Понятие множества. Операции над множествами. Универсальное множество. Операции над множествами и их свойства

Множество — это набор каких-либо объектов, которые называются элементами этого множества.

Например: множество школьников, множество машин, множество чисел .

В математике множество рассматривается намного шире. Мы не будем сильно углубляться в эту тему, поскольку она относится к высшей математике и на первых порах может создавать трудности для обучения. Мы рассмотрим только ту часть темы, с которой уже имели дело.

Содержание урока

Обозначения

Множество чаще всего обозначают заглавными буквами латинского алфавита, а его элементы - строчными. При этом элементы заключаются в фигурные скобки.

Например, если наших друзей зовут Том, Джон и Лео , то мы можем задать множество друзей, элементами которого будут Том, Джон и Лео.

Обозначим множество наших друзей через заглавную латинскую букву F (friends ), затем поставим знак равенства и в фигурных скобках перечислим наших друзей:

F = { Том, Джон, Лео }

Пример 2 . Запишем множество делителей числа 6.

Обозначим через любую заглавную латинскую букву данное множество, например, через букву D

затем поставим знак равенства и в фигурных скобках перечислим элементы данного множества, то есть перечислим делители числа 6

D = { 1, 2, 3, 6 }

Если какой-то элемент принадлежит заданному множеству, то эта принадлежность указывается с помощью знака принадлежности ∈ . К примеру, делитель 2 принадлежит множеству делителей числа 6 (множеству D ). Записывается это так:

Читается как: «2 принадлежит множеству делителей числа 6»

Если какой-то элемент не принадлежит заданному множеству, то эта не принадлежность указывается с помощью зачёркнутого знака принадлежности ∉. К примеру, делитель 5 не принадлежит множеству D . Записывается это так:

Читается как: «5 не принадлежит множеству делителей числа 6″

Кроме того, множество можно записывать прямым перечислением элементов, без заглавных букв. Это может быть удобным, если множество состоит из небольшого количества элементов. Например, зададим множество из одного элемента. Пусть этим элементом будет наш друг Том :

{ Том }

Зададим множество, которое состоит из одного числа 2

{ 2 }

Зададим множество, которое состоит из двух чисел: 2 и 5

{ 2, 5 }

Множество натуральных чисел

Это первое множество с которым мы начали работать. Натуральными числами называют числа 1, 2, 3 и т.д.

Натуральные числа появились из-за потребности людей сосчитать те иные объекты. Например, посчитать количество кур, коров, лошадей. Натуральные числа возникают естественным образом при счёте.

В прошлых уроках, когда мы употребляли слово «число» , чаще всего подразумевалось именно натуральное число.

В математике множество натуральных чисел обозначается заглавной латинской буквой N .

Например, укажем, что число 1 принадлежит множеству натуральных чисел. Для этого записываем число 1, затем с помощью знака принадлежности ∈ указываем, что единица принадлежит множеству N

1 ∈ N

Читается как: «единица принадлежит множеству натуральных чисел»

Множество целых чисел

Множество целых чисел включает в себя все положительные и , а также число 0.

Множество целых чисел обозначается заглавной латинской буквой Z .

Укажем, к примеру, что число −5 принадлежит множеству целых чисел:

−5 ∈ Z

Укажем, что 10 принадлежит множеству целых чисел:

10 ∈ Z

Укажем, что 0 принадлежит множеству целых чисел:

В будущем все положительные и отрицательные числа мы будем называть одним словосочетанием — целые числа .

Множество рациональных чисел

Рациональные числа, это те самые обыкновенные дроби, которые мы изучаем по сей день.

Рациональное число — это число, которое может быть представлено в виде дроби , где a — числитель дроби, b — знаменатель.

В роли числителя и знаменателя могут быть любые числа, в том числе и целые (за исключением нуля, поскольку на нуль делить нельзя).

Например, представим, что вместо a стоит число 10, а вместо b — число 2

10 разделить на 2 равно 5. Видим, что число 5 может быть представлено в виде дроби , а значит число 5 входит во множество рациональных чисел.

