Сила инерции формула при вращательном движении. Момент инерции тела. Тензор инерции и эллипсоид инерции

Системы на квадраты их расстояний до оси:

  • m i - масса i -й точки,
  • r i - расстояние от i -й точки до оси.

Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении .

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса-Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы , формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра
Сплошной цилиндр длины l , радиуса r и массы m
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара
Конус радиуса r и массы m Ось конуса
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0), получим формулу для момента инерции цилиндра (диска):

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перепендикулярные оси конуса. Радиус такого диска равен

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

Интегрируя, получим

Сплошной однородный шар

Вывод формулы

Разобъём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

Масса и момент инерции такого диска составят

Момент инерции сферы найдём интегрированием:

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобъём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

Интегрируя, получим

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l /2. По теореме Штейнера новый момент инерции будет равен

Безразмерные моменты инерции планет и их спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение допплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра.

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

Геометрический момент инерции

Геометрический момент инерции - геометрическая характеристика сечения вида

где - расстояние от центральной оси до любой элементарной площадки относительно нейтральной оси .

Геометрический момент инерции не связан с движением материала, он лишь отражает степень жесткости сечения. Используется для вычисления радиуса инерции, прогиба балки, подбора сечения балок, колонн и др.

Единица измерения СИ - м 4 . В строительных расчетах, литературе и сортаментах металлопроката в частности указывается в см 4 .

Из него выражается момент сопротивления сечения:

.
Геометрические моменты инерции некоторых фигур
Прямоугольника высотой и шириной :
Прямоугольного коробчатого сечения высотой и шириной по внешним контурам и , а по внутренним и соответственно
Круга диаметром

Центральный момент инерции

Центральный момент инерции (или момент инерции относительно точки O) - это величина

Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции: .

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором , можно представить в виде квадратичной (билинейной) формы :

(1),

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры и состоит из компонент центробежных моментов:

,
.

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора :
,
где -

В решении задач 12.1 -12.4 не учитывалась инертность вращающихся частей (барабана, редуктора и электродвигателя). Работа, затрачиваемая на ускорение вращательного движения, может быть определена через кинетическую энергию вращающейся массы т. Для объема массой dm, находящегося на расстоянии г от центра вращения, кинетическая энергия равна dmx> 2 / 2. Скорость ц = cor, тогда кинетическая энергия объема массой dm вращающегося тела равна dm со 2 г 2 / 2. По аналогии с выражением кинетической энергии объема массой dm при поступательном движении как функции от ц 2 / 2 запишем выражение для кинетической энергии при вращательном движении как функцию от со 2 / 2:

где dJ = r 2 dm - мера инертности во вращательном движении элементарного объема массой dm, находящегося на расстоянии гот оси вращения.

Интеграл по объему тела

момент инерции тела относительно оси вращения Z-

Моменты инерции тел простой формы

1. Круглый однородный тонкий диск радиуса R постоянной толщины И и плотности р (рис. 12.1, а).

Ось вращения проходит через центр диска. Момент инерции диска равен


Рис. 12.1.

Масса диска т = рhnR 2 . Таким образом, момент инерции тонкого однородного диска относительно собственного центра массы (центра тяжести) равен J Cz = mR 2 / 2.

2. Круглое тонкое кольцо радиуса R постоянной ширины b и толщины И (рис. 12.1, б).

Интеграл

Масса кольца

Следовательно, момент инерции кольца равен

и для очень узкого кольца при b« R момент инерции J Cz = mR 2 .

  • 3. Тонкий однородный стержень сечением s и длиной I.
  • 3.1. Пусть ось вращения г проходит через центр тяжести (рис. 12.1, в). Интеграл

где 5 - площадь поперечного сечения стержня.

Масса стержня т = рsi. Следовательно, J Cz = тР / 12.

3.2. Ось вращения? проходит через один из концов стержня (рис. 12.1, г).

