Строение и функция нервной регуляторной системы организма человека. Ii. эндокринная система. Гормоны Свойства и классификации гормонов

Является ли калорийность продуктов решающим фактором, влияющим на вес? Попробуем в этом разобраться.

Регуляторная система организма

Всю , которую мы получаем, расходуем на различные нужды: синтез ферментов, поддержание температуры тела, выполняемую работу, перемещение в пространстве, на мышление и нервную деятельность и т.д. Чем больше расход энергии, тем более интенсивным становится обмен веществ и лучше протекает процесс (до определенного рубежа).

Между поступлением энергии и ее расходованием поддерживается удивительный баланс, работает механизм саморегуляции.

В организме человека он осуществляется на нескольких уровнях. В биологическом теле координирует процесс головной мозг, он может вторгнуться в работу любой из систем, вплоть до отдельной клетки.

Однако в условиях обычной жизни текущие задачи в организме решает подсознание, которое в свою очередь также имеет несколько этажей иерархии, но на этом мы не будем делать акцент. Сейчас важен следующий момент: если дать определенную установку или программу своему подсознанию, возможно творить чудеса со своим телом.

Помимо непосредственного вмешательства подсознание оказывает влияние на организм с помощью сложной многоуровневой системы гормональной регуляции. В ее состав входит гипоталамус - основной координирующий центр, гипофиз - среднее звено, которому подчиняются железы внутренней секреции. Обмен же регулируют уже непосредственно гормоны.

Таким образом, оказывается, что в первую очередь на вес человека оказывают воздействие внутренние причины - установки подсознания и гормональное равновесие. А на них в свою очередь влияют здоровье (точнее патологии), генотип и эмоции.

Американскими учеными было доказано, ЧТО СРЕДНИЙ ВЕС ЧЕЛОВЕКА НЕ ЗАВИСИТ ОТ КАЛОРИЙНОСТИ ПИЩИ. Естественно, подразумеваются нормальные условия, когда отсутствуют какие-либо насильственные ограничения в еде.

То есть складывается следующая ситуация, что как бы утверждает определенный вес. Если имеет место небольшое временное переедание, то избыток энергии усиливает обмен и переходит в тепло, пока не установится баланс. Если же в течение длительного времени сознательно переедать, то, несомненно, жировые запасы начнут пополняться. Но если человек прекратит это делать, то вес вскоре начнет возвращаться к исходному. Разумеется, что такие перегрузки бесследно не пройдут, внутренние органы будут преждевременно изнашиваться.

В ситуации недоедания организм использует свои запасы и существует за их счет. Процесс теплообразования в целях экономии снижается, обмен веществ замедляется. Возникает голод, который человек стремиться утолить, и резервы организма пополняются.

К сожалению, эта регуляторная система организма не является такой, как нам хотелось бы. Природе не знакома ленивая жизнь в условиях изобилия. Задача выживания требует от нашего организма отложения небольшого количества жировых запасов «на черный день». И если человек питается обильно и сытно, понемногу формируются резервы на «черные дни», которые всё не наступают, а запасы продолжают расти….

Взаимосвязь усвоения пищи и возраста

Кроме того, с возрастом изменяется соотношение между синтезируемыми гормонами, и баланс начинает смещаться в сторону накопления веса. Некоторые автора (В. Дильман) считают, что ожирение - это нормальное следствие старения.

Дело в том, что к 22-25 годам завершается процесс полового созревания и роста, и постепенно начинает снижаться уровень метаболических гормонов. В итоге - ежегодно усвоение питательных элементов уменьшается на 1-2% и к 50 годам у людей, относительно здоровых, он составляет 40-50% от юношеского уровня и еще меньше - у тех, кто болен.

Хотя рост остановился, но клетки организма продолжают безостановочно делиться и обновляться. Увеличивается потребность организма в энергии и питательных элементах, ведь люди рождают и воспитывают детей, продвигаются по службе и т.п. Кроме того, ухудшается работа ЖКТ и эндокринной системы в организме, усугубляется питательный дефицит под воздействием болезней, лекарств, курения, алкоголя, стрессовых ситуаций, различных стимуляторов.

Ощущение голода люди продолжают утолять привычным количеством пищи, однако на клеточном уровне организм испытывает голод в связи с усвоением все меньшего количества необходимых элементов. Этот недостаток активизирует защитные функции организма - начинают накапливаться жировые запасы в области талии, бедер, живота, груди и иных генетически предрасположенных мест.

Типичной реакцией большинства женщин и мужчин и женщин в ответ на уменьшение процесса усвоения пищи, повышение нагрузок, увеличения массы тела, нехватку энергии является строгая диета и занятия спортом. Как результат, организм в условиях дефицита отвечает заболеваниями, депрессивными состояниями, усталостью, преждевременный старением.

Выходом из сложившейся ситуации является , которое обеспечит здоровье и долголетие, но об этом в других статьях.

Разумеется, человек в состоянии сознательно сместить внутренний баланс в нужную ему сторону. Но это требует отличной работы регуляторных систем , а для этого кому-то придется сбросить лишний вес, увеличить физическую нагрузку, отказаться от милых сердцу пирожных и пончиков.

Нарушение совершенной регуляции является заболеванием, а заболевание не может быть "нормальным". Ведь в "норме" человек имеет хорошее сложение, чувствует себя бодрым и сильным, а когда он худой или толстый, то это уже патология.

Увеличение веса может быть причиной попустительского отношения к себе у здоровых людей, правда, само по себе ожирение быстро спровоцирует развитие заболеваний. Кроме того, излишний вес часто бывает результатом врожденных или приобретенных заболеваний регуляторной системы организма. К примеру, когда с раннего детства ребенка закармливают, организм будет адаптироваться к этому и формировать новые жировые клетки. То есть родители будут обрекать свое чадо быть полным.

Истощение или ненормальная худоба также, как правило, является свидетельством какого-то скрытого недуга - наличия нервного либо гормонального расстройства, желудочного или кишечного заболевания и т. д.

Резюмируя все вышесказанное, сформулируем несколько положений:

1. Решающая роль в поддержании веса принадлежит регуляторным системам организма, а не калориям. Они координируют расход энергии, управляют чувством голода. Ожирение или худоба говорят о поломках в механизмах регуляции врожденного, приобретенного или возрастного характера.