Легко заметить, что число 5 также относится и ко множеству целых чисел. Стало быть множество целых чисел входит во множество рациональных чисел. А значит, во множество рациональных чисел входят не только обыкновенные дроби, но и целые числа вида −2, −1, 0, 1, 2.

Теперь представим, что вместо a стоит число 12, а вместо b — число 5.

12 разделить на 5 равно 2,4. Видим, что десятичная дробь 2,4 может быть представлена в виде дроби , а значит она входит во множество рациональных чисел. Отсюда делаем вывод, что во множество рациональных чисел входят не только обыкновенные дроби и целые числа, но и десятичные дроби.

Мы вычислили дробь и получили ответ 2,4. Но мы могли бы выделить в этой дроби целую часть:

При выделении целой части в дроби , получается смешанное число . Видим, что смешанное число тоже может быть представлено в виде дроби . Значит во множество рациональных чисел входят и смешанные числа.

В итоге мы приходим к выводу, что множество рациональных чисел содержат в себе:

  • целые числа
  • обыкновенные дроби
  • десятичные дроби
  • смешанные числа

Множество рациональных чисел обозначается заглавной латинской буквой Q .

Например укажем, что дробь принадлежит множеству рациональных чисел. Для этого записываем саму дробь , затем с помощью знака принадлежности ∈ указываем, что дробь принадлежит множеству рациональных чисел:

Q

Укажем, что десятичная дробь 4,5 принадлежит множеству рациональных чисел:

4,5 ∈ Q

Укажем, что смешанное число принадлежит множеству рациональных чисел:

Q

Вводный урок по множествам завершён. В будущем мы рассмотрим множества намного лучше, а пока рассмотренного в данном уроке будет достаточно.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Математический анализ

Множество-это совокупность объектов любой природы. Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записываютx Х ( - принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( - содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:

§ А={1,2,3,5,7} - множество чисел

§ Х={x 1 ,x 2 ,...,x n } - множество некоторых элементов x 1 ,x 2 ,...,x n

§ N={1,2,...,n} - множество натуральных чисел

§ Z={0,±1,±2,...,±n} - множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число - точкой этой прямой. Пусть a - произвольная точка числовой прямой иδ - положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

2. Метод математической индукции (пример). Неравенство Бернулли.


3. Аксиоматика множества действительных чисел: операция сложения, операция умножения, отношение порядка.
4. Аксиоматика множества действительных чисел: аксиома Архимеда, аксиома Дедекинда.

АРХИМЕДА АКСИОМА

Аксиома, первоначально сформулированная для отрезков, заключающаяся в том, что, отложив достаточное число раз меньший из двух заданных отрезков, всегда можно получить отрезок, превосходящий больший из них. Аналогично А. а. формулируется для площадей, объемов, положительных чисел и т. д. Вообще, для данной величины имеет место А. а., если для любых двух значений этой величины таких, что , всегда можно найти целое число т, что ; на этом основан процесс последовательного деления в арифметике и геометрии (см. Евклида алгоритм ). Значение А. а. выяснилось с полной отчетливостью после того, как в 19 в. было обнаружено существование величин, по отношению к к-рым эта аксиома несправедлива,- т. н. неархимедовых величин

Дедекинда аксиома

одна из аксиом непрерывности (см. Непрерывности аксиомы). Д. а. гласит: если все точки прямой разбиты на два непустых класса, причём все точки первого класса расположены левее всех точек второго, то существует либо самая правая точка первого класса, либо самая левая точка второго


5. Модуль действительного числа и его свойства.

Абсолютной величиной (или модулем ) действительного числа х называется неотрицательное число , определяемое соотношением
Свойства модуля . 1. . 2. . 3. Неравенства и равносильны. 4. Модуль суммы двух действительных чисел меньше или равен сумме модулей этих чисел:

Это свойство справедливо для любого конечного числа слагаемых.