Интеграл

т.е. в 4 раза больше J c z -

Момент инерции тела относительно произвольной оси вращения

Момент инерции тела J z относительно оси вращения, смещенной на расстояние с относительно центра масс тела, запишем в виде

Интеграл по объему где т - масса тела. Интеграл

относительно оси, проходящей через центр тяжести (центр

Следовательно, при параллельном переносе момент инерции тела относительно оси, находящейся на расстоянии с от центра тяжести, равен

где У с, =jr 2 dm - момент инерции тела относительно оси, проходящей через центр тяжести этого тела.

? Задача 12.5

Используя формулу (12.9), определить момент инерции тонкого стержня длиной / и постоянной площади сечения s. Ось вращения проходит через один из концов стрежня.

Решение

Момент инерции стержня относительно оси, проходящей через центр тяжести, равен J Cz = тР / 12. Момент инерции относительно оси, проходящей от центра тяжести на расстоянии 1/2 , равен

Согласно (12.9) из всех осей данного направления наименьшее значение имеет момент инерции относительно оси, проходящей через центр тяжести тела.

Совместим начало ортогональной системы координат с центром тяжести тела. Используя формулу (12.8), можно определить моменты инерции тела J x , J y и J относительно каждой из трех осей координат. Мысленно поворачивая тело поочередно относительно каждой из координатных осей, можно заметить, что в некоторых положениях значения моментов инерции достигают экстремальных значений. Оси, относительно которых один из моментов инерции тела достигает наибольшего значения (из всех возможных при любых поворотах), а другие - наименьших значений, называют главными осями инерции тела. Очевидно, что для тела с центром симметрии (шар, полый шар) все оси главные. Ось симметрии тела (цилиндра, прямоугольного параллелепипеда и т.п.) также является главной осью.

Если главная ось инерции детали, например ротора турбины, смещена параллельно оси вращения (рис. 12.2, а ), то на ротор действует центростремительная сила, равная С е = тоз 2 е с - масса ротора; е с - смещение главной оси инерции ротора относительно оси вращения). Сила С е воспринимается опорами ротора и пере-


Рис. 12.2. Схема сил инерции при вращении неуравновешенного ротора дается фундаменту машины. Заметим, что вектор силы С г по отношению к неподвижным опорам и фундаменту вращается с частотой со. Возникают колебания машины и фундамента. Очевидно, для уравновешивания ротора необходимо обеспечить г с = 0. Такое уравновешивание называется статическим и может быть выполнено при невращающемся роторе.

На рис. 12.2, б показана схема сил инерции, действующих при вращении на статически уравновешенный ротор. При этом главная ось инерции может не совпадать с осью вращения, образуя с ней некоторый угол а.

Центростремительные силы С а, действующие на правую и левую части ротора, противоположно направлены и создают момент сил. Этот момент сил передается на опоры ротора, возбуждая колебания машины и фундамента. Для уравновешивания ротора необходимо обеспечить а = 0, что возможно только при вращении ротора, и поэтому оно называется динамическим. По данным измерения колебаний машины определяют, в каком месте ротора необходимо установить противовес или удалить часть материала ротора.

Учитывая некоторое различие плотности и других свойств литого материала, слитки для поковок роторов паровых турбин изготавливают в форме тел с осевой симметрией относительно продольной оси, с которой должна будет совпадать ось вращения ротора.

? Задача 12.6

Определить ускорение тележки с грузом по условию задачи 12.4.

Момент инерции ротора электродвигателя равен / = 0,03 кгм 2 . Масса барабана т 6 = 200 кг, а радиус R = 0,2 м.

Решение

При возможных перемещениях 8ф и 8х зависимость (12.5) запишем в виде

где 8х = R 5(р / / (/ пр - передаточное отношение между валами электродвигателя и подъемника).

Соответственно, ускорение х = /?ф// пр; угол поворота барабана 8ф б = = 8ф / / ; угловое ускорение барабана ф б = ф// пр. Тогда

Момент инерции барабана определим, полагая, что масса барабана сосредоточена на радиусе R. Тогда / б = тЮ = 200 0,2 2 = 8 кг м 2 . Передаточное число / = to R / х> = 60,7.

