Иттрий в твердых сплавах. Другие сферы применения. Иттрий и цветное телевидение

История иттрия

Иттрий (Yttrium) — это редкоземельный химический элемент, имеющий атомный номер 39, согласно периодической системе элементов. Его принято обозначать Y. Свое название он получил по названию деревни Иттербю в Швеции.

Очень необычна история открытия этого элемента. В 1794 году химик из Финляндии Юхан Гадолин, после проведенного эксперимента над породой иттербит, получил из породы оксид иттрия с примесью других элементов. При этом он ошибочно считал, что получил чистый иттрий и назвал полученный элемент экебертом.

Карл Мосандер спустя 50 лет, в 1843 году, обосновал, что полученный Гадолином экеберт является соединением из окислов эрбия, иттрия , тербия. Металлический иттрий , с незначительным содержанием других лантаноидов, был выделен первый раз только в 1828 году, в виде порошка светло-серого цвета.

Удалось это химику из Фридриху Вёлеру. В Российской литературе по химии, датированной первой половиной 19 века, элемент назывался так: основание иттрийской земли , иттрин (Страхов), иттрий (Гесс).

Месторождения иттрия

В земной коре иттрий содержится в размере 0,0028 весовых процентов и находится в числе тридцати самых распространенных элементов. В морской воде его концентрация составляет 0,0003 мг/л. Он входит в состав многих пород и минералов, больше всего содержится иттрия в фергюсоните, гадолините, цирконе, черчите, ксенотиме.

Мировые запасы сырья, из которого может быть получен иттрий, оцениваются в объеме 544,4 тысячи тонн. В год его добывают около 9 тысяч тонн во всем мире. Основным типом его месторождений являются россыпи. Крупнейшие месторождения иттрия расположены в таких странах, как: Китай, США, Австралия, Индия, Россия.

Свойства и цена иттрия

В чистом виде иттрий представляет собой относительно мягкий металл , который хорошо поддается обработке. Он относительно легко растворяется кислотами при комнатной температуре.

При нагревании до 400 °C на поверхности образовывается плотный слой окисла цвета. Температура плавления иттрия составляет 1530 °C, кипения 3318 °C.

Стоимость одного килограмма иттрия находится в районе 140 долларов. Использование его в промышленности очень обширно и будет расти в ближайшее время. В большинстве сфер потребления ему нет равноценной замены.

Применение иттрия

Металлический иттрий используется как добавка при изготовлении из и металлов, увеличивая их предел прочности, температуру плавления и меняя их магнитные свойства.

Из него изготавливают трубопроводы для транспортировки расплавленного ядерного топлива, потому что он не вступает во взаимодействие с расплавленными и .

Иттрий используется как стабилизатор, электролит и катализатор. Из него изготовляют керамику и высокотемпературные сверхпроводники. Его применяют при производстве драгоценных .

Также широко используются соли иттрия и другие его соединения. Крайне устойчив к нагреву в контакте с жидкой сталью и не имеет равноценных аналогов оксид иттрия.

Его используют для изготовления оптических, инфракрасных лазеров большой мощности, компонентов микроволновых радаров, производства иттриевых ферритов для радиоэлектроники.

Радиоактивный изотоп иттрия применяется для лечения раковых заболеваний, как источник бета-излучения. Нанесение соединений иттрия на компоненты двигателей внутреннего сгорания усиливает их износостойкость в 300 раз. Из оксосульфида иттрия производят красную компоненту люминофора для телевизоров и компьютерных мониторов.

Иттрий — химический аналог лантана. Кларк 26 г/т, содержание в морской воде 0,0003 мг/л. Иттрий почти всегда содержится вместе с лантаноидами в минеральном сырье. Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с щелочными породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной щёлочностью — иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты — цериевую. Главнейшие минералы иттрия — ксенотим YPO4, гадолинит Y2FeBe2Si2O10.

Месторождения иттрия

Получение иттрия

Соединения иттрия получают из смесей с другими редкоземельными металлами экстракцией и ионным обменом. Металлический иттрий получают восстановлением безводных галогенидов иттрия литием или кальцием c последующей отгонкой примесей.

