Лазерные излучатели СО2 (лазерная трубка CO2). Вредные воздействия лазерного излучения. Истории наших читателей

Еще в далеком 1917 году ученый А. Эйнштейн выдвинул гениальное предположение о том, что атомы способны излучать индуцированные световые волны. Однако нашло это предположение подтверждение лишь спустя почти полвека в то время, как советскими учеными Н. Г. Басовым и А. М. Прохоровым было начато создание квантовых генераторов.

Из первых букв английского названия этого устройства была составлена аббревиатура – лазер, следовательно, излучаемый им свет – лазерным. Встречается ли среднестатистический человек с лазером в повседневной жизни?

Современность дает возможность повсеместно наблюдать за прекрасными танцующими световыми лучами, исходящими от лазера.

Их активно применяют для создания световых шоу, а также в косметологии, медицине и технике. Именно поэтому в наши дни так активно применяются лазерные технологии для эстрадных представлений и производства всевозможных гаджетов.

Но вдруг лазерный свет вреден для человека? Именно этот вопрос мы сегодня и подымем. Но дня начала нужно перенестись в школьные годы и вспомнить о лазерных световых квантах.

В природе источником света являются атомы. Лазерный луч – не исключение, однако он рождается в результате немного отличных материальных процессах и при условии, что существует наружное влияние электромагнитного поля. На основе этого можно сказать, что лазерный свет – это вынужденное явление, то есть простимулированное.

Лучи лазерного света распространяются практически параллельно по отношению друг друга, поэтому они имеют мизерный угол рассеивания и способны интенсивно влиять на облучаемую поверхность.

Чем же тогда лазер отличается от привычной (также созданной руками людей) лампочки накаливания? В отличие от лазера, у лампы спектр рассеивания составляет практически 360 о, в то время, как пучок от лазера имеет узкую направленность.

В силу того, что квантовые генераторы плотно обосновались в жизни современного человека, ученых всерьез обеспокоил вопрос, нет ли негативного влияния от такого «соседства». В ходе проведения многих опытов им удалось добиться больших результатов и выяснить, что лазерный луч обладает особыми свойствами:

  • во время работы лазерной установки можно получить негативные последствия напрямую (из самого аппарата), от рассеянного света или отраженного от других поверхностей;
  • от того, на какую ткань воздействует лазер, а также от параметров его волны будет зависеть степень воздействия;
  • поглощаемая любыми тканями энергия может оказывать тепловой, световой или любой другой отрицательный эффект.

Если лазер воздействует на биологическую ткань, то последовательность поражающих результатов выглядит примерно так:

  • быстрое поднятие температуры и проявления признаков ожога;
  • межтканевая и клеточная жидкость закипает;
  • в результате вскипания образовывается пар под высоким давлением, который ищет выход и взрывает соседние ткани.

Если дозы облучения маленькие или средние, то можно отделаться ожогами кожных покровов. Но при сильном облучении кожа приобретает отечный и омертвевший вид. А внутренние органы получают сильнейшие травмы. Самую большую опасность представляют прямые и зеркально отраженные лучи, которые негативно сказываются на работе важнейших органов и их систем.

Отдельного внимания заслуживает тема влияния лазера на зрительные органы.

ВАЖНО! Импульсные короткие вспышки лазера могут привести к очень сильным поражениям сетчатки, радужки и хрусталика глаза.

На это есть 3 причины:

  1. Короткий лазерный импульс длиться 0,1 секунды и за это время просто не успевает сработать защита зрения – мигательный рефлекс.
  2. Роговая оболочка и хрусталик – это чрезвычайно восприимчивые органы, которые легко повредить.
  3. Поскольку глаз сам по себе – это целая оптическая система, то она и сама вносить вклад в собственное разрушение при попадании лазера. Она фокусирует луч на глазном дне и заламывает на сетчатку. Тут луч поражает хрупкие сосудики этого органа, вызывая их закупорку. Отсутствие болевых рецепторов позволяет даже не ощутить, что определенный участок на сетчатке уже поражен до тех пор, пока некоторые предметы просто не будет видны, находясь в поле зрения.