Угловое ускорение ротора электродвигателя

Ускорение тележки с грузом х = 0,573 м/с 2 . Это значение почти в 4 раза меньше, чем расчетное ускорение без учета инертности двигателя и барабана (см. задачу 12.3). ?

В задаче 12.6 сомножитель при угловом ускорении представляет собой момент инерции системы, приведенный к оси электродвигателя. Очевидно, что для получения приведенного момента инерции деталей, установленных на тихоходном валу, к оси более быстроходного вала следует уменьшить его значение в / 2 раза (/ - передаточное отношение между этими валами).

ФИЗИЧЕСКОГО МАЯТНИКА

Цель работы : определить момент инерции физического маятника в виде стержня с грузами по периоду собственных колебаний.

Оборудование : маятник, секундомер.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Момент инерции твердого тела – это мера инертности тела при его вращательном движении. В этом смысле он является аналогом массы тела, которая является мерой инертности тела при поступательном движении. Согласно определению, момент инерции тела равен сумме произведений масс частиц тела m i на квадраты их расстояний до оси вращения r i 2:

, или .(1)

Момент инерции зависит не только от массы, но и от ее распределения относительно оси вращения. Как видно, инертность при вращении тела тем больше, чем дальше от оси расположены частицы тела.

Существуют различные экспериментальные методы определения момента инерции тел. В работе предлагается метод определения момента инерции по периоду собственных колебаний исследуемого тела как физического маятника. Физический маятник – это тело произвольной формы, точка подвеса которого расположена выше центра тяжести. Если в поле тяжести маятник отклонить от положения равновесия и отпустить, то под действием силы тяжести маятник стремится к положению равновесия, но, достигнув его, по инерции продолжает движение и отклоняется в противоположную сторону. Затем процесс движения повторяется в обратном направлении. В итоге маятник будет совершать вращательные собственные колебания.

Для вывода формулы момента инерции маятника через период собственных колебаний применим основной закон динамики вращательного движения : угловое ускорение тела прямо пропорционально моменту силы и обратно пропорционально моменту инерции тела относительно оси вращения:



Момент силы по определению равен произведению силы на плечо силы. Плечо силы – это перпендикуляр, опущенный из оси вращения на линию действия силы. Для маятника (рис. 1а) плечо силы тяжести равно d = а sina, где а – расстояние между осью вращения и центром масс маятника. При малых колебаниях маятника угол отклонения a сравнительно мал, а синусы малых углов с достаточной точностью равны самим углам. Тогда момент силы тяжести можно определить по формуле М = −mgа∙a . Знак минус обусловлен тем, что момент силы тяжести противодействует отклонению маятника.

Так как угловое ускорение – это вторая производная от угла поворота по времени, то основной закон динамики вращательного движения (1) принимает вид

. (3)

Это дифференциальное уравнение второго порядка. Его решением должна быть функция, превращающая при подстановке уравнение в тождество. Как видно из уравнения (3), для этого функция решения и ее вторая производная должны иметь одинаковый вид. В математике такой функцией может быть функция косинуса, синуса

a = a 0 sin(w t + j ), (4)

при условии, если циклическая частота равна . Циклическая частота связана с периодом колебаний , то есть временем одного колебания, соотношением T = 2p /w. Отсюда

Период колебаний Т и расстояние от оси вращения до центра тяжестимаятника а измерить можно. Тогда из (5) момент инерции маятника относительно оси вращения С может быть определен экспериментально по формуле

. (6)

Маятник, момент инерции которого определяется в работе, представляет собой стержень с надетыми на него двумя дисками. Теоретически момент инерции маятника можно определить как сумму моментов инерции отдельных частей. Момент инерции дисков можно рассчитать по формуле момента инерции материальной точки, так как они невелики по сравнению с расстоянием до оси вращения: , . Момент инерции стержня относительно оси, находящейся на расстоянии b от середины стержня, можно определить по теореме Штейнера . В итоге суммарный момент инерции маятника можно теоретически рассчитать по формуле

. (7)

Здесь m 1 , m 2 и m 0 – массы первого, второго дисков и стержня, l 1 , l 2 – расстояния от середин дисков до оси вращения, l 0 – длина стержня.