Химические свойства

На воздухе иттрий покрывается плотной защитной оксидной пленкой. При 370—425 °C образуется плотная черная пленка оксида. Интенсивное окисление начинается при 750 °C. Компактный металл окисляется кислородом воздуха в кипящей воде, реагирует с минеральными кислотами, уксусной кислотой, не реагирует с фтороводородом. Иттрий при нагревании взаимодействует с галогенами, водородом, азотом, серой и фосфором. Оксид Y2О3 обладает основными свойствами, ему отвечает основание Y(ОН)3.

Применение иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм²). Очень важным качеством как металлического иттрия, так и ряда его сплавов является то обстоятельство, что будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида, предохраняющих его от дальнейшего окисления до 1000 °C.

Иттриевая керамика

Керамика для нагревательных элементов

Хромит иттрия — материал для лучших высокотемпературных нагревателей сопротивления, способных эксплуатироваться в окислительной среде (воздух, кислород).
ИК — керамика
«Иттралокс»(Yttralox) — твёрдый раствор двуокиси тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, но также он очень хорошо пропускает инфракрасное излучение, поэтому его используют для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также используют в качестве смотровых «глазков» высокотемпературных печей. Плавится «Иттралокс» лишь при температуре около 2207 °C.

Огнеупорные материалы

Оксид иттрия — чрезвычайно устойчивый к нагреву на воздухе огнеупор, упрочняется с ростом температуры (максимум при 900—1000 °C), пригоден для плавки ряда высокоактивных металлов (в том числе и самого иттрия). Особую роль оксид иттрия играет при литье урана. Одной из наиболее важных и ответственных областей применения оксида иттрия в качестве жаропрочного огнеупорного материала является производство наиболее долговечных и качественных сталеразливочных стаканов (устройство для дозированного выпуска жидкой стали), в условиях контакта с движущимся потоком жидкой стали оксид иттрия наименее размываем. Единственным известным и превосходящим по стойкости оксид иттрия в контакте с жидкой сталью является оксид скандия, но он чрезвычайно дорог.

Термоэлектрические материалы

Важным соединением иттрия является его теллурид. Имея малую плотность, высокую температуру плавления и прочность, теллурид иттрия имеет одну из самых больших термо-э.д.с среди всех теллуридов, а именно 921 мкВ/К (у теллурида висмута например 280 мкВ/К) и представляет интерес для производства термоэлектрогенераторов с повышенным КПД.

Сверхпроводники

Один из компонентов иттрий-медь-бариевой керамики с общей формулой YBa2Cu3O7-δ — высокотемпературный сверхпроводник с температурой перехода в сверхпроводящее состояние около 90 К.

Сплавы иттрия

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно то обстоятельство, что иттрий и его некоторые сплавы не взаимодействуют с расплавленным ураном и плутонием, что позволяет применить их в ядерном газофазном ракетном двигателе.

Легирование

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.
Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а кроме того у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).
Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2—3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет большое экономическое значение (использование вместо иттрия скандия ещё в несколько раз увеличивает срок службы сплавов).

ИТТРИЙ радиоактивный (Yttrium; Y ) - химический элемент III группы периодической системы элементов Д. И. Менделеева. Порядковый номер 39, ат. вес (масса) 88,905. И. относится к редким рассеянным металлам, его максимальная положительная валентность равна трем.

И. имеет один стабильный изотоп - 89 Y (100%) и 20 радиоактивных с атомными весами от 82 до 96; в их числе два относительно долгоживущих изотопа - 88 Y (108,1 дня) и 91 Y (58,8 дня). Остальные изотопы И. имеют минутные и часовые периоды полураспада. В медицине применяется иттрий-91 и гл. обр. короткоживущий иттрий-90 (64 часа).

