Числовые неравенства и их свойства. Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения.". Пусть n=3, тогда

Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

АЛГЕБРА
Уроки для 9 классов

УРОК № 2

Тема. Числовые неравенства. Доказательство числовых неравенств

Цель урока: добиться усвоения учащимися содержания: дополнительных неравенств для суммы взаимно обратных положительных чисел и среднего арифметического двух неотрицательных чисел (в сравнении с их средним геометрическим) и доведение этих неравенств; способа применения доказанных неравенств при доказательстве других числовых неравенств. Продолжить работу по выработке умений: воспроизводить содержание изученных понятий и алгоритмов и применять их для решения упражнений на сравнение числовых и буквенных выражений, а также упражнений на доказательство неравенств в простейших случаях и случаях, предусматривающих применение определения и преобразования разности левой и правой частей неравенства, которое надо доказать с использованием выделения квадрата двучлена.

Тип урока: закрепления знаний, выработки умений.

Наглядность и оборудование: опорный конспект № 2.

Ход урока

И. Организационный этап

Учитель проверяет готовность учащихся к уроку, настраивает их на работу.

II . Проверка домашнего задания

Выполнение упражнений домашней работы тщательно проверяется у учащихся, требующих дополнительного педагогического внимания (учитель собирает их тетради на проверку).

Фронтальную проверку качества выполнения упражнений домашней работы можно провести в форме игры «Найди ошибку».

III . Формулировка цели и задач урока.
Мотивация учебной деятельности учащихся

Созданию соответствующей мотивации на уроке может посодействовать выполнения учащимися такого задания.

Сравните два выражения, если известно, что а > 0, b > 0, а разность первого и второго выражений равен: 1) ; 2) .

После обсуждения результатов, полученных в ходе выполнения предложенного выше задачи, совместными усилиями приходим к выводу: сравнение выражений путем определения знака разности двух выражений и применения определение сравнения чисел можно проводить, даже когда разница является буквенным выражением, содержащим квадрат двучлена. Изучение этого вопроса и является основной дидактической целью урока. Задание на урок логически вытекающие из этой цели: сформулировать общее правило, а также научиться применять это правило для решения задач на доказательство неравенств.

IV . Актуализация опорных знаний и умений учащихся

Устные упражнения

1) а - b = -5 ;

2) а - b = 4,5;

3) а - b = -19,8;

4) b - а = -0,1;

5) а - b = 0.

2. Представьте в виде квадрата двучлена выражение:

1) х2 - 2х + 1;

2) m 2 + 10m + 25;

3) х2 - 6m + 9;

4) m 2 - mn + n 2 - mn ;

5) х - 2+ в (х > 0; в > 0).

3. Сравните с нулем значение выражения:

1) m 2;

2) m 2 + 1;

3) (m + 1)2;

4) m 2 + 2mn + n 2 + 1.

V . Формирование знаний

План изучения нового материала

1. Доведение неровности , а > 0, b > 0.

2. Доведение неровности , а ≥ 0, b ≥ 0.

3. Примеры применения доказанных неравенств.

Опорный конспект № 2

Доказательство неравенств

1. Доказать неравенство: , если а > 0; b > 0.

Поскольку а > 0, b > 0, ab > 0. Поскольку (a - b )2 ≥ 0, то , следовательно, неравенство доказано.

Сумма положительных взаимно обратных чисел не меньше 2.

Замечание: равенство имеет место при а = b .

2. Доказать неравенство: , если а ≥ 0; b ≥ 0.

Доведение. Найдем разность левой и правой частей неравенства:

. Поскольку (для всех а ≥ 0; b ≥ 0), то , т.е. неравенство доказана. Среднее арифметическое двух неотрицательных чисел не меньше их среднего геометрического.

Замечание: равенство имеет место только при а = b или а = b = 0.

Пример. Докажем неравенство .