Лишь по пришествии некоторого времени начинается отечность век, боль в глазах, судорожные сокращения и кровоизлияние на сетчатке. К слову, клетки последней не регенерируются.

ВАЖНО! Излучение, в результате которого может повредиться зрение, имеет низкий уровень. А вот для повреждения кожи достаточно излучения высокой интенсивности. Инфракрасные лазеры или любые источники света видимого спектра, мощность которых превышает 5 мвт – это потенциально опасно.

Прекрасные изобретатели по всему земному шару во время своих изобретений квантовых генераторов даже и предположить не могли, какую популярность приобретут их детища в скором времени. Однако такое всеобщее признание требует знаний, какой длины волны применять для той или иной операции.

Что же влияет на длину лазерной волны? Поскольку лазер – рукотворное устройство, то и природа его волн будет определена механическим строением генерируемого луч прибора. Лазеры могут быть твердотельными и газовыми.

Чудо-свет одновременно может находится в диапазоне от 30 до 180 мкм и быть частью ультрафиолетового, видимого (чаще красного) или инфракрасного участка спектра.

Но именно длина волны во многом влияет на характер воздействия этого света на человеческое тело. Так, красный свет менее чувствителен для нашего глаза нежели зелены. То есть наше веко сомкнется при виде зеленого пучка света, поэтому он является менее опасным, чем тот же красный.

Защита от лазерного излучения на производстве

На производстве, где применяются квантовые генераторы прямо или косвенно задействовано огромное количество людей. Для таких сотрудников разработаны четкие предписания, регулирующие степень личной защиты от излучения, потому как любая лазерная установка представляет потенциальную опасность для тех или иных органов тела.

Изготовители подобных установок обязаны указать, к какому их 4-х классов опасности относится данный прибор. Наибольшую угрозу являют лазеры 2,3 и 4 категории.

К общественным средствам защиты на производстве относятся защитные экраны и кожухи, камеры наблюдения, светодиодные индикаторы, сигнализации или ограждения, устанавливаемые в зонах с повышенным уровнем опасности излучения.

Индивидуальные методы предохранения включают специальные комплекты одежды и очки с нанесенным покрытием от лазерного луча.

ВАЖНО! Своевременно обследование в больнице и соблюдение всех предписанных на производстве мер защиты – это лучшие профилактические методы защиты от волн.

В нашем быту наблюдается бесконтрольное применение самодельный лазерных приборов, установок, лазерных указок и светильников. Чтобы избежать неприятных последствий стоит четко соблюдать правила их использования:

  • только в местах, где нет посторонних людей можно «играться» лазерами;
  • большую опасность, чем прямой луч, несут отраженные от стекла или другого зеркального предмета световые волны;
  • даже самый «безобидный» луч с невысокой интенсивностью при попадании в подле зрения водителя, пилота или спортсмена может привести к трагическим последствиям;
  • лазерные приспособления нужно беречь от использования детьми и подростками;
  • при низком положении облаков можно направлять пучки света в небо, дабы избежать попадания света в воздушный транспорт;
  • категорически запрещено смотреть в объектив на источник света;
  • при ношении защитных очков важно контролировать степень их защиты от разных по длине лучей.

Современные квантовые генераторы и лазерные устройства, встречающиеся в быту – это реальная угроза для их обладателей и окружающих. Защитить себя или близких поможет лишь строгое соблюдение всех мер предосторожности. Только тогда можно насладиться поистине завораживающим зрелищем.

Все наши излучатели (лазерные трубки со2) проходят тестирование американским контрольным прибором Synrad Laser Wizard.

В лазерных станках производства Китая, CO2 излучатель (газовая трубка, (отпаянный co2 лазер) является расходным элементом, в отличии перезаправляемых CO2 излучателей европейских и американских производителей, стоимость излучателя ниже, чем процедура перезаправки. Но главным плюсом является скорость восстановление работоспособности оборудования. Если для перезаправки лазера, Вам потребуется неделя, то процедура замены китайского лазерного излучателя займет у вас 10-20 минут.