Расстояние от точки подвеса до центра тяжести маятника а , необходимое для экспериментального определения момента инерции в формуле (6), можно определить, используя понятие центра тяжести. Центр тяжести тела – это точка, к которой приложена равнодействующая сила тяжести. Поэтому если маятник положить горизонтально на опору, расположенную под центром тяжести, то маятник будет в равновесии. Затем достаточно измерить расстояние от оси С до опоры.

Но можно определить расстояние а расчетом. Из условия равновесия маятника на опоре (рис. 1б) следует, что момент результирующей силы тяжести относительно оси С (m 1 +m 2 + m 0)равен сумме моментов сил тяжести грузов и стержня m 1 gl 1 + m 2 gl 2 + m 0 gb . Откуда получим

. (8)

ВЫПОЛНЕНИЕ РАБОТЫ

1. Взвешиванием на весах определить массы дисков и стержня. Расположить на стержне и закрепить диски. Измерить расстояния от оси вращения до середин дисков l 1 , l 2 и до середины стержня b , длину стержня l 0 по сантиметровым делениям на стержне. Результаты измерений записать в табл. 1.

Таблица 1

2.Включить электронный блок в сеть 220 В.

Измерить период колебаний. Для этого отвести маятник от положения равновесия на небольшой угол и отпустить. Нажать кнопку Пуск секундомера. Чтобы измерить время t , например, десяти колебаний, следует после девятого колебания нажать кнопку Стоп. Период равен
Т = t/ 10. Записать результат в табл. 2, нажать кнопку Сброс . Опыт повторить не менее трех раз при других углах отклонения маятника.

Выключить установку.

4. Произвести расчеты в системе СИ. Определить среднее значение <Т > периода колебаний. Определить расстояние а от оси до центра тяжести маятника по формуле (8), или положить маятник на опору так, чтобы он находился в равновесии, и по делениям на стержне измерить расстояние а .

а , м Т 1 , с Т 2 , с Т 3 , с <T >,с , кг∙м 2 J теор, кг∙м 2

Таблица 2

5. Определить среднее экспериментальное значение момента инерции маятника <J экс > по формуле (6) по среднему значению периода колебаний <T >.

6. Определить теоретическое значение момента инерции маятника J теор по формуле (7).

7. Сделать вывод, сравнив теоретическое и экспериментальное значения момента инерции маятника. Оценить погрешность измерения D J = – J теор .

8. Записать результат в виде J эксп = < J > ±D J .

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение физического маятника, объясните, почему возможны собственные колебания маятника.

2. Запишите основной закон динамики вращательного движения для физического маятника.

Пусть некоторое тело под действием силы F, приложенной в точке А, приходит во вращение вокруг оси ОО" (рис. 1.14).

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р, опущенный из точки О (лежащей на оси) на направление силы, называют плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О:

М = Fp=Frsinα.

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы:

(3.1) Единица момента силы - ньютон-метр (Н м).

Направление М можно найти с помощью правила правого винта.

Моментом импульса частицы называется векторное произведение радиус-вектора частицы на её импульс:

или в скалярном виде L = гPsinα

Эта величины векторная и совпадает по направлению с векторами ω.

§ 3.2 Момент инерции. Теорема Штейнера

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Моментом инерции материальной точки относительно оси враще­ния называют произведение массы этой точки на квадрат расстояния её от оси:

I i =m i r i 2 (3.2)

Момент инерции тела относительно оси вращения называют сумму мо­ментов инерции материальных точек, из которых состоит это тело:

(3.3)

В общем случае, если тело сплошное и представляет собой совокупность точек с малыми массами dm, момент инерции определяется интегрированием:

(3.4)

Если тело однородно и его плотность
, то момент инерции тела

(3.5)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих правильную геометрическую форму и равномерное распределение массы по объему.