2. В большей степени на работу регуляторных систем воздействуют повторяющиеся внешние воздействия - питание, физическая нагрузка, эмоции и т.п. Если имеют место систематические несоответствия любого рода, равновесие нарушается. Но само это положение дает нам возможность сознательно влиять на регуляторные системы организма.

3. Оптимизировать энергетический обмен и вес возможно только с помощью комплексного подхода - , физкультуры, психической гигиены. С помощью соблюдения одной только диеты можно будет поддерживать вес в течение некоторого времени, да и то не всегда. Но эта дисгармония не даст телу здоровья и долголетия.

И самый главный вывод: «ПОДСЧЕТ КАЛОРИЙ НЕ НУЖЕН». Когда организм в состоянии принимать пищу, автоматически дефицит энергии возбуждает здоровый голод. И утоление его без переедания является самым разумным способом питания.

Физиологические процессы в организме человека согласованно проте­кают благодаря существованию определенных механизмов их регуляции.

Регуляция различных процессов в организме осуществляется с помощью нервного и гуморального механизмов.

Гуморальная регуляция осуществляется с помощью гуморальных факторов (гормонов ), которые разносятся кровью и лимфой по всему организму.

Нервная регуляция осуществляется с помощью нервной системы.

Нервный и гуморальный способы регуляции функций тесно связаны между собой. На деятельность нервной системы постоянно оказывают влияние приносимые с током крови химические вещества, а образование большинства химических веществ и выделение их в кровь находится под постоянным контролем нервной системы.

Регуляция физиологических функций в организме не может осуществляться с помощью только нервной или только гуморальной регуляции - это единый комплекс нейрогуморалыюй регуляции функций.

В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная).

Нервная регуляция

Нервная регуляция - это координирующее влияние нервной системы на клетки, ткани и органы, один из основных механизмов саморегуляции функций целостного организма. Нервная регуляция осуществляется с помощью нервных импульсов. Нервная регуляция является быстрой и локальной, что особенно важно при регуляции движений, и затрагивает все(!) системы организма.

В основе нервной регуляции лежит рефлекторный принцип. Рефлекс является универсальной формой взаимодействия организма с окружающей средой, это ответная реакция организма на раздражение, которая осуществляется через центральную нервную систему и контролируется ею.

Структурно-функциональной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление ответа на раздражение. Все рефлексы осуществляются I благодаря деятельности центральной нервной системы - головного и спинного мозга.

Гуморальная регуляция

Гуморальная регуляция - это координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (гормонов), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

Гуморальная регуляция возникла в процессе эволюции раньше, чем нервная. Она усложнялась в процессе эволюции, в результате чего возникла эндокринная система (железы внутренней секреции).

Гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции функций организма, которая играет важную роль в поддержании относительного пос­тоянства состава и свойств внутренней среды организма (гомеостаза) и его приспособлении к меняющимся условиям существования.


Иммунная регуляция

Иммунитет - это физиологическая функция, которая обеспечивает устойчивость организма к действию чужеродных антигенов. Иммунитет человека делает его невосприимчивым ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных, обеспечивает защиту организма от раковых клеток. Задачей иммунной системы является распознавать и разрушать все чужеродные структуры.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител , которые, например, могут связывать избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную регуляцию.

Интенсивность иммунного ответа, в свою очередь, регулируется нейрофильным способом . Работа иммунной системы корректируется мозгом и через эндокринную систему. Такая нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов. Промедиаторы и нейропептиды достигают органов иммунной системы по аксонам нервов, а гормоны выделяются эндокринными железами не­родственно в кровь и таким образом доставляются к органам иммунной системы. Фагоцит (клетка иммунитета), уничтожает бактериальные клетки

Начало формы

ГОУ ВПО УГМА РОСЗДРАВА

Кафедра биологической химии

«Утверждаю»

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2008 г

Экзаменационные вопросы по биохимии

По специальности «фармация» 060108, 2008 г.

Белки, ферменты.

1. Аминокислоты: классификация по химической природе, химическим свойствам,

биологической роли.

2. Строение и физико-химические свойства природных аминокислот.

3. Стереоизомерия и амфотерность аминокислот.

4. Физико-химические свойства белка. Обратимое и необратимое осаждение белка.

5. Механизм образования пептидной связи, ее свойства и особенности. Первичная

структура белка, биологическая роль.

6. Пространственные конфигурации белков: вторичная, третичная, четвертичная

структуры белка, связи их стабилизирующие, роль.

7 Стабилизирующие, дестабилизирующие, нарушающие аминокислоты и их роль в

структурной организации белков, понятие о доменной, сверх вторичной и

над четвертичной структурах.

8. Четвертичная структура белков, кооперативность функционирования протомеров.

8. Водородные связи, их роль в строении и функции белков.

9. Характеристика простых и сложных белков, классификация, основные представители,

их биологические функции.

10. Гемопротеиды: основные представители, функции. Строение гема.

11. Структура, номенклатура, биологическая роль нуклеотидтрифосфатов.

12. Ферменты: понятие, свойства – сходство и отличие с катализаторами небелковой

13. Активный центр ферментов, его структурно-функциональная неоднородность.

Единицы активности ферментов.

14. Механизм действия ферментов. Значение образования фермент-субстратного

комплекса, стадии катализа.

15. Изображение графической зависимости скорости катализа от концентраций субстрата

и фермента. Понятие о Км, её физиологическом смысле и клинико-диагностическом

значении.

16. Зависимость скорости реакции от концентрации субстрата и фермента, температуры,

рН среды, времени реакции.

17. Ингибиторы и виды ингибирования, их механизм действия.

18. Основные пути и механизмы регуляции активности ферментов на уровне клетки и

целого организма. Полиферментные комплексы.

19. Аллостерические ферменты, их структура, физико-химические свойства, роль.

20. Аллостерические эффекторы (модуляторы), их характеристика, механизм действия.

21. Механизмы ковалентной регуляции ферментов (обратимой и необратимой), их роль в

обмене веществ.

22. Неспецифическая и специфическая регуляция активности ферментов – понятия,

23. Механизмы специфической регуляции активности ферментов: индукция – репрессия.

24. Роль гормонов стероидной природы в механизмах регуляции активности ферментов.

25. Роль гормонов пептидной природы в механизмах регуляции активности ферментов.