На странице: 15 25 50 75 100

По умолчанию Наименование (А -> Я) Наименование (Я -> А) Цена (по возрастанию) Цена (по убыванию) Рейтинг (по убыванию) Рейтинг (по возрастанию) Модель (А -> Я) Модель (Я -> А)

Лазерные излучатели Reci (лазерные трубки RECI) отличаются от стандартных излучателей увеличенным сроком службы. Не смотря на несколько большую цену, экономически они более выгодны при пересчете соотношения время работы/цена. Для установки в станки оборудованные под обычные лазерные излучатели, н..

Лазерные излучатели Reci (лазерные трубки RECI) отличаются от стандартных излучателей увеличенным сроком службы. Не смотря на несколько большую цену, экономически они более выгодны при пересчете соотношения время работы/цена. Для установки в станки оборудованные под обычные лазерные излучатели, н..

Лазерные излучатели Reci (лазерные трубки RECI) отличаются от стандартных излучателей увеличенным сроком службы. Не смотря на несколько большую цену, экономически они более выгодны при пересчете соотношения время работы/цена. Для установки в станки оборудованные под обычные лазерные излучатели, н..

Самые распространенные, недорогие лазерные излучатели СО2. Несмотря на стоимость, показали себя как надежное решение для большинства задач, связанных с лазерной резкой и гравировкой. Мы поставляем только высококачественные излучатели, с обязательной проверкой перед продажей, специальным прибором..

Самые распространенные, недорогие лазерные излучатели СО2. Несмотря на стоимость, показали себя как надежное решение для большинства задач, связанных с лазерной резкой и гравировкой. Мы поставляем только высококачественные излучатели, с обязательной проверкой перед продажей, специальным прибором..

Лазерное излучение (ЛИ) - вынужденное испускание атомами вещества квантов электромагнитного излучения. Слово «лазер» - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulated emission of radiation (усиление света с помощью создания стимулированного излучения). Основными элементами любого лазера являются активная среда, источник энергии для ее возбуждения, зеркальный оптический резонатор и система охлаждения. ЛИ за счет монохроматичности и малой расходимости пучка способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять эти свойства для целей локации, навигации и связи.

Возможность создания лазерами исключительно высоких энергетических экспозиций позволяет использовать их для обработки различных материалов (резание, сверление, поверхностная закалка и др.).

При использовании в качестве активной среды различных веществ лазеры могут индуцировать излучение практически на всех длинах волн, начиная с ультрафиолетовых и заканчивая длинноволновыми инфракрасными.

Основными физическими величинами, характеризующими ЛИ, являются: длина волны (мкм), энергетическая освещенность (Вт/см 2), экспозиция (Дж/см 2), длительность импульса (с), длительность воздействия (с), частота повторения импульсов (Гц).

Биологическое действие лазерного излучения. Действие ЛИ на человека весьма сложно. Оно зависит от параметров ЛИ, прежде всего от длины волны, мощности (энергии) излучения, длительности воздействия, частоты следования импульсов, размеров облучаемой области («размерный эффект») и анатомо-физиологических особенностей облучаемой ткани (глаз, кожа). Поскольку органические молекулы, из которых состоит биологическая ткань, имеют широкий спектр абсорбируемых частот, то нет оснований считать, что монохроматичность ЛИ может создавать какие-либо специфические эффекты при взаимодействии с тканью. Пространственная когерентность также существенно не меняет механизма повреждений

излучением, так как явление теплопроводности в тканях и присущие глазу постоянные мелкие движения разрушают интерференционную картину уже при длительности воздействия, превышающей несколько микросекунд. Таким образом, ЛИ пропускается и поглощается биотканями по тем же законам, что и некогерентное, и не вызывает в тканях каких-либо специфических эффектов.

Энергия ЛИ, поглощенная тканями, преобразуется в другие виды энергии: тепловую, механическую, энергию фотохимических процессов, что может вызывать ряд эффектов: тепловой, ударный, светового давления и пр.