5. Модуль разности двух действительных чисел больше или равен разности модулей этих чисел:
. 6. Модуль произведения чисел равен произведению модулей этих чисел:
. Это свойство справедливо для любого конечного числа сомножителей. 7. Модуль частного двух чисел (если делитель отличен от нуля) равен частному модулей этих чисел:


6. Границы числовых множеств. Точные верхние и нижние границы числовых множеств.
7. Действительная функция действительного аргумента: элементарные функции их область определения и график, сложные и неэлементарные функции.
8. Способы задания функций, арифметические действия над функциями.
9. Простая классификация функций действительного аргумента.
10. Предел числовой последовательности и его геометрический смысл.
11. Свойства сходящихся последовательностей: теорема 1. Единственность предела (с доказательством). Теорема 2.
12. Бесконечно малые и бесконечно большие числовые последовательности: определения. Связь между ними.
13. Леммы о бесконечно малых числовых последовательностях. Следствия. Примеры.
14. Теоремы о пределах числовых последовательностей. Следствия.
15. Вычисление пределов числовых последовательностей: правила раскрытия неопределенностей вида, . Вывод. Пример.
16. Предельный переход в неравенствах: Теорема 1. (о сохранении знака предела). Теорема 2 (предельный переход в неравенствах). Теорема 3 (о сжатой последовательности). Теорема Вейерштрасса.
17. Число e (с доказательством). Натуральные логарифмы.
18. Предельные точки множества.
19. Определение предел функции в точке по Коши и его геометрический смысл.
20. Определение предела функции в точке по Гейне. Основные теоремы о пределе функции. Вычисление предела функции в точке: правило раскрытия неопределенности вида Пример.
21. Предел функции по множеству. Односторонние приделы. Замечания.
22. Первый замечательный предел (с доказательством). Следствия.
23. Второй замечательный предел. Замечания. Замечательные пределы, связанные с показательной и логарифмической функциями. Замена переменной под знаком предела. Пример.
24. Непрерывность и точки разрыва функции. Свойства непрерывных функций.
25. Производные простых функций: определение производной функции, геометрический смысл производной функции. Уравнения касательной и нормали к кривой.
26. Основные правила дифференцирования функций. Производные элементарных функций. Пример.
27. Производная сложной функции. Логарифмическое дифференцирование. Производная показательно-степенной функции.
28. .Дифференциал функции и его геометрический и механический смысл. Вывод.
29. Основные правила нахождения дифференциала функции. Дифференциал сложной функции. Инвариантность формы дифференциала первого порядка. .
30. Производные и дифференциалы высших порядков функции. Механический и геометрический смысл второй производной. Формула Лейбница.
31. Основные теоремы дифференцирования: теорема Ферма, теорема Роля и их геометрический смысл.
32. Основные теоремы дифференцирования: теорема Лагранжа, теорема Коши и их геометрический смысл.
33. Приложения производной: правило Лопиталя для раскрытия неопределенностей вида и, раскрытие неопределенностей вида. Пример.
34. Первообразная функции и неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов.
35. Методы интегрирования функций: непосредственное интегрирование; метод замены переменной; метод интегрирования по частям.
36. Определение и свойства определенного интеграла.
37. Вычисление определенного интеграла. Формула Ньютона-Лейбница. Методы интегрирования в определенном интеграле: замена переменной, метод интегрирования по частям.
38. Числовые ряды. Сходимость и расходимость числовых рядов. Необходимый признак сходимости рядов.
39. Достаточные признаки сходимости числовых рядов: признак сравнения, предельный признак сравнения.
40. Достаточные признаки сходимости числовых рядов: радикальный признак Коши, признак Даламбера.

Понятие множества относится к аксиоматическим понятиям математики.

Определение . Множество – такой набор, группа, коллекция элементов, которые обладают каким-либо общим для них всех свойством или признаком.

Обозначение: A , B .

Определение . Два множества A и B равны тогда и только тогда, когда они состоят из одних и тех же элементов. A = B .

Запись a ∈ A (a ∉ A) означает, что a является (не является) элементом множества A.

Определение . Множество, не содержащее элементов, называется пустым и обозначается ∅.

Обычно в конкретных случаях элементы всех рассматриваемых множеств берутся из одного, достаточно широкого множества U, которое называется уни- версальным множеством .