    Момент инерции однородного стержня относительно оси, проходящей через центр инерции и перпендикулярной стержню

(3.6)

    Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(3.7)

    Момент инерции тонкостенного цилиндра или обруча относительно оси, перпендикулярной плоскости его основания и проходящей через его центр,

(3.8)

    Момент инерции шара относительно диаметра

(3.9)

Рассмотрим пример. Определим момент инерции диска относительно оси, проходящей через центр инерции и перпендикулярной плоско­сти вращения. Масса диска - m, радиус - R.

Площадь кольца (рис. 3.2), заключенного между

r и r + dr, равна dS = 2πr·dr . Площадь диска S = πR 2 .

Следовательно,
. Тогда

или

Согласно

Приведенные формулы для моментов инерции тел даны при условии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует воспользоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

(3.11)

Единица момента инерции - килограмм-метр в квадрате (кг· м 2).

Так, момент инерции однородного стержня относительно оси, проходящей через его конец, по теореме Штейнера равен

(3.12)

С этим понятием мы сталкиваемся практически постоянно, так как оно оказывает чрезвычайно большое влияние на все материальные предметы нашего мира, в том числе и на человека. В свою очередь, такая как момент инерции, неразрывно связана с упомянутым выше законом, определяя силу и продолжительность его воздействия на твердые тела.

С точки зрения механики любой материальный объект можно описать как неизменную и четко структурированную (идеализированную) систему точек, взаимные расстояния между которыми не изменяются в зависимости от характера их движения. Такой подход позволяет точно вычислять по специальным формулам момент инерции практически всех твердых тел. Еще одним интересным нюансом здесь является то, что любое сложное, имеющее самую замысловатую можно представить в виде совокупности простых перемещений в пространстве: вращательного и поступательного. Это тоже значительно облегчает жизнь физикам при вычислении данной физической величины.

Понять, что же такое момент инерции и каково его влияние на окружающий нас мир, легче всего на примере резкого изменения скорости пассажирского транспортного средства (торможения). В этом случае ноги стоящего пассажира трение о пол увлечет за собой. Но при этом на туловище и голову никакого воздействия оказано не будет, вследствие чего они какое-то время будут продолжать движение с прежней заданной скоростью. В итоге пассажир наклонится вперед или упадет. Иными словами, момент инерции ног, погашенный о пол, будет значительно меньше, чем остальных точек тела. Противоположная картина будет наблюдаться при резком увеличении скорости автобуса или трамвайного вагона.

Момент инерции можно сформулировать как физическую величину, равную сумме произведений элементарных масс (тех самых отдельных точек твердого тела) на квадрат их удаленности от оси вращения. Из данного определения следует, что эта характеристика является величиной аддитивной. Проще говоря, момент инерции материального тела равен сумме аналогичных показателей его частей: J = J 1 + J 2 + J 3 + …

Данный показатель для тел сложной геометрии находится экспериментальным путем. Приходится учитывать слишком много различных физических параметров, включая плотность объекта, которая может быть неоднородной в разных его точках, что создает так называемую разницу масс в различных сегментах тела. Соответственно, и стандартные формулы здесь не подходят. Например, момент инерции кольца с определенным радиусом и однородной плотностью, имеющего ось вращения, которая проходит через его центр, можно рассчитать по следующей формуле: J = mR 2 . Но таким способом не получится вычислить данную величину для обруча, все части которого изготовлены из разных материалов.

А момент инерции шара сплошной и однородной структуры можно рассчитать по формуле: J = 2/5mR 2 . При вычислении данного показателя для тел относительно двух параллельных осей вращения в формулу вводится дополнительный параметр - расстояние между осями, обозначаемое литерой а. Вторая ось вращения обозначается при этом буквой L. Например, формула может иметь следующий вид: J = L + ma 2 .

Тщательные опыты по изучению инерционного движения тел и характера их взаимодействия впервые были произведены Галилео Галилеем на стыке шестнадцатого и семнадцатого веков. Они позволили великому ученому, опередившему свое время, установить основной закон о сохранении физическими телами состояния покоя или относительно Земли при отсутствии воздействия на них других тел. Закон инерции стал первым шагом в установлении основных физических принципов механики, в то время еще совершенно смутных, невнятных и неясных. Впоследствии Ньютон, формулируя общие законы движения тел, включил в их число и закон инерции.