ЛИ представляют опасность для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38-0,7 мкм) и ближнего инфракрасного (0,75-1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18-0,38 мкм) и дальнее инфракрасное (более 1,4 мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужку, хрусталик. Достигая сетчатки, ЛИ фокусируется преломляющей системой глаза, при этом плотность мощности на сетчатке увеличивается в 1000-10000 раз по сравнению с плотностью мощности на роговице. Короткие импульсы (0,1 с-10 -14 с), которые генерируют лазеры, способны вызвать повреждение органа зрения за значительно более короткий промежуток времени, чем тот, который необходим для срабатывания защитных физиологических механизмов (мигательный рефлекс 0,1 с).

Вторым критическим органом к действию ЛИ являются кожные покровы. Взаимодействие лазерного излучения с кожными покровами зависит от длины волны и пигментации кожи. Отражающая способность кожных покровов в видимой области спектра высокая. ЛИ дальней инфракрасной области начинает сильно поглощаться кожными покровами, поскольку это излучение активно поглощается водой, которая составляет 80% содержимого большинства тканей; возникает опасность возникновения ожогов кожи.

Хроническое воздействие низкоэнергетического (на уровне или менее ПДУ ЛИ) рассеянного излучения может приводить к развитию неспецифических сдвигов в состоянии здоровья лиц, обслуживающих лазеры. При этом оно является своеобразным фактором риска развития невротических состояний и сердечно-сосудистых расстройств. Наиболее характерными клиническими синдромами, обнаруживаемыми у работающих с лазерами, являются астенический, астеновегетативный и вегетососудистая дистония.

Нормирование ЛИ. В процессе нормирования устанавливаются параметры поля ЛИ, отражающие специфику его взаимодействия с биологическими тканями, критерии вредного действия и числовые значения ПДУ нормируемых параметров.

Научно обоснованы два подхода к нормированию ЛИ: первый - по повреждающим эффектам тканей или органов, возникающим непосредственно в месте облучения; второй - на основе выявляемых функциональных и морфологических изменений ряда систем и органов, не подвергающихся непосредственному воздействию.

Гигиеническое нормирование основывается на критериях биологического действия, обусловленного, в первую очередь, областью электромагнитного спектра. В соответствии с этим диапазон ЛИ разделен на ряд областей:

От 0,18 до 0,38 мкм - ультрафиолетовая область;

От 0,38 до 0,75 мкм - видимая область;

От 0,75 до 1,4 мкм - ближняя инфракрасная область;

Свыше 1,4 мкм - дальняя инфракрасная область.

В основу установления величины ПДУ положен принцип определения минимальных «пороговых» повреждений в облучаемых тканях (сетчатка, роговица, глаза, кожа), определяемых современными методами исследования во время или после воздействия ЛИ. Нормируемыми параметрами являются энергетическая экспозиция Н (Дж-м -2) и облученность Е (Вт-м -2), а также энергия W (Дж) и мощность Р (Вт).

Данные экспериментальных и клинико-физиологических исследований свидетельствуют о превалирующем значении общих неспецифических реакций организма в ответ на хроническое воздействие низкоэнергетических уровней ЛИ по сравнению с местными локальными изменениями со стороны органа зрения и кожи. При этом ЛИ видимой области спектра вызывает сдвиги в функционировании эндокринной и иммунной систем, центральной и периферической нервной систем, белкового, углеводного и липидного обменов. ЛИ с длиной волны 0,514 мкм приводит к изменениям в деятельности сим- патоадреналовых и гипофизнадпочечниковых систем. Длительное хроническое действие ЛИ длиной волны 1,06 мкм вызывает вегетососудистые нарушения. Практически все исследователи, изучавшие состояние здоровья лиц, обслуживающих лазеры, подчеркивают более высокую частоту обнаружения у них астенических и вегетативно-сосудистых расстройств. Следовательно, низкоэнергетическое

ЛИ при хроническом действии выступает как фактор риска развития патологии, что и определяет необходимость учета этого фактора в гигиенических нормативах.