Мощность множества обозначается как |M| .
Замечание : для конечных множеств мощность множества – это число элементов.

Определение . Если |A| = |B| , то множества называются равномощными .

Для иллюстрации операций над множествами часто используются диаграммы Эйлера – Венна . Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов, представляющих множества.

Над множествами определены следующие операции:

Объединение А∪В: = {х/х∈А∨х∈В}

Пересечение А∩В: = {х/х∈А&х∈В}

Разность А\В: = {х/х∈А&х∈В}

Дополнение A U \ A: = {x / x U & x ∉ A}

Задача1.1. Дано: а)A,B⊆Z, A = {1;3;4;5;9}, B = {2;4;5;10}. б)A,B⊆R, A = [-3;3), B = (2;10].

Решение.

a) A∩B = {4;5}, A∪B = {1;2;3;4;5;9;10}, A \ B = {1;3;9}, B \ A = {2;10}, B = Z \ B ;

б) A∩B = (2;3), A∪B = [-3;10] , A\B = [-3,2], B\A = ,B Z\B = (-∞,2]∪(10,+∞).


1) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = [-3; 7), B = [-4; 4].

Найти: A∩B, A∪B, A\B, B\A, B .


2) Дано: а) A, B ⊆ Z, A = {3;6;7;10}, B = {2;3;10;12}.

б) A, B ⊆ R, A = .

Найти: A∩B, A∪B, A\B, B\A, B .


3) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = .


4) Дано: а) A, B ⊆ Z, A = {0;4;6;7}, B = {-3;3;7}.

б)A,B ⊆ R, A = [-15;0), B = [-2;1].

Найти: A∩B, A∪B, A\B, B\A, A .


5) Дано: а) A, B ⊆ Z, A = {0;9}, B = {-6;0;3;9}.

б) A, B ⊆ R, A = [-10; 5), B = [-1; 6].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


6) Дано: а)A, B ⊆ Z, A = {0;6;9}, B = {-6;0;3;7}.

б) A, B ⊆ R, A = [-8;3), B = .

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


7) Дано: а)A, B ⊆ Z, A = {-1;0;2;10}, B = {-1;2;9;10}.

б)A, B ⊆ R, A = [-10;9), B = [-5;15].

Найти: A∩B, A∪B, A\B, B\A, B .


8) Дано: а) A,B ⊆ Z, A = {1;2;9;37}, B = {-1;1;9;11;15}.

б) A, B ⊆ R, A = [-8;1), B = [-5;7].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


9) Дано: а) A, B ⊆ Z, A = {-1;0;9;17}, B = {-1;1;9;10;25}.

б) A, B ⊆ R, A = [-4;9), B = [-5;7].

Найти: A∩B, A∪B, A\B, B\A, B .


10) Дано: а)A,B⊆Z, A = {1;7;9;17}, B = {-2;1;9;10;25}.

б) A,B⊆R, A = .

Найти: A ∩ B, A ∪ B, A\B, B\A, A .

Задача1.1. Используя диаграммы Эйлера-Венна доказать тождество:

A\ (B\C) = (A\B) ∪ (A ∩ C).

Решение.

Построим диаграммы Венна.

Левая часть равенства представлена на рисунке а), правая – на рисунке б). Из диаграмм очевидно равенство левой и правой частей данного соотношения.


Задачи для самостоятельного решения

Используя диаграммы Эйлера-Венна доказать тождества:

1) A\(B ∪ C) = (A\B) ∩ (A\C);

2) A ∪ (B\C) = (A ∩ B)\C;

3) A ∪ (B \ C) = (A ∩ B) \ (A ∩ C);

4) (A\B) \C = (A\B) \ (B\C);

5) (A\B) \C = (A\B) ∪ (A∩C);

6) A∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

7) (A ∩ B) \ (A ∩ C) = (A ∩ B) \C;

8) A∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

9) (A ∪ B) \C = (A\C) ∪ (B\C)

10) A∪ (A ∩ B) = A ∪ B

Задача 1.3. На уроке литературы учитель решил узнать, кто из 40 учеников класса читал книги A, B, C. Результаты опроса оказались таковы: книгу A читали 25 учеников; книгу B читали 22 ученика; книгу C читали 22 ученика; книги A или B читали 33 ученика; книги A или C читали 32 ученика; книги B или C читали 31 ученик; все книги читали 10 учеников. Определите: 1) Сколько учеников прочли только книгу A?