26. Изоферменты - множественные молекулярные формы ферментов: особенности

структуры, физико-химических свойств, регуляторных функций, клинико –

диагностическое значение.

27. Применение ферментов в медицине и фармации (энзимодиагностика, энзимопатология,

энзимотерапия).

28. Простетические группы, коферменты, кофакторы, косубстраты, субстраты,

метаболиты, продукты реакций: понятия, примеры. Коферменты и кофакторы:

химическая природа, примеры, роль в катализе.

29. Энзимопатии: понятие, классификация, причины и механизмы развития, примеры.

30. Энзимодиагностика: понятие, принципы и направления, примеры.

31. Энзимотерапия: виды, методы, используемые ферменты, примеры.

32. Системная энзимотерапия: понятие, области применения, используемые ферменты,

пути введения, механизмы действия.

33. Локализация ферментов: ферменты общего назначения, органо- и органелло-

специфические ферменты, их функции и клинико-диагностическое значение.

30. Принципы номенклатуры и классификации ферментов, краткая характеристика.

30. Современная теория биологического окисления. Строение, функции, механизм

восстановления: НАД + , ФМН, ФАД, КоQ, цитохромов. Различие в их функциях.

30. Хемиосмотическая теория сопряжения окисления и фосфорилирования.

30. Электрохимический потенциал, понятие его роль в сопряжении окисления и

фосфорилирования.

30. Химическая и конформационнея гипотезы сопряжения окисления и фосфорилирования.

30. Фотосинтез.Реакции световой и темновой фаз фотосинтеза, биологическая роль.

Структура хлоропластов хлорофилл его строение, роль.

30. Световые реакции фотосинтеза. Фотосистемы Р-700 и Р-680” их роль. Механизм

фотосинтетического фосфорилирования.

Энергетический обмен.

1. Митохондрии: строение, химический состав, маркерные ферменты, функции, причины

и последствия повреждений.

2. Общая схема энергетического обмена и образования субстратов биологического

окисления; типы окислительных ферментов и реакций, примеры.

3. Пути использования О 2 в клетках (перечислить), значение. Диоксигеназный путь,

значение, примеры.

4 Сходство и отличие монооксигеназного пути использования О 2 в митохондриях и

эндоплазматической сети.

5. Монооксигеназный путь использования О 2 в клетке: ферменты, коферменты,

косубстраты, субстраты, значение.

6. Цитохром Р-450: структура, функция, регуляция активности.

7. Сравнительная характеристика цитохромов В 5 и С: особенности структуры, функции,

значение.

8. Микросомальная редокс-цепь переноса электронов: ферменты, коферменты, субстраты,

косубстраты, биологическая роль.

9. АТФ: строение, биологическая роль, механизмы образования из АДФ и Фн.

10.Окислительное фосфорилирование: механизмы сопряжения и разобщения,

физиологическое значение.

11.Окислительное фосфорилирование: механизмы, субстраты, дыхательный контроль,

возможные причины нарушений и последствия.

12.Редокс-цепь окислительного фосфорилирования: локализация, ферментные комплексы,

окисляемые субстраты, ОВП, коэффициент Р/О, биологическое значение.

13.Сравнительная характеристика окислительного и субстратного фосфорилирования:

локализация, ферменты, механизмы, значение.

14.Сравнительная характеристика митохондриальной и микросомальной редокс-цепей:

ферменты, субстраты, косубстраты, биологическая роль.

15.Сравнительная характеристика цитохромов клетки: виды, строение локализация,

16.Цикл Кребса: схема, регуляция активности, энергетический баланс окисления АцКоА

до Н 2 О и СО 2 .

17.Цикл Кребса: окислительные реакции, номенклатура ферментов, значение.

18.Регуляторные реакции цикла Кребса, номенклатура ферментов, механизмы регуляции.

19.a-Кетоглутаратдегидрогеназный комплекс: состав, катализируемая реакция, регуляция.

20.Цикл Кребса: реакции превращения a-кетоглутарата в сукцинат, ферменты, значение.

21.Цикл Кребса: реакции превращения сукцината в оксалоацетат, ферменты, значение.

22.Антиоксидантная защита клеток (АОЗ): классификация, механизмы, значение.

23.Механизмы образования активных форм кислорода (АФК), физиолоическое и

клиническое значение.

24. Механизм образования и токсического действия . О - 2 , роль СОД в обезвреживании.

25. Механизмы образования и токсического действия пероксидного кислорода, механизмы

его обезвреживания.

26. Механизмы образования и токсического действия пероксидов липидов, механизмы их

обезвреживания.

27. Механизмы образования и токсического действия гидроксильных радикалов,

механизмы их обезвреживания.

28. СОД и каталаза: коферменты, реакции, значение в физиологии и патологии клетки.

29. Оксид азота (NO): реакция образования, регуляция, механизмы физиологических и

токсических эффектов.

30. Оксида азота: метаболизм, регуляция, механизмы физиологических и токсических

эффектов.

31. Перекисное окисление липидов (ПОЛ): понятие, механизмы и стадии развития,

значение.

32. Антиоксидантная защита клетки (АОЗ): классификация; механизм действия системы

глутатиона.

33. Антиоксидантная защита клетки (АОЗ): классификация, механизм действия системы

ферментативной защиты.

34. Антиоксидантная защита клетки (АОЗ): классификация, механизмы действия системы

неферментативной защиты.

35. Антиоксиданты и антигипоксанты: понятия, примеры представителей и механизмы их

действия.

36. NO-синтаза: тканевая локализация, функция, регуляция активности, физиологическое и

клиническое значение.

Обмен углеводов

1. Углеводы: определение класса, принципы нормирования суточной потребности,

структурная и метоболическая роль.

2. Гликоген и крахмал: структуры, механизмы переваривания и всасывания конечных

продуктов гидролиза.

3. Механизмы мембранного пищеварения углеводов и всасывания моносахаридов.

4. Мальабсорбция: понятие, биохимические причины, общие симптомы.

5. Синдром непереносимости молока: причины, биохимические нарушения, механизмы раз –

вития основных симптомов, последствия.

6. Углеводы: определение класса, строение и биологическое значение ГАГ.

7. Производные моносахаридов: уроновые и сиаловые кислоты, амино- и

дезоксисахариды строение и биологическая роль.

8. Пищевые волокна и клетчатка: особенности строения, физиологическая роль.