Первые ПДУ ЛИ в России для отдельных длин волн были установлены в 1972 г., а в 1991 г. введены в действие «Санитарные нормы и правила устройства и эксплуатации лазеров» СН и П? 5804. В США существует стандарт ANSI-z.136. Разработан также стандарт Международной электротехнической комиссией (МЭК) - Публикация 825. Отличительной особенностью отечественного документа по сравнению с зарубежными является регламентация значений ПДУ с учетом не только повреждающих эффектов глаз и кожи, но и функциональных изменений в организме.

Широкий диапазон длин волн, разнообразие параметров ЛИ и вызываемых биологических эффектов затрудняет задачу обосно- вания гигиенических нормативов. К тому же экспериментальная и особенно клиническая проверки требуют длительного времени и средств. Поэтому для разрешения задач по уточнению и разработке ПДУ ЛИ используют математическое моделирование. Это позволяет существенно уменьшить объем экспериментальных исследований на лабораторных животных. При создании математических моделей учитываются характер распределения энергии и абсорбционные характеристики облучаемой ткани.

Метод математического моделирования основных физических процессов (термический и гидродинамические эффекты, лазерный пробой и др.), приводящих к деструкции тканей глазного дна при воздействии ЛИ видимого и ближнего ИК диапазонов с длительностью импульсов от 1 до 10 -12 с, был использован при определении и уточнении ПДУ ЛИ, вошедших в последнюю редакцию «Санитарных норм и правил устройства и эксплуатации лазеров» СНиП? 5804- 91, которые разработаны на основании результатов научных исследований.

Действующие правила устанавливают:

Предельно допустимые уровни (ПДУ) лазерного излучения в диапазоне длин волн 180-10 6 нм при различных условиях воздействия на человека;

Классификацию лазеров по степени опасности генерируемого ими излучения;

Требования к производственным помещениям, размещению оборудования и организации рабочих мест;

Требования к персоналу;

Контроль за состоянием производственной среды;

Требования к применению средств защиты;

Требования к медицинскому контролю.

Степень опасности ЛИ для персонала положена в основу классификации лазеров, согласно которой они подразделяются на 4 класса:

1-й - класс (безопасные) - выходное излучение не опасно для глаз;

2-й - класс (малоопасные) - представляют опасность для глаз как прямое, так и зеркально отраженное излучения;

3-й - класс (среднеопасное) - представляет опасность для глаз также и диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности;

4-й - класс (высокоопасное) - представляет уже опасность и для кожи на расстоянии 10 см от диффузно отражающей поверхности.

Требования к методам, средствам измерений и контролю ЛИ. Дозиметрией ЛИ называют комплекс методов определения значений параметров лазерного излучения в заданной точке пространства с целью выявления степени опасности и вредности его для организма человека

Лазерная дозиметрия включает два основных раздела:

- расчетная, или теоретическая дозметрия, которая рассматривает методы расчета параметров ЛИ в зоне возможного нахождения операторов и приемы вычисления степени его опасности;

- экспериментальная дозиметрия, рассматривающая методы и средства непосредственного измерения параметров ЛИ в заданной точке пространства.

Средства измерений, предназначенные для дозиметрического контроля, называются лазерными дозиметрами. Дозиметрический контроль приобретает особое значение для оценки отраженных и рассеянных излучений, когда расчетные методы лазерной дозиметрии, основанные на данных выходных характеристик лазерных установок, дают весьма приближенные значения уровней ЛИ в заданной точке контроля. Использование расчетных методов диктуется отсутствием возможности провести измерение параметров ЛИ для всего разнообразия лазерной техники. Расчетный метод лазерной дозиметрии позволяет оценивать степень опасности излучения в заданной точке пространства, используя в расчетах паспортные данные. Расчетные методы удобны для случаев работы с редко повторяющимися кратковременными импульсами излучения, когда ограни-

чена возможность измерения максимального значения экспозиции. Они используются для определения лазерно-опасных зон, а также для классификации лазеров по степени опасности генерируемого ими излучения.