2) Сколько учеников прочли только книгу B?

3) Сколько учеников прочли только книгу C?

4) Сколько учеников прочли только по одной книге?

5) Сколько учеников прочли хотя бы одну книгу?

6) Сколько учеников не прочитали ни одной книги?

Решение.

Пусть U - множество учеников в классе. Тогда

|U| = 40, |A| = 25, |B| = 22, |C| = 22, |A ∪ B| = 33, |A ∪ C| = 32, |B ∪ C| = 31, |A ∩ B ∩ C| = 10

Попробуем проиллюстрировать задачу.

Разобьём множество учеников, прочитавших хотя бы одну книгу, на семь подмножеств k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , k 7 , где

k 1 - множество учеников, прочитавших только книгу A;

k 3 - множество учеников, прочитавших только книгу B;

k 7 - множество учеников, прочитавших только книгу C;

k 2 - множество учеников, прочитавших книги A и B и не читавших книгу C;

k 4 - множество учеников, прочитавших книги A и C и не читавших книгу B;

k 6 - множество учеников, прочитавших книги B и C и не читавших книгу A;

k 5 - множество учеников, прочитавших книги A, B и C.

Вычислим мощность каждого из этих подмножеств.

|k 2 | = |A ∩ B|-|A ∩ B ∩ C|; |k 4 | = |A ∩ C|-|A ∩ B ∩ C|;

|k 6 | = |B ∩ C| - |A ∩ B ∩ C|; |k 5 | = |A ∩ B ∩ C|.

Тогда |k 1 | = |A| - |k 2 | - |k 4 | - |k 5 |, |k 3 | = |B| - |k 2 | - |k 6 | - |k 5 |, |k 7 | = |C| - |k 6 | - |k | - |k 5 |.

Найдём |A ∩ B|, |A ∩ C|, |B ∩ C|.

|A ∩ B| = | A| +| B| - |A ∩ B| = 25 + 22 - 33 = 14 ,

|A ∩ C| = |A| + |C| - |A ∩ C| = 25 + 22 - 32 = 15 ,

|B ∩ C| = |B| + |C| - |B ∩ C| = 22 + 22 - 31 = 13 .

Тогда k 1 = 25-4-5-10 = 6; k 3 = 22-4-3-10 = 5; k 7 = 22-5-3-10 = 4;

|A ∪ B ∪ C| = |A ∪ B| + |C| - |(A ∪ B) ∪ C| .

Из рисунка ясно, что |C| - |(A ∪ B) ∪ C| = |k 7 | = 4, тогда |A ∪ B ∪ C| = 33+4 = 37 – число учеников, прочитавших хотя бы одну книгу.

Так как в классе 40 учеников, то 3 ученика не прочитали ни одной книги.

Ответ:
  1. 6 учеников прочли только книгу A.
  2. 5 учеников прочли только книгу B.
  3. 4 ученика прочли только книгу C.
  4. 15 учеников прочли только по одной книге.
  5. 37 учеников прочли хотя бы одну книгу из A, B, C.
  6. 3 ученика не прочитали ни одной книги.

Задачи для самостоятельного решения

1) В течение недели в кинотеатре шли фильмы A, B, C . Каждый из 40 школьни- ков видел либо все 3 фильма, либо один из трёх. Фильм A видели 13 школьников. Фильм B видели 16 школьников. Фильм C видели 19 школьников. Сколько школьников видели только по одному фильму?