9. Гл6Ф: реакции образования и распада до глюкозы, номенклатура и характеристика

ферментов, значение.

10. Пути обмена Гл6Ф, значение путей, реакции образования из глюкозы, характеристика и

номенклатура ферментов.

11. Реакции расщепления гликогена до глюкозы и Гл6Ф – тканевые особенности, значение,

ферменты, регуляция.

12. Реакции биосинтеза гликогена из глюкозы – тканевые особенности, ферменты,

регуляция, значение.

13. Механизмы ковалентной и аллостерической регуляции обмена гликогена, значение.

14. Адреналин и глюкагон: сравнительная характеристика по химической природе,

механизму действия, метаболическим и физиологическим эффектам.

15. Механизмы гормональной регуляции обмена гликогена, значение.

16. Катаболизм глюкозы в анаэробных и аэробных условиях: схема, сравнить

энергетический баланс, указать причины различной эффективности.

17. Гликолиз - реакции субстратного фосфорилирования и фосфорилирования субстратов:

номенклатура ферментов, механизмы регуляции, биологическое значение.

18. Гликолиз: киназные реакции, номенклатура ферментов, регуляция, значение.

19. Регуляторные реакции гликолиза, ферменты, механизмы регуляции, биологическое

значение.

20. Реакции гликолитической оксидоредукции аэробного и анаэробного гликолиза:

написать, сравнить энергетическую эффективность, значение.

21. Гликолиз: реакции превращения триозофосфатов в пируват, сравнить энергетический

выход в аэробных и анаэробных условиях.

22. Эффект Пастера: понятие, механизм, физиологическое значение. Сравнить

энергетический баланс расщепления фруктозы в отсутствии и реализации эффекта П.

23. Пути обмена лактата: схема, значение путей, тканевые особенности.

24. Превращение пирувата в АцКоА и оксалоацетат: реакции, ферменты, регуляция,

значение.

25. Челночные механизмы транспорта водорода из цитозоля в митохондрии: схемы,

биологическое значение, тканевые особенности.

26. Пентозофосфатный шунт гликолиза: схема, биологическое значение, тканевые

особенности.

27. Пентозный цикл - реакции до пентозофосфатов: ферменты, регуляция, значение.

28. Окислительные реакции гликолиза и пентозофосфатного шунта, биологическое

значение.

29. Глюконеогенез: понятие, схема, субстраты, аллостерическая регуляция, тканевые

особенности, биологическое значение.

30. Глюконеогенез: ключевые реакции, ферменты, регуляция, значение.

31. Механизмы образования глюкозы в печени: схемы, значение, причины и последствия

возможных нарушений.

32. Гормональная регуляция механизмов поддержания уровня сахара в крови.

33. Уровни и механизмы регуляции обмена углеводов, примеры.

34. Глюкозо-лактатный и глюкозо-аланиновый циклы (цикл Кори): схема, значение.

35. Центральный уровень регуляции обмена углеводов – адреналин, глюкагон, нервная

36. Обмен фруктозы в печени – схема, значение. Непереносимость фруктозы: причины,

метаболические нарушения, биохимические и клинические проявления.

37. Обмен галактозы в печени – схема, значение. Галактоземия: причины, метаболические

нарушения, биохимические и клинические проявления.

38 Гипергликемия: определение понятия, классификация причин, биохимические

39. Гипогликемия: определение понятия, классификация причин, биохимические

нарушения, клинические проявления, механизмы компенсации.

40. Инсулин – человеческий и животный: сравнить по химическому составу, структуре,

физико химическим и иммунологическим свойствам.

41. Механизмы биосинтеза и секреции инсулина: этапы, ферменты, регуляция.

42. Механизмы регуляции образования и секреции инсулина концентрацией глюкозы,

аргинина, гормонами.

43. Рецепторы инсулина: тканевая, клеточная локализация, структурная организация,

метаболизм.

44. Белки – транспортеры глюкозы через клеточные мембраны: классификация,

локализация, состав и структура, механизмы регуляции их функции.

45. Общая схема механизма действия инсулина.

46. Механизм действия инсулина на транспорт глюкозы.

47. Метаболические и физиологические эффекты инсулина.

48. Сахарный диабет I и II типа: понятия, роль генетических факторов и диабетогенов в их

возникновении и развитии.

49. Стадии развития диабета типа I и II – краткая сравнительная характеристика

генетических, биохимических, морфологических признаков.

50. Механизмы нарушений обмена углеводов при сахарном диабете, клинические

проявления, последствия.

51. Инсулинорезистентность и интолерантность к глюкозе: определение понятий,

причины возникновения, метаболические нарушения, клинические проявления,

последствия.

52. Метаболический синдром: его составляющие, причины возникновения, клиническое

значение.

53. Кетоацидотическая диабетическая кома: стадии и механизмы развития, клинические

проявления, биохимическая диагностика, профилактика.

54. Гиперосмолярная диабетическая кома: механизмы развития, биохимические

нарушения, клинические проявления, биохимическая диагностика.

55. Гипогликемия и гипогликемическая кома: причины и механизмы развития,

биохимические и клинические проявления, диагностика и профилактика.

56. Механизмы развития микроангиопатий: клинические проявления, последствия.

57. Механизмы развития макроангиопатий: клинические проявления, последствия.

58. Механизмы развития нейропатий: клинические проявления, последствия.

59. Моносахариды: Классификация, изомерия, примеры, биологическое значение.

60. Углеводы: Основные химические свойстсва и качественные реакции их обнаружения в

биологических средах.

61. Методические подходы и методы исследований обмена углеводов.

Обмен липидов.

1. Дать определение классу липидов, их классификация, строение, физ-хим. свойства и биологическое значение каждого класса.

2. Принципы нормирования суточной потребности пищевых липидов.

3. Строение, химический состав, функции липопротеидов.

4. Перечислить этапы обмена липидов в организме (Ж.К.Т., кровь, печень, жировая ткань, и др.).

5. Желчь: химический состав, функции, гуморальная регуляция секреции, причины и последствия нарушений секреции.

6. ПАВ желудочно - кишечного тракта и механизмы эмульгирования, значение.

7. Ферменты, расщепляющие ТГ, ФЛ, ЭХС, и др. липиды – их происхождение, регуляция секреции, функции.