Доведение. Представим выражение в виде . Следовательно, является средним арифметическим чисел b 2 + 4 и 1, b 2 + 4 1, поэтому при доказанной неравенством 2 эта величина больше за среднее геометрическое этих чисел, то есть , то есть .

Методический комментарий

Доказательства неравенств путем применения неравенств для среднего арифметического двух неотрицательных чисел и через сравнение с нулем выражения, равна разности левой и правой частей неравенства, с предварительным выделением квадрата двучлена из образованного выражения является одним из вопросов, которые предусмотрены программой по математике и имеют довольно широкое практическое применение. Именно поэтому уже на данном, втором, уроке, посвященном изучению способов доведения неровностей, рассматриваются вопросы:

· о доказательстве неравенств в случае, когда разность левой и правой частей неравенства является выражением, содержащим буквы;

· о применении для доказательства неравенств соотношений между средним арифметическим и средним геометрическим двух неотрицательных чисел и суммой двух взаимно обратных положительных чисел.

Для успешного восприятия материала урока на этапе актуализации опорных знаний и умений учащихся рекомендуется выполнить устные упражнения на сравнение с нулем буквенного выражения и на повторение формул сокращенного умножения, в частности квадрата двучлена (см. выше). После решения этих упражнений вполне логичным является доведение неравенства для суммы двух положительных взаимно обратных чисел и для среднего арифметического и среднего геометрического двух неотрицательных чисел (во время доведения акцентируем внимание учащихся на то, что при сравнения с нулем разности левой и правой частей неравенства выделяем квадрат двучлена). Также важно обратить внимание учащихся на то, что кроме иллюстрации общего способа доказательства неравенств (путем выделения квадрата двучлена в выражении, представленный как разность левой и правой частей данного неравенства) доказаны неравенства могут быть использованы как средство доказывания других неровностей. Для этого рассматривается пример, иллюстрирующий способ рассуждений при решении подобных примеров.

VI . Формирование умений

Устные упражнения

1. Сравните числа а и b , если:

1) а - b = m 2;

2) а - b = (m + 1)2;

3) а = ; b = ; m ≥ 0.

2. Выделите полный квадрат в выражении:

1) b 2 - 2b с + с2;

2) 4 b 2 - 4b с + с2;

3) -4b 2 + 4b с - с2;

4) -4b 2 + 4b - 2.

Письменные упражнения

Для реализации дидактической цели урока следует решить упражнения такого содержания:

1) доказать неравенства (с использованием выделения квадрата двучлена из выражения, равную разности левой и правой частей данного неравенства);

2) доказать неравенства (с использованием доказанных опорных неравенств).

Методический комментарий

Согласно цели урока проводится работа для выработки умений доказывать неравенства с использованием обозначения (см. алгоритм, составленный на предыдущем уроке), а также умение применять доказанные неравенства для доказательства неравенств (поскольку этот материал требует от учащихся достаточного и высокого уровней знаний и умений, то обязательным он является только для учащихся соответствующего уровня учебных достижений).

VII. Итоги урока

Контрольные задания

1. Заполните пропуски:

1) m + ... > 2, m > 0; 2) , m ≥ 0, n ≥ 0.

2. Сравните выражения тел, если:

1) m - n = а2;

2) m - n = а2 + 4;

3) m - n = а2 - 2а + 1;

4) m - n = а2 - 2а + 2.

VIII . Домашнее задание

1. Изучить схему доказательства неравенств, рассматриваемых на уроке.

2. Решить упражнения: на доказательство неравенств, подобных рассмотренным на уроке.

3. Повторить свойства числовых равенств .


На семинаре координаторов олимпиады "Кенгуру" Вячеслав Андреевич Ясинский прочёл лекцию о том, как можно доказывать олимпиадные симметричные неравенства с помощью собственного метода разностей переменных.

Действительно, на математических олимпиадах часто встречаются задания на доказательство неравенств, как, например, такое, с Международной олимпиады по математике 2001 года: $\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\geq 1$ (для положительных a,b,c).