Методы дозиметрического контроля установлены в «Методических указаниях для органов и учреждений санитарно-эпидеми- ологических служб по проведению дозиметрического контроля и гигиенической оценке лазерного излучения» ? 5309-90, а также частично рассмотрены в «Санитарных нормах и правилах устройства и эксплуатации лазеров» СН и П? 5804-91.

В основе методов лазерной дозиметрии лежит принцип наибольшего риска, в соответствии с которым оценка степени опасности должна осуществляться для наихудших с точки зрения биологического воздействия условий облучения, т.е. измерение уровней лазерного облучения следует проводить при работе лазера в режиме максимальной отдачи мощности (энергии), определенной условиями эксплуатации. В процессе поиска и наведения измерительного прибора на объект излучения должно быть найдено такое положение, при котором регистрируются максимальные уровни ЛИ. При работе лазера в импульсно-периодическом режиме измеряют энергетические характеристики максимального импульса серии.

При гигиенической оценке лазерных установок требуется измерять не параметры излучения на выходе лазеров, а интенсивность облучения критических органов человека (глаза, кожа), влияющую на степень биологического действия. Эти измерения проводят в конкретных точках (зонах), в которых программой работы лазерной установки определено наличие обслуживающего персонала и в которых уровни отраженного или рассеянного ЛИ невозможно снизить до нуля.

Пределы измерений дозиметров определяются значениями ПДУ и техническими возможностями современной фотометрической аппаратуры. Все дозиметры должны быть аттестованы органами Госстандарта в установленном порядке. В России разработаны специальные средства измерений для дозиметрического контроля ЛИ - лазерные дозиметры. Они отличаются высокой универсальностью, заключающейся в возможности контроля как направленного, так и рассеянного непрерывного, моноимпульсного и импульсно- периодического излучений большинства применяемых на практике лазерных установок в промышленности, науке, медицине и пр.

Профилактика вредного действия лазерного излучения (ЛИ). Защиту от ЛИ осуществляют техническими, организационными и лечебнопрофилактическими методами и средствами. К методическим средствам относятся:

Выбор, планировка и внутренняя отделка помещений;

Рациональное размещение лазерных технологических установок;

Соблюдение порядка обслуживания установок;

Использование минимального уровня излучения для достижения поставленной цели;

Применение средств защиты. Организационные методы включают:

Ограничение времени воздействия излучения;

Назначение и инструктаж лиц, ответственных за организацию и проведение работ;

Ограничение допуска к проведению работ;

Организация надзора за режимом работ;

Четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;

Проведение инструктажа, наличие наглядных плакатов;

Обучение персонала.

Санитарно-гигиенические и лечебно-профилактические методы включают:

Контроль за уровнями опасных и вредных факторов на рабочих местах;

Контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

Производственные помещения, в которых эксплуатируются лазеры, должны отвечать требованиям действующих санитарных норм и правил. Лазерные установки размещают таким образом, чтобы уровни излучения на рабочих местах были минимальными.

Средства защиты от ЛИ должны обеспечивать предотвращение воздействия или снижение величины излучения до уровня, не превышающего допустимый. По характеру применения средства защиты подразделяются на средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Надежные и эффективные средства защиты способствуют повышению безопасности труда, снижают производственный травматизм и профессиональную заболеваемость.

Таблица 9.1. Защитные очки от лазерного излучения (выписка из ТУ 64-1-3470-84)

К СКЗ от ЛИ относятся: ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др.

СИЗ от лазерного излучения включают защитные очки (табл. 9.1), щитки, маски и др. Средства защиты применяются с учетом длины волны ЛИ, класса, типа, режима работы лазерной установки, характера выполняемой работы.

СКЗ должны предусматриваться на стадиях проектирования и монтажа лазеров (лазерных установок), при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производиться в зависимости от класса лазера (лазерной установки), интенсивности излучения в рабочей зоне, характера выполняемой работы. Показатели защитных свойств защиты не должны снижаться под воздействием других опасных

и вредных факторов (вибрации, температуры и т.д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.).

Средства индивидуальной защиты глаз и лица (защитные очки и щитки), снижающие интенсивность ЛИ до ПДУ, должны применять- ся только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.

