофизики, построила распределение масс, которое и показано на нижнем изображении. Как видно, в скоплении сосредоточено гораздо больше массы, нежели удается разглядеть в телескоп.

Охота на темные массивные объекты — дело небыстрое, и на фотографии результат выглядит не самым эффектным образом. В 1995 году телескоп «Хаббл» заметил, что одна из звездочек Большого Магелланова облака вспыхнула ярче. Это свечение продолжалось три с лишним месяца, но потом звезда вернулась к своему естественному состоянию. А шесть лет спустя рядом со звездой появился какой-то едва светящийся объект. Это и был холодный карлик, который, проходя на расстоянии 600 световых лет от звезды, создал гравитационную линзу, усиливающую свет. Расчеты показали, что масса этого карлика составляет всего 5-10% от массы Солнца.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 -29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92-95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4-5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20-30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс 2 , энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.