8. Схемы реакций ферментативного гидролиза липидов до их конечных продуктов.

9. Химический состав и строение мицелл, механизмы всасывания липидов.

10. Значение гепато - энтерального рециклирования желчных кислот, ХС, ФЛ в физиологии и патологии организма.

11. Стеаторея: причины и механизмы развития, биохимические и клинические проявления, последствия.

12. Механизмы ресинтеза липидов в энтероцитах, значение.

13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз).

14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.

  1. Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
  2. Особенности метаболизма и функции бурой жировой ткани.
  3. Бурая жировая ткань: механизмы регуляции термогенеза, роль лептина и белков-разобщителей, значение.
  4. Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
  5. Белая жировая ткань: особенности метаболизма, функции, роль в интеграции обмена веществ.
  6. Механизм липолиза в белой жировой ткани: реакции, регуляция, значение.
  7. Механизмы регуляции липолиза – схема: роль СНС и ПСНС, их b- и a- адренорецепторов, гормонов адреналина, норадреналина, глюкокортикоидов, СТГ, Т 3 ,Т 4 , инсулина и их внутриклеточных посредников, значение.
  8. b-Окисление жирных кислот: кратко - история вопроса, суть процесса, современные представления, значение, тканевые и возрастные особенности.
  9. Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
  10. b-Окисление жирных кислот: реакции одного оборота цикла, регуляция, энергетический баланс окисления стеариновой и олеиновой кислот (сравнить).
  11. Окисление глицерина до Н 2 О и СО 2: схема, энергетический баланс.
  12. Окисление ТГ до Н 2 О и СО 2: схема, энергетический баланс.
  13. ПОЛ: понятие, роль в физиологии и патологии клетки.
  14. СРО: стадии и факторы инициации, реакции образования активных форм кислорода.
  15. Реакции образования продуктов ПОЛ, используемых для клинической оценки состояния ПОЛ.
  16. АОЗ: ферментативная, неферментативная, механизмы.
  17. Схема обмена Ацет-КоА, значение путей.
  18. Биосинтез жирных кислот: этапы, тканевая и субклеточная локализация процесса, значение, источники углерода и водорода для биосинтеза.
  19. Механизм переноса Ацет-КоА из митохондрии в цитозоль, регуляция, значение.
  20. Реакция карбоксилирования Ацет-КоА, номенклатура фермента, регуляция, значение.
  21. Цитрат и Мал-КоА: реакции образования, роль в механизмах регуляции обмена жирных к-т.
  22. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
  23. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
  24. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты из пальмитиновой).
  25. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
  26. Гормональная регуляция биосинтеза жирных кислот и ТГ– механизмы, значение.
  27. Реакции биосинтеза ТГ, тканевые и возрастные особенности, регуляция, значение.
  28. Биосинтез ТГ и ФЛ: схема, регуляция и интеграция этих процессов (роль фосфотидной кислоты диглицерида, ЦТФ).
  29. Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
  30. Особенности регуляции в кишечной стенке и других тканях биосинтеза ХС; роль гормонов: инсулина, Т 3 ,Т 4 , витамина РР.
  31. Реакции образования и распада эфиров холестерина – роль АХАТ и гидролазы ЭХС, особенности тканевого распределения ХС и его эфиров, значение.
  32. Катаболизм ХС, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание ХС в крови.
  33. Реакции биосинтеза кетоновых тел, регуляция, значение.
  34. Реакции распада кетоновых тел до Ацет-КоА и, далее до СО 2 и Н 2 О, схема, энергетический баланс.
  35. Интеграция липидного и углеводного обменов – роль печени, жировой ткани, кишечной стенки и др.
  36. Уровни и механизмы регуляции обмена липидов (перечислить).
  37. Метаболический (клеточный) уровень регуляции обмена липидов, механизмы, примеры.
  38. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
  39. Центральный уровень регуляции обмена липидов: роль СНС и ПСНС - a и b рецепторов, гормонов – КХ, ГК, Т 3 , Т 4 , ТТГ, СТГ, инсулина, лептина, и др.

54. Обмен ЛПОНП, регуляция, значение; роль ЛПЛ, апо В- 100, Е и С 2 , ВЕ-рецепторов, ЛПВП.

55. Обмен ЛПНП, регуляция, значение; роль апо В- 100 , В-клеточных рецепторов, АХАТ, БЛЭХ, ЛПВП.

56. Обмен ЛПВП, регуляция, значение; роль ЛХАТ, апо А и С, других классов ЛП.

57. Липиды крови: состав, нормальное содержание каждого компонента, транспорт по кровотоку физиологическое и диагностическое значение.

58. Гиперлипидемии: классификация по Фредриксону. Взаимосвязь каждого класса со специфическим патологическим процессом и его биохимическая диагностика.

59. Лабораторные методы установления типов липидемий.

60. Дислипопротеинемии: хиломикронемия, b-липопротеинемия, абеталипопротеинемия, болезнь Танжи - биохимические причины, метаболические нарушения, диагностика.

61. Атеросклероз: понятие, распространённость, осложнения, последствия.

62. Атеросклероз: причины, стадии и механизмы развития.

63. Экзогенные и эндогенные факторы риска развития атеросклероза, механизм их действия, профилактика.

64. Атеросклероз: особенности развития и течения при сахарном диабете.

65. Диабетические макроангиопатии: механизмы развития, роль в возникновении, течении и осложнении атеросклероза.

66. Ожирение: понятие, классификация, возрастные и половые особенности отложения жира, расчетные показатели степени ожирения, значение.

67. Липостат: понятие, основные звенья и механизмы его функционирования, значение.

68. Гуморальные факторы, регулирующие центр голода, перечислить.

69. Лептин: регуляция образования и поступления в кровоток, механизм участия в развитии первичного ожирения.

70. Абсолютная и относительная лептиновая недостаточность: причины, механизмы развития.

71. Вторичное ожирение: причины, последствия.

72. Биохимические нарушения в тканях и крови при ожирении, последствия, профилактика.

73. Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.

74. Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.

75. Роль кахексина (ФНО-a) в развитии инсулиновой резистентности и ожирения.

76. Метаболический синдром: понятие, его составляющие, клиническое значение.

Роль наследственных факторов и факторов окружающей среды в его

возникновении.

Регуляторные системы организма.