Иттрий-91 испускает (бета-излучение с граничными энергиями двух спектров Е бета =1,545 МэВ (99,78%) и 0,34 (0,22%), а также гамма-излучение весьма малой интенсивности с энергией 1,21 МэВ (0,22%). Иттрий-90 тоже практически чистый бета-излучатель с бета-спектром из двух составляющих, основная из которых обладает высокой граничной энергией, равной 2,27 МэВ (Еср=0,93 МэВ), а вторая- 0,513 МэВ (0,02%). При распаде 90Y испускается также весьма слабое гамма-излучение (0,02%) с энергией 1,76 МэВ.

Иттрий-91 извлекают из продуктов деления урана, в частности из облученных в реакторе отработанных тепловыделяющих элементов (ТВЭЛ). Иттрий-90 получают облучением в реакторе природного И. по ядерной реакции 89 Y(n, гамма).

Однако в виду низкого сечения активации (1,26 барн) по этой реакции получается препарат И. с носителем невысокой удельной активности. 90 Y без носителя можно получить также, выделяя его из продуктов деления урана, но при этом он будет в смеси с более долгоживущим 91 Y, что нежелательно.

Для получения чистого без носителя 90 Y его химически выделяют из равновесной смеси с долгоживущим материнским изотопом 90 Sr, являющимся одним из основных продуктов деления урана. При необходимости регулярного получения иттрия-90 используют изотопный генератор 90 Sr - 90 Y, когда из одной и той же порции стронция по мере потребности элюируют 90 Y (см. Генераторы радиоактивных изотопов). При этом в случае приготовления иттрия-90 для клин, применения тщательно следят за тем, чтобы в элюате не оказалось примеси высокорадиотоксичного стронция-90, для чего при необходимости проводят повторную очистку И. от стронция, достигая снижения величины его примеси до 10 -4 -10 -5 %.

И. применяют в медицине в основном для лучевой терапии опухолей различной локализации в виде коллоидных р-ров, суспензий (см. Радиоактивные коллоиды), микросфер и гранул (см. Радиоактивные препараты).

Так, олеат 90 Y применяют для лучевой терапии опухолей небольших размеров (диам, до 3 см), локализующихся в коже и подкожной клетчатке; силикат 90 Y - для терапии злокачественных новообразований, расположенных поверхностно, а также для профилактического введения в послеоперационные рубцы; гранулы с 90 Y - для лечения опухолей мозга основания черепа, гипофиза.

И. относится к радиоизотопам средней радиотоксичности. На рабочем месте без разрешения сан.-эпид, службы может использоваться препарат И. активностью до 10 мккюри.

Библиография: Левин В. И. Получение радиоактивных изотопов, с. 80 и др., М., 1972; Нормы радиационной безопасности (НРБ-76), М., 1978.

В. В. Бочкарев.

(Yttrium; от назв. швед, селения Иттербю), Y - хим. элемент III группы периодической системы элементов; ат. н. 39, ат. м. 88,9059; относится к редкоземельным элементам. Металл светло-серого цвета, на воздухе тускнеет. В соединениях проявляет степень окисления + 3. Известны с массовыми числами от 82 до 97. К важнейшим долго-живущим относятся с массовыми числами 91; 90; 88 и 89. Открыт в 1794 финск. химиком И. Гадолином. Металлический И. получил в 1828

И. в земной коре около 2,8 х 10-3%. И. входит в состав лопарита, монацита, иттропаризита, эвксенита, ксе нотима и др. минералов. Полиморфен, т-ра полиморфного превращения 1490-1495° С. Кристаллическая решетка низкотемпературной модификации - гексагональная плотноупа-кованная типа магния, с периодами а = 3,6474 А и с = 5,7306 А, а высокотемпературной - кубическая объемноцентрированная с периодом а = 4,11 А. Плотность 4,472 г/см3; tпл 1526° С; tкип 3340° С; коэфф. термического расширения (т-ра 25- 1000° С) 10,1 х 10-6 град»-1; теплоемкость 6,34 кал/г-атом град; электрическое сопротивление 57 мком см; сечение захвата тепловых нейтронов 1,31 барн; парамагнитен; работа выхода электронов 3,07 эв. Модуль норм, упругости 6600 кгс/мм2; модуль сдвига 2630 кгс/мм2; предел прочности 31,5 кгс/мм2; предел текучести 17,5 кгс/мм2; сжимаемость 26,8 х 10-7 см2/кг; удлинение 35%; HV = 38.