Обычно чтобы доказать олимпиадное неравенство, его нужно привести к одному из базовых: Коши, Коши-Буняковского, Йенсена, неравенству между средними и т.д. Причём часто приходится пробовать различные варианты базового неравенства до достижения успеха.

Однако часто у олимпиадных неравенств (как у приведённого выше) есть одна особенность. При перестановке переменных (например, замене a на b, b на c и c на a) они не изменятся.

Если функция нескольких переменных не меняется при любой их перестановке, то она называется симметрической. Для симметрической функции f от трёх переменных выполняется равенство:
f (x ,y ,z )= f (x ,z ,y )= f (y ,x ,z )= f (y ,z ,x )= f (z ,x ,y )= f (z ,y ,x )

Если же функция не меняется только при циклической перестановке переменных, она называется циклической.
f (x,y,z)= f (y,z,x)= f (z,x,y)

Для неравенств, которые строятся на основе симметрических функций, Вячеслав Андреевич разработал универсальный метод доказательства.
Метод состоит из следующих шагов.
1. Преобразовать неравенство так, чтобы слева оказался симметрический многочлен (обозначим его D), а справа 0.

2. Выразить симметрический многочлен D от переменных a, b, c через базовые симметрические многочлены.

Базовых симметрических многочленов от трёх переменных существует три. Это:
p = a+b+c - сумма;
q = ab+bc+ac - сумма попарных произведений;
r = abc - произведение.

Любой симметрический многочлен можно выразить через базовые.

3. Поскольку многочлен D симметрический, можно, не нарушая общности, считать, что переменные a, b, c упорядочены так: $a\geq b\geq c$

4. Вводим два неотрицательных числа х и у, таки, что x = a-b, y = b-c.

5. Снова преобразовываем многочлен D, выражая p, q и r через c и x, y. Учитываем, что
b = y+c
a = (x+y)+c

Тогда
p = a+b+c = (x+2y)+3c
q = ab+bc+ac = 3c 2 +2(x+2y)c+(x+y)y
r = abc = (x+y)yc + (x+2y)c 2 +c 3

Обратите внимание, что скобки в выражениях, содержащих x и y, мы не раскрываем.

6. Теперь рассматриваем многочлен D как многочен от с с коэффициентами, выражающимися через х и у. Учитывая неотрицательность коэффициентов оказывается несложно показать, что знак неравенства будет сохраняться для всех допустимых значений с.

Поясним этот метод на примерах.
Пример 1 . Доказать неравенство:
$(a+b+c)^2\geq 3(ab+bc+ac)$

Доказательство
Так как неравенство симметрическое (не меняется при любой перестановке переменных a, b, c), то представим его как
$(a+b+c)^2 - 3(ab+bc+ac)\geq 0$

Выразим многочлен в левой части через базовые симметрические:
$p^2 - 3q\geq 0$

Так как многочлен симметрический, можно считать, не ограничивая общности, что $a\geq b\geq c$ и $x = a-b\geq 0$, $y = b-c\geq 0$.


p 2 -3q = ((x+2y)+3c) 2 -3(3c 2 +2(x+2y)c+(x+y)y) = (x+2y) 2 +6(x+2y)c+9c 2 -9c 2 -6(x+2y)c-3(x+y)y

После приведения подобных получаем неравенство вообще не содержащее переменную с
$(x+2y)^2-3(x+y)y\geq 0$

Вот теперь можно раскрыть скобки
$x^2+4xy+4y^2-3xy-3y^2\geq 0$
$x^2+xy+y^2\geq 0$ - что является верным как для нотрицательных x, y, так и для любых.

Таким образом, неравенство доказано.

Пример 2 (с Британской математической олимпиады 1999 года)
Доказать, что $7(ab+bc+ac)\leq 2+9abc$ (для положительных чисел, если a+b+c = 1)

Доказательство
Прежде чем начать сводить всё