  1. Системы регуляции:определение понятий – гормоны, гормоноиды, гистогормоны, дисперсная эндокринная система, иммунная регуляторная система, их общие свойства.
  2. Классификация и номенклатура гормонов: по месту синтеза, химической природе, функциям.
  3. Уровни и принципы организации регуляторных систем: нервной, гормональной, иммунной.
  4. Этапы метаболизма гормонов: биосинтез, активация, секреция, транспорт по кровотоку, рецепция и механизм действия, инактивация и удаление из организма, клиническое значение.
  5. V2: Базы данных. Системы управления базами данных и базами знаний.
  6. V2: Назначение и основы использования систем искусственного интеллекта; базы знаний, экспертные системы, искусственный интеллект.
  7. а развитие экономики туризма оказывает заметное воздействие состояние кредитно-денежной системы.
  8. А.Смит и формирование системы категорий классической политической экономии

В результате изучения данной главы студенты должны:

знать

  • виды межклеточных коммуникаций;
  • свойства гормонов и гормоноподобных веществ;
  • строение гормональных рецепторов;
  • механизмы реализации гормональных аффектов;

уметь

  • давать характеристику основным группам гормонов и основным типам метаботропных рецепторов;
  • разобраться в местах локализации гормональных рецепторов и в механизмах экскреции гормонов;

владеть

Методами прогноза возможных физиологических эффектов на основе химической структуры гормона и типа рецептора.

Регуляторные системы организма. Виды гуморальной регуляции и место эндокринной системы

Организм человека состоит приблизительно из 10 13 клеток, и все эти клетки должны работать согласованно, обеспечивая его выживание и, более того, оптимальное существование в постоянно меняющихся условиях. Для того чтобы из миллиардов клеток создать целостный, интегрированный организм, способный к самовосстановлению, самовоспроизведению и адаптации, необходима постоянно действующая система межклеточных коммуникаций, без которых невозможна надежная система управления функциями.

Уровни управления в организме можно разделить на внутриклеточные (обеспечивающие управление на уровне клетки) и межклеточные (обеспечивающие согласованную работу различных тканей, органов и систем органов целостного организма). В каждом случае системы управления могут быть неспециализированными и специализированными. Для соединений, используемых в неспециализированных системах управления, функция передачи информации не является главной, а акцент сдвинут в сторону их использования в качестве источников пластического или энергетического материала. Таким веществом может быть, например, глюкоза. В специализированном управлении участвуют соединения, главной функцией которых является передача информации, поэтому их называют сигнальными.

В ходе эволюционного процесса сформировались три системы , так или иначе отвечающие названию «сигнальные»: нервная , эндокринная и иммунная. Они очень сильно связаны между собой, что дает основание говорить о единой нейро-иммунно-эндокринной системе, хотя их описание на первых порах приходится производить раздельно. Все эти системы способны к дистантному управлению процессами жизнедеятельности, но достигают этого разными способами.

В зависимости от расстояния действия сигнального соединения различают местное и системное управление.

К местному {региональному) управлению относятся внутриклеточная (интракринная), аутокринная, юкстакринная и паракринная системы контроля (рис. 1.1).

Рис. 1.1.

При внутриклеточном контроле вещество-регулятор вырабатывается в клетке и действует на ее работу через внутриклеточные рецепторы. При аутокринном, ткстакринном и паракринном контроле вещество-регулятор покидает клетку и воздействует на нее же или на соседние клетки.

Системное управление отличается большой дистантностыо воздействия и подразделяется на эндокринное, нейроэндокринное и нейрокрин- ное (рис. 1.2).

Рис. 1.2.

а - эндокринный; б - нсйрокринный; в - нейроэндокринный

При эндокринной форме регуляции клетки железы или какой-то иной клетки выделяют гормон (от греч. оррасо - возбуждаю), который попадает в системный кровоток и способен воздействовать на все структуры организма, в которых есть рецепторы к этому гормону. Форма гормонального ответа зависит от типа ткани и разновидностей рецептора, реагирующих на этот гормон.

При нейроэндокринной форме регуляции нейрогормон сегрегируется терминалями аксонов в специализированную капиллярную сеть и из нее поступает в системный кровоток. Далее происходят те же явления, что и в случае эндокринного способа системной регуляции.

При нейрокринной форме регуляции нейроны вырабатывают нейромедиаторы, воздействующие на близлежащие клеточные структуры через специализированные рецепторы. Следовательно, имеет место разновидность паракринной регуляции, при которой дистантность действия достигается длиной аксонов и количеством синаптических переключений.

Вещества, выполняющие специфические функции передачи информации от одной клетки к другой, называются информонами. Информоны обычно не выполняют энергетических или пластических функций, а действуют на клетки через специальные распознающие молекулы - рецепторы. Содержание информонов в крови очень мало (10 6 -10“ 12 моль), а время их жизни обычно очень коротко, хотя они могут запускать длительные регуляторные каскады как в отдельных клетках, так и организме в целом.

Среди информонов с некоторой долей условности выделяют группу тканевых гормонов (гистогормонов), участвующих главным образом в процессах местной регуляции. Однако гистогормоны могут включаться и в общую регуляторную систему организма. Обычно гистогормоны секре- тируются из отдельных клеток различных систем органов, не образуя специализированных желез. Примером могут служить простагландины и тромбоксаны. Гистогормоны обычно действуют короткое время и вблизи от места секреции.

Вторая группа информонов - гормоны. Гормоны обычно образуются в особых секреторных клетках, которые или образуют компактные органы - железы, или расположены по одной или группами внутри органов. Секреторным клеткам свойственны некоторые морфологические особенности. Обычно синтез и «упаковка» гормонов происходят в одной части клеток, а их выброс в кровь - в другой. Чаще всего синтезируемые гормоны накапливаются к комплексе Гольджи - основном «складском помещении» клетки. Там, по мере надобности, гормоны упаковываются в маленькие секреторные пузырьки - гранулы, которые отпочковываются от комплекса Гольджи и передвигаются по цитоплазме к наружной мембране клетки, через которую гормон выбрасывается в кровь. Некоторые гормоны, например половые, не упаковываются в гранулы и выходят из секретирующей клетки в виде отдельных молекул. Выброс гормона в кровь происходит не постоянно, но только в том случае, когда к секретирующей клетке приходит специальный сигнал, под действием которого пузырьки высвобождают гормон во внеклеточную среду.