При работе с лазерами должны применяться только такие средства защиты, на которые имеется нормативно-техническая документация, утвержденная в установленном порядке.

Слова "лазер" - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulatcd emission of radiation - усиление света за счет создания стимулированного излучения.

Итак, лазер или оптический квантовый генератор - это генератор электромагнитного излучения оптического диапазона, основанный на использовании принудительного (стимулированного) излучения.

Лазер как техническое устройство состоит из трех основных элементов:

активной среды;

системы накачки;

соответствующего резонатора.

Основными техническими характеристиками лазеров являются: длина волны (X). мкм;

ширина линии излучения (SX) и

интенсивность излучения лазеров определяется по величине энергии (WJ или мощности (рj, Дж или Вт

длительность импульса (х), с;

частота импульсов (F), Гц.

Как классифицируются лазеры?

В соответствии с "Санитарными нормами и правилами устройства классификации лазеров" положена степень их опасного излучения для обслуживающего персонала. По этой классификации лазеры делятся на 4 класса:

класс I (безопасные) - излучение безопасно для глаз

класс II (малоопасные) - опасно для глаз прямое, зеркальное отражение излучения;

класс ПИ (середньонебезпечни) - опасное для глаз прямое, зеркальное, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и для кожи прямое и зеркально отраженное излучение;

класс IV (высокоопасные) - опасное для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

Классификация определяет специфику влияния излучения на орган зрения и кожу. Ведущим критерием для оценки степени опасности лазерного излучения принята величина мощности (энергии), длина волны, длительность импульса и экспозиции облучения.

Существует классификация лазеров по физико-техническим параметрам, при этом учитывается агрегатное состояние активной рабочего вещества (твердое, жидкое, газообразное), характер генерации (импульсный, непрерывный) способ накачки активного вещества (оптический, электрический, химический и т. Д.).

По характеру генерации излучения, лазеры подразделяются на импульсные (продолжительностью излучения 0,25 с) и непрерывного действия (продолжительность излучения более 0,25 с).

Какова действие лазерного излучения на организм человека?

Действие лазеров на организм зависит от параметров излучения (мощности) и энергии излучения на единицу поверхности, длины волны, длительности импульса, частоты импульсов, времени облучения, плоскости поверхности облучается), локализации воздействия и анатомо-физиологических особенностей облучаемого.

В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения.

Мощный поток лазерной энергии, попадающей на биологические ткани, может вызвать серьезные поражения. Лазерное излучение влияет на живой организм путем тепловой механической и электрической действия. Облучения лазерными лучами может вызвать функциональные нарушения в деятельности ЦНС, сердечно-сосудистой системы, эндокринных желез. Облучение может привести к сворачиванию или распада крови, повреждения глаз, кожи, вызвать генетические изменения, головная боль, расстройства сна, слабость и т. Д.

Биологическое действие лазерного излучения возникает вследствие поглощения организмом его энергии, что вызывает тепловой эффект. Термический эффект лазерного излучения зависит от физической характеристики лучей спектральной характеристики открытых участков кожи, состояния кровообращения и т. Д.

Способность организма поглощать энергию зависит от характера тканей. Жировая ткань организма вообще не поглощает энергию. Теплоотдача внутренних частей тела очень незначительна, что вызывает локальный нагрев а также концентрацию поглощенной энергии в небольшом объеме. Этим объясняется поражение головного мозга, внутренних органов и т. Д.

Под действием лазерного облучения жидкость, окружающая биологические структуры, мгновенно испаряется, вызывая резкого повышения давления, возникновения, вследствие этого, ударной волны и механической травмы. Происходит не только ожог, но и разрыв тканей, представляет большую опасность для зрительного анализатора.

Наибольшую часть лазерного излучения воспринимает кожный покров, что представляет собой природный экран для защиты внутренних органов. В результате облучения возникают ожоги и отеки кожи различной степени - от покраснения до некроза (омертвение кожи). Глубина проникновения лучей зависит от пигментации кожи. Чем кожа темнее тем меньше глубина проникновения лучей. Порог повреждения темно-пигментной кожи значительно меньше, чем светло-пигментной.