2) В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и английским, 19 – английским и немецким, 15 – русским и немецким, а 10 человек владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

3) В спортивных соревнованиях участвует школьная команда из 20 человек, каждый из которых имеет спортивный разряд по одному или нескольким из трёх видов спорта: лёгкой атлетике, плаванию и гимнастике. Известно, что 12 из них имеют разряды по лёгкой атлетике, 10 – по гимнастике и 5 – по плаванию. Определите количество школьников из этой команды, имеющих разряды по всем видам спорта, если по лёгкой атлетике и плаванию разряды имеют 2 человека, по лёгкой атлетике и гимнастике – 4 человека, по плаванию и гимнастике – 2 человека.

4) Опрос 100 студентов дал следующие результаты о количестве студентов, изучающих различные иностранные языки: испанский – 28; немецкий – 30; французский – 42; испанский и немецкий – 8; испанскии и французский – 10; немецкий и французский – 5; все три языка – 3. Сколько студентов изучает немецкий язык в том и только том случае, если они изучают французский язык? 5) Опрос 100 студентов выявил следующие данные о числе студентов, изучающих различные иностранные языки: только немецкий – 18; немецкий, но не испанский – 23; немецкий и французский – 8; немецкий – 26; французский – 48; французский и испанский – 8; никакого языка – 24. Сколько студентов изучают немецкий и испанский язык?

6) В отчёте об опросе 100 студентов сообщалось, что количество студентов, изучающих различные языки, таково: все три языка – 5; немецкий и испанский – 10; французский и испанский – 8; немецкий и французский – 20; испанский – 30; немецкий – 23; французский – 50. Инспектор, представивший этот отчёт, был уволен. Почему?

7) В международной конференции участвовало 100 человек. Из них 42 владеют французским языком, 28 – английским, 30 – немецким, 10 – французским и английским, 8 – английским и немецким, 5 – французским и немецким, а 3 чело- века владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

8) Студенты 1 курса, изучающие информатику в университете, могут посещать и дополнительные дисциплины. В этом году 25 из них предпочли изучать бухгалтерию, 27 выбрали бизнес, а 12 решили заниматься туризмом. Кроме того, было 20 студентов, слушающих курс бухгалтерии и бизнеса, 5 изучали бухгалтерию и туризм, а 3 – туризм и бизнес. Известно, что никто из студентов не отважился посещать сразу 3 дополнительных курса. Сколько студентов посещали, по крайней мере, 1 дополнительный курс?
9) В олимпиаде по математике для абитуриентов приняло участие 40 учащихся. Им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. Задачу по алгебре решили 20 человек, по геометрии – 18, по тригонометрии – 18 человек. Задачи по алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 8 человек, по геометрии и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека. Сколько учащихся решили толь- ко две задачи?

10) В классе 40 учеников. Из них по русскому языку имеют тройки 19 человек, по математике – 17 человек и по физике – 22 человека. 4 ученика имеют тройки только по одному русскому языку, 4 – только по математике и 11 – только по физике. По русскому, математике и физике имеют тройки 5 учащихся. 7 человек имеют тройки по математике и физике. Сколько учеников имеют тройки по двум из трёх предметов?

Теория множеств.

Множества. Пустое множество. Универсальное множество. Подмножества. Собственное подмножество. Способы задания множеств. Мощность множества. Равномощные множества. Конечные и счётные множества. Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность). Законы алгебры множеств. Характеристические функции. Декартово произведение множеств. Отношения и свойства отношений. Функции на множествах.

Определение множества.

Множество - это совокупность определённых различаемых объектов, причём таких, что для каждого можно установить, принадлежит этот объект данному множеству или нет.

Множества обычно обозначаются заглавными латинскими буквами, а элементы множества - строчными. Элементами множеств могут быть любые объекты, например, числа, символы, слова, объекты реального мира. В частности, элементами множества могут быть другие множества.

Например:

A = { a, b, c } - множество A состоящее из 3 элементов

N = { 1, 2, 3, … } - множество N целых чисел

Элементы множества являются уникальными, то есть, один и тот же элемент не может включаться в множество несколько раз (в отличие от векторов и мультимножеств). Считается, что при добавлении в множество элемента, который в нем уже присутствует, множество не меняется.

Порядок записи элементов множества не является существенным (в отличие от записи элементов векторов, где порядок важен).