Однако в последние годы стало очевидно, что гормоны смогут выделяться не только из клеток специализированных эндокринных желез, но и из клеток многих других органов и тканей. Так, нейроны гипоталамуса способны вырабатывать целый набор гормональных факторов, таких как либерины, статины и другие гормоны, клетки сердечной мышцы выделяют в кровь натрийуретический пептид, лимфоциты выделяют ряд гормонов - стимуляторов иммунитета, наконец, множество пептидных гормонов синтезируются в слизистой кишечника.

Общие принципы регуляции жизнедеятельности организма

На всем протяжении своего развития организм непрерыв­но обновляется, сохраняя одни свои свойства и изменяя или утрачивая другие. Однако имеются основные свойства, хотя и частично изменяющиеся, но постоянно позволяющие ему под­держивать свое существование и адекватно приспосабливаться к изменяющимся условиям внешней среды. Их всего три:

Обмен веществ и энергии,

Раздражимость,

Регуляция и саморегуляция.

Каждое из этих свойств можно проследить на клеточном, тканевом и системном уровнях, но на каждом из этих уровней они имеют свои особенности.

Организм человека является совокупностью иерархически связанных (не только взаимосвязанных, но и взаимозависи­мых, взаимоподчиненных) систем, но в то же время представ­ляет собой единую сложнейшую многоэлементную систему. Взаимосвязанная и нормальная жизнедеятельность всех со­ставных частей (органов и систем) организма возможна только при непременном условии сохранения относительного физи­ко-химического постоянства его внутренней среды. Это по­стоянство имеет динамический характер, поскольку поддер­живается не на абсолютно постоянном уровне, а в пределах допустимых колебаний основных физиологических функций. Оно называется гомеостазом.

Гомеостаз возможен благодаря механизмам регуляции и саморегуляции. Регуляция - это осуществление реакций организма и его систем, обеспечивающих адекватность протекания жизненных функций и деятельности различным ха­рактеристикам внешней среды (физическим, химическим, информационным, семантическим и др.). Регуляция выпол­няет функцию интеграции человеческого организма как еди­ного целого.

Регуляция функций органов – это изменение интенсивности их работы для достижения полезного результата согласно потребностям организма в различных условиях его жизнедеятельности.

Изменение параметров функций при поддержании их в границах гомеостаза происходит на каждом уровне органи­зма или в любой иерархической системе за счет саморегуляции, или внутренних для системы механизмов управления жизнедеятельностью. Местные механизмы саморегуляции, свойственные органам и системам, можно наблюдать на при­мерах работы сердца, желудка, кишечника или автоматизма чередований вдоха и выдоха в системе дыхания. Для осуществ­ления функций организма в целом необходима взаимосвязь и взаимозависимость функций составляющих его систем. В этом смысле можно рассматривать организм как самоорганизующу­юся и саморегулируемую систему, а саморегуляцию как свой­ство всего организма.

Деятельность организма как единого целого осуществляется благодаря регуляции со стороны нервной и гуморальной системы. Эти две системы взаимосвязаны и оказывают взаимовлияние друг на друга.

Регуляция функций в организме человека имеет в своей основе воздействие на физиологическую систему, орган или совокупность органов посредством управляющих сигналов, поступающих в виде нервных импульсов или непосредственно гуморального (химического) фактора. При анализе механизмов регуляции, как правило, рассматривают раздельно реф­лекторную и гуморальную составляющие.

Гуморальными (химическими) регуляторами могут быть некоторые соединения, поступающие в организм с пищей (на­пример, витамины), продукта жизнедеятельности клеток, об­разующиеся в процессе обмена веществ (например, углекисло­та), физиологически активные вещества, синтезируемые в тка­нях и органах (простагландины, кинины и др.), прогормоны и гормоны диффузной эндокринной системы и желез внутрен­ней секреции. Эти химические вещества поступают в ткане­вую жидкость, затем в кровь, разносятся по организму и ока­зывают влияние на клетки, ткани и органы, отдаленные от тех клеток, где они образуются. Гормоны являются важнейшими специализированными химическими регуляторами. Они могут вызывать деятельность органов (пусковой эффект), усиливать или подавлять функции (корригирующий эффект), ускорять или замедлять обменные процессы и оказывать влияние на рост и развитие организма.

Нервный механизм регуляции обладает большей скоро­стью действия по сравнению с гуморальным. В отличие от гу­моральных нервные сигналы направляются к строго опреде­ленным органам. Все клетки, ткани и органы регулируются не­рвной системой, объединяющей и приспосабливающей их дея­тельность к изменяющимся условиям среды. В основе нервной регуляции лежат безусловные и условные рефлексы.

Оба механизма регуляции взаимосвязаны, их трудно раз­граничить, так как они представляют собой разные стороны единой нейрогуморальной регуляции. Существует множество биологически активных веществ, способных оказывать влия­ние на жизнедеятельность нервных клеток и функций нервной системы. С другой стороны, синтез и выделение в кровь гумо­ральных факторов регулируются нервной системой. В совре­менном понимании нейрогуморальная регуляция - это регу­лирующее и координирующее влияние нервной системы и со­держащихся в крови, лимфе и тканевой жидкости биологиче­ски активных веществ на процессы жизнедеятельности орга­низма.

Нейрогуморальная регуляция функций организма - это регуляция деятельности организма, осуществляемая нервной и гуморальной системами. Ведущее значение принадлежит нервной системе (более быстрое реагирование организма на изменения внешней среды).

Регуляция осуществляется согласно принципов: 1) саморегуляции – организм с помощью собственных механизмов изменяет интенсивность функционирования органов и систем согласно своим потребностям в различных условиях жизнедеятельности. Пр: при беге активируется деятельность ЦНС, мышечной, дыхательной и сердечно-сосудистой систем, а в покое их активность значительно уменьшается. 2) системный принцип – функциональные системы по П.К. Анохину.

Значение и общий план строения нервной системы. Основные закономерности онтогенеза нервной системы.

Функция нервной системы: регулирует деятельность всех органов и систем, обуславливая их единство, связь с внешней средой при помощи высокодифференцированных клеток, воспринимающих и передающих информацию.