Чистый иттрий легко поддается мех. обработке и деформированию. Его куют и прокатывают до лент толщиной 0,05 мм на холоду с промежуточными отжигами в вакууме при т-ре 900-1000° С. И.- химически активный металл, реагирует со щелочами и к-тами, сильно окисляется при нагревании на воздухе. Работы с И. проводят в защитных камерах и высоком вакууме. И. с металлами Iа, IIа и Va подгрупп, а также с хромом и ураном образует несмешиваю-щиеся двойные системы; с титаном, цирконием, гафнием, молибденом и вольфрамом - двойные системы эвтектического типа; с редкоземельными элементами, скандием и торием - непрерывные ряды твердых растворов и широкие области растворов; с остальными элементами - сложные системы с наличием хим. соединений.

Получают иттрий металлотер-мическим восстановлением, действуя на его фторид кальцием при т-ре выше т-ры плавления металла. Затем металл переплавляют в вакууме и дистиллируют, получая И. чистотой до 99,8-т-99,9%. Чистоту металла повышают двух- и трехкратной дис тилляцией. И. выпускают в виде монокристаллов, слитков различной чистоты и массы, а также в виде сплавов с магнием и алюминием. Чистый И. используют для исследовательских целей. В качестве основы сплавов его применяют редко. Наиболее широко И. используется как легирующая и модифицирующая добавка к сплавам почти на всех основах. И. используют при произ-ве легированной стали (его добавка уменьшает величину зерна, улучшает мех., Электр, и магн. св-ва) и модифицированного чугуна. Он повышает жаростойкость и жаропрочность сплавов на основе никеля, хрома, молибдена и др. металлов; увеличивает пластичность тугоплавких металлов и сплавов на основе ванадия, тантала, вольфрама и молибдена; упрочняет титановые, медные, магниевые и алюминиевые ; увеличивает жаропрочность магниевых и алюминиевых сплавов.

В атомной энергетике иттрий используют как носитель водорода, разбавитель ядерного горючего, как конструкционный материал реакторов. Широкое применение находит И. в электронике и радиотехнике в качестве катодных материалов ( И.), геттеров ( И. с лантаном, алюминием, цирконием), ферритов-гранатов, люминофоров. Из тугоплавких и огнеупорных материалов на основе боридов, сульфидов и окислов И. изготовляют катоды для мощных генераторных установок, тигли для плавки тугоплавких металлов и др.; ортованадат И.- эффективный материал для цветного телевидения. И. и его применяют как катализаторы органических реакций, при произв. нефти См. также Иттрийсодержащие .

Иттрий в природе

Встречается в виде устойчивого изотоп 89 Y (100%) . В литосфере содержится иттрия 5 ⋅ 10 ⁻ ⁴ . Встречаются достаточно богатые этим элементом, например, тортвейтит Y 2 Si 2 O 7 , однако эти настолько рассеяны, что переработка связана с концентрированием (отделением больших количеств пустой породы) , что связано с большими энергозатратами.

Поскольку иттрий имеет отрицательное значение стандартных электронных потенциалов, получают его электролизом расплавленных хлоридов или нитратов, а для понижения температур плавления добавляют соли других металлов.

Помимо электролиза его получают восстанавливая при высоких температурах из их хлоридов или фторидов наиболее активными металлами (калием и кальцием) :

YCl 3 + 3K = Y + 3KCl

Физические и химические свойства

Иттрий — серебристо — белый металл, существующий в двух кристаллических видоизменениях с различными типами и параметрами решеток.

В химических реакциях атом иттрия теряет по три электрона и ведёт себя как сильный восстановитель.

При обычных температурах поверхность его окисляется кислородом с образованием защитных плёнок. Но при нагревании в кислороде горит и образуются оксиды Sc 2 O 3 .