Различают 4 степени поражения кожи лазерным излучением:

I степень - ожоги эпидермиса;

II степень - ожоги дермы (пузыри поверхностных слоев дермы)

III степень - ожоги дермы до глубоких слоев;

IV степень - деструкция всей толщины кожи, подкожной клетчатки и прилегающих слоев.

Особенно опасным является действие лазерного излучения на глаза, через которые оно проходит без потерь, достигая сетчатки. Плотность энергии на сетчатке глаза возрастает при увеличении диаметра зрачка, поэтому повреждение глаза, адаптированного к темноте значительно больше, чем при ярком освещении. Чем темнее сетчатка, тем меньше порог повреждающего плотности энергии. Удаление источника лазерного излучения не гарантирует безопасность глаз.

Биологический эффект действия лазерного излучения усиливается вследствие его многократного воздействия, а также через комбинацию с другими факторами производственной среды.

Лазеры становятся все более важными инструментами исследования в области медицины, физики, химии, геологии, биологии и техники. При неправильном использовании они могут ослеплять и наносить травмы (в т. ч. ожоги и электротравмы) операторам и другому персоналу, включая случайных посетителей лаборатории, а также нанести значительный ущерб имуществу. Пользователи этих устройств должны в полной мере понимать и применять необходимые меры безопасности при обращении с ними.

Что такое лазер?

Слово «лазер» (англ. LASER, Light Amplification by Stimulated Emission of Radiation) является аббревиатурой, которая расшифровывается как «усиление света индуцированным излучением». Частота излучения, генерируемого лазером, находится в пределах или вблизи видимой части электромагнитного спектра. Энергия усиливается до состояния чрезвычайно высокой интенсивности с помощью процесса, который носит название «излучение лазерное индуцированное».

Термин «радиация» часто понимается неправильно, потому что его также используют при описании В данном контексте оно означает передачу энергии. Энергия переносится из одного места в другое посредством проводимости, конвекции и излучения.

Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).

Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.

Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм - 1 мм) часть спектра.

Электромагнитный спектр

Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета - оранжевый, желтый, зеленый и синий - обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.

Наибольшую частоту имеют и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.

воздействие на человека

Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.

Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.

Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.

Опасность для глаз

Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях - помутнением передней камеры.

Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение - инфракрасное и ультрафиолетовое.

Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра - от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.

Таким образом, видимый пучок мощностью 10 мВт/см 2 воздействует на сетчатку глаза с мощностью 1000 Вт/см 2 . Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.

Рентгеновские лучи

Некоторые высоковольтные системы с напряжением более 15 кВ могут генерировать рентгеновские лучи значительной мощности: лазерное излучение, источники которого - мощные с электронной накачкой, а также плазменные системы и источники ионов. Эти устройства должны быть проверены на в том числе для обеспечения надлежащего экранирования.

Классификация

В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.

Безопасные устройства

Устройства первого класса генерируют низкоинтенсивное лазерное излучение. Оно не может достичь опасного уровня, поэтому источники освобождаются от большинства мер контроля или других форм наблюдения. Пример: лазерные принтеры и проигрыватели компакт-дисков.

Условно безопасные устройства

Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.

Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.

Опасные лазеры

К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1-5 мВт, некоторые лазерные указатели и строительные уровни.

Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.

Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.

Лазерное излучение: защита

Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.

  • Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
  • Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
  • Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
  • Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
  • Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.

Защитные очки

При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.

Факторы, которые следует учитывать при выборе защитных очков:

  • длина волны или область спектра излучения;
  • оптическая плотность при определенной длине волны;
  • максимальная освещённость (Вт/см 2) или мощность пучка (Вт);
  • тип лазерной системы;
  • режим мощности - импульсное лазерное излучение или непрерывный режим;
  • возможности отражения - зеркального и диффузного;
  • поле зрения;
  • наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
  • комфорт;
  • наличие вентиляционных отверстий, предотвращающих запотевание;
  • влияние на цветовое зрение;
  • ударопрочность;
  • возможность выполнения необходимых задач.

Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.