Таким образом, множества считаются равными, если они состоят из одних и тех же элементов.

Если некоторый объект является элементом множества , то этот факт записывается следующим образом: и читается «x принадлежит А». Аналогично, если элемент не является элементом множества , используется запись («y не принадлежит А»).

Пустое множество – это множество, не содержащее элементов. Пустое множество может быть обозначено с использованием фигурных скобок: = { }. Однако, множество B = { } не является пустым: это множество, содержащее один элемент, который является пустым множеством.

Универсальное множество Е – множество всех объектов, рассматриваемых в данной задаче.

Конечные и бесконечные множества. Если количество элементов множества конечно (то есть существует натуральное число, равное количеству элементов множества), то такое множество называется конечным. В противном случае множество называется бесконечным.

Мощность множества или кардинальное число |A| (иногда card (A)). Мощность множества является обобщением понятия количества элементов на бесконечные множества. Для конечных множеств мощность равна количеству элементов множества.

Мощность пустого множества по определению равна нулю: .

Равномощные множества – это множества, между элементами которых можно установить взаимно однозначное соответствие.

Счётное множество – множество, равномощное множеству натуральных чисел.

Множество А называют подмножеством множества B (обозначается либо ) если все элементы, которые принадлежат множеству A, так же принадлежат и множеству B.

В этом случае B называют надмножеством A

Пустое множество является подмножеством любого множества.

Любое множество является подмножеством самого себя:

Элемент множества

Мно́жество - один из ключевых объектов математики , в частности, теории множеств . «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие - значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество - это, пожалуй, самое широкое понятие математики и логики).

Теории

Существует два основных подхода к понятию множества - наивная и аксиоматическая теория множеств.

Аксиоматическая теория множеств

На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело - Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают большими буквами латинского алфавита , его элементы - маленькими. Если а - элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а∉А(а не принадлежит А).

Некоторые виды множеств

  • Упорядоченное множество -- множество, на котором задано отношение порядка .
  • Набор (в частности, упорядоченная пара). В отличие от просто множества записывается внутри круглых скобок: (x 1 , x 2 , x 3 , … ), а элементы могут повторяться.

По иерархии:

Множество множеств Подмножество Надмножество

По ограничению:

Операции над множествами

Литература

  • Столл Р. Р. Множества. Логика. Аксиоматические теории. - М .: Просвещение, 1968. - 232 с.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Элемент множества" в других словарях:

    элемент множества - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] элемент множества Объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в… …

    Элемент множества - объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в этом смысле употребляют «точка множества», «член множества» и др.… …

    МНОЖЕСТВА, в математике совокупность определенных объектов. Эти объекты называются элементами множества. Число элементов может быть бесконечным или конечным, или даже равняться нулю (число элементов в пустом множестве обозначается 0). Каждый… … Научно-технический энциклопедический словарь

    элемент - Обобщенный термин, под которым в зависимости от соответствующих условий может пониматься поверхность, линия, точка. Примечания 1. Элемент может быть поверхностью (частью поверхности, плоскостью симметрии нескольких поверхностей), линией (профилем … Справочник технического переводчика

    Часть чего нибудь. Одна из возможных этимологий этого слова по названию ряда согласных латинских букв L, M, N (el em en). Элемент (философия) Элемент обязательная принадлежность флага, знамени и штандарта. Элемент множества Элементарные… … Википедия

    Элемент - первичная (для данного исследования, модели) составная часть сложного целого. См. Элемент множества, Элемент системы … Экономико-математический словарь

    Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия

    элемент - 02.01.14 элемент (знак символа или символ) : Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… … Словарь-справочник терминов нормативно-технической документации

    А; м. [от лат. elementum стихия, первоначальное вещество] 1. Составная часть чего л.; компонент. Разложить целое на элементы. Из каких элементов состоит культура? Природа э. производства. Составные элементы чего л. // Характерное движение, одна… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Элемент. Элемент (лат. elementum стихия) самостоятельная часть, являющаяся основой чего либо, например системы или множества. Этимология Латинское слово elementum использовали ещё … Википедия