По топографическому принципу нервная система подразделяется на центральную (спинной, головной мозг) и периферическую (соматическую и вегетативную) - представлена волокнами и нервами 12 пар черепномозговых и 31 пара спинномозговых. Соматическая система иннервирует работу скелетных мышц, Вегетативная (автономная) нервная система в свою очередь делиться на симпатическую и парасимпатическую и иннервирует работу внутренних органов.

Нервная система регулирует: 1) поведение организма во внешней среде. Эту регуляцию И.П. Павлов назвал ВНД; 2) регулирует работу внутренних органов - низшая нервная деятельность.

Центральной нервной системе (ЦНС) принадлежит веду­щая роль в организации адаптационных процессов, протекаю­щих в ходе индивидуального развития. Поэтому динамика морфо-функциональных преобразований в этой системе ска­чивается на характере деятельности всех систем организма.

Количество нейронов ЦНС достигает максимального ко­личества у 24-недельного плода и остается постоянным до по­жилого возраста. Дифференцированные нейроны уже не спо­собны к делению, и постоянство их численности играет основ­ную роль в накоплении и хранении информации. Глиальные клетки продолжают оставаться незрелыми и после рождения, что обусловливает дефицит их защитной и опорной функций для ткани мозга, замедленные обменные процессы в мозге, его низкую электрическую активность и высокую проницаемость гемато-энцефалического барьера.

К моменту рождения мозг плода характеризуется низкой чувствительностью к гипоксии, низким уровнем обменных процессов (метаболизма) и преобладанием в этот период ана­эробного механизма получения энергии. В связи с медленным синтезом тормозных медиаторов в ЦНС плода и новорожден­ного легко возникает генерализованное возбуждение даже при небольшой силе раздражения. По мере созревания мозга активность тормозных процессов нарастает. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется преимущественно спинным мозгом. В начале плодного периода (восьмая-десятая неде­ли развития) появляется контроль продолговатого мозга над спинным. С 13-14 недели появляются признаки мезенцефального контроля нижележащих отделов ЦНС. Корригирующие влияния коры на другие структуры ЦНС, механизмы, необхо­димые для выживания после рождения, выявляются в конце плодного периода. К этому времени определяются основные типы безусловных рефлексов: ориентировочный, защитный (избегание), хватательный и пищевой. Последний, в виде со­сательных и глотательных движений, наиболее выражен.

Развитию ЦНС ребенка в значительной мере способству­ют гормоны щитовидной железы. Снижение выработки тиреоидных гормонов в фетальном или раннем постнатальном пе­риодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, нарушением метаболизма в мозге белка и нуклеиновых кислот, а также передачи возбуж­дения в синапсах.

В сравнении со взрослыми дети имеют более высокую воз­будимость нервных клеток, меньшую специализацию нервных центров. В раннем детстве многие нервные волокна еще не имеют миелиновой оболочки, обеспечивающей изолированное проведение нервных импульсов. Вследствие этого процесс воз­буждения легко переходит с одного волокна на другие, сосед­ние. Миелинизация большинства нервных волокон у большин­ства детей заканчивается к трехлетнему возрасту, но у некото­рых продолжается до 5-7 лет. С плохой «изоляцией» нервных волокон во многом связана высокая иррадиация нервных про­цессов, а это влечет за собой несовершенство координации реф­лекторных реакций, обилие ненужных движений и неэконо­мичное вегетативное обеспечение. Процессы миелинизации нор­мально протекают под влиянием тиреоидных и стероидных гормонов. По мере развития, «созревания» нейронов и меж­нейронных связей, координация нервных процессов улучшает­ся и достигает совершенства к 18-20 годам.

Возрастные изменения функций ЦНС обусловлены и дру­гими морфологическими особенностями развития. Несмотря на то, что спинной мозг новорожденного является наиболее зрелой частью ЦНС, его окончательное развитие завершается одновременно с прекращением роста. За это время его масса увеличивается в 8 раз.

Основные части головного мозга выделяются уже к треть­ему месяцу эмбрионального периода, а к пятому месяцу эмбрио­генеза успевают сформироваться основные борозды больших полушарий. Наиболее интенсивно головной мозг человека раз­вивается в первые 2 года после рождения. Затем темпы его раз­вития немного снижаются, но продолжают оставаться высоки­ми до 6-7 лет, когда масса мозга ребенка достигает 80% массы мозга взрослого.

Головной мозг развивается гетерохронно. Быстрее всего идет созревание стволовых, подкорковых и корковых структур, регулирующих вегетативные функции организма. Эти отделы по своему развитию уже в 2-4 года похожи на мозг взрослого человека . Окончательное формирование стволовой части и промежуточного мозга завершается только в 13-16 лет. Пар­ная деятельность полушарий головного мозга в онтогенезе ме­няется от неустойчивой симметрии к неустойчивой асиммет­рии и, наконец, к устойчивой функциональной асимметрии. Клеточное строение, форма и размещение борозд и извилин проекционных зон коры приобретают сходство со взрослым мозгом к 7 годам. В лобных отделах это достигается только к 12 годам. Созревание больших полушарий полностью заверша­ется только к 20-22 годам.

В возрасте 40 лет начинаются процессы дегенерации в ЦНС. Возможна демиелинизация в задних корешках и прово­дящих путях спинного мозга. С возрастом падает скорость рас­пространения возбуждения по нервам, замедляется синаптическое проведение, снижается лабильность нервных клеток. Ослабляются тормозные процессы на разных уровнях нервной системы. Неравномерные, разнонаправленные изменения в от­дельных ядрах гипоталамуса приводят к нарушению координа­ции его функций, изменениям в характере вегетативных реф­лексов и в связи с этим к снижению надежности гомеостатического регулирования. У пожилых людей снижается реактив­ность нервной системы, ограничиваются возможности адапта­ции организма к нагрузкам, хотя у отдельных лиц и в 80 лет функциональное состояние ЦНС и уровень адаптационных процессов могут сохраняться такими же, как и в среднем зре­лом возрасте. На фоне общих изменений в вегетативной не­рвной системе наиболее заметно ослабление парасимпатиче­ских влияний.

Центральная нервная система является наиболее устой­чивой, интенсивно функционирующей и долгоживущей сис­темой организма. Ее функциональная активность обеспечива­ется длительным сохранением в нервных клетках нуклеино­вых кислот, оптимальным кровотоком в сосудах мозга и дос­таточной оксигенацией крови. Однако при нарушении этих условий функциональные возможности ЦНС резко уменьша­ются.