С водой иттрий взаимодействует медленно, образующиеся при этом гидроксиды покрывают его защитной плёнкой:

2Y + 6H 2 O = 2Y(OH) 3 ↓ + 3H 2

2Y + 3H 2 SO 4 = Y 2 (SO 4 ) 3 + 3H 2

и растворяется в кислотах.

Соединения иттрия

Проявляет степень окисления +3 , их ионы имеют на внешнем уровне по 8 электронов, большой заряд этих ионов Э ⁺ ³ обусловливается склонность иттрия к комплексообразованию.

Его оксиды отвечают формуле Y2O3 , бесцветны, тугоплавки, получаются разложением нитратов:

4Y(NO 3 ) 3 = 2YO 3 + 12NO 2 + 3O 2

Он обладает основным характером, энергично реагировать с водой, образуя гидроксиды:

Y 2 O 3 + 3H 2 O = 2Y(OH) 3

Он мало растворим в воде, но легко растворяется в кислотах, гидроксид иттрия Y(OH) 3 проявляет признаки амфотерности.

Соли иттрия из воды кристаллизуются в виде аквасоединений. , нитраты и ацетаты растворимы в воде и гидролизуются в незначительной степени.

Мало растворимые в воде фториды, и оксалаты иттрия переходят в раствор под действием избытка осадителя с образованием комплексных соединений.

Положительные ионы иттрия имеют координационные числа от 3 до 6 . Важнейшие лиганды в комплексе металла — это фторид — , карбонат — , сульфат — , оксалат- ионы. Ион иттрия Y ⁺ ³ образует с фторид — ионами комплексные соединения:

Иттрий

И́ТТРИЙ -я; м. Химический элемент (Y), редкоземельный металл (применяется как легирующая добавка ко многим сплавам).

И́ттриевый, -ая, -ое.

и́ттрий

(лат. Yttrium), химический элемент III группы периодической системы, относится к редкоземельным элементам. Назван по минералу иттербиту (гадолиниту), найденному около селения Иттербю в Швеции (как и тербий, эрбий, иттербий). Металл; плотность 4,45 г/см 3 , t пл 1528°C. Легирующая добавка ко многим сплавам, конструкционный материал для ядерных реакторов. Иттриевые гранаты применяют в радиоэлектронике, как лазерные материалы.

ИТТРИЙ

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "иттрий" в других словарях:

    иттрий - иттрий, я … Русский орфографический словарь

    - (греч.). Металл группы алюминия в виде мелких, темно серых, блестящих чешуек. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИТТРИЙ греч. Металл в виде мелких, темносерых, блестящих пластинок. Объяснение 25000… … Словарь иностранных слов русского языка

    Y (от назв. селения Иттербю, Ytterby, в Швеции * a. yttrium; н. Ittrium; ф. yttrium; и. itrio), хим. элемент III группы периодич. системы Mенделеева, ат.н. 39, ат. м. 88,9059; относится к редкоземельным элементам. B природе один… … Геологическая энциклопедия

    Современная энциклопедия

    - (символ Y), серебристо серый металлический элемент III группы периодической таблицы. Впервые выделен в 1828 г. Встречается наряду с элементами группы ЛАНТАНОИДОВ в монацитовых песках, в минералах бастнезите и гадолините; сходен с лантаноидами по… … Научно-технический энциклопедический словарь

    Иттрий - (Yttrium), Y, химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,9059; относится к редкоземельным элементам; металл. Иттрий открыт финским химиком Ю. Гадолином в 1794, впервые получен немецким химиком Ф.… … Иллюстрированный энциклопедический словарь

    - (лат. Yttrium) Y, химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,9059, относится к редкоземельным элементам. Назван по минералу иттербиту (гадолиниту), найденному около селения Иттербю в Швеции (как и… … Большой Энциклопедический словарь

    - (Yttrium), Y, редкоземельный хим. элемент III группы периодич. системы элементов, ат. номер39, ат. масса 88,9059. В природе представлен стабильным 89Y. Электронная конфигурация двух внеш. оболочек 4s2p6d15s2. Энергии последоват. ионизации… … Физическая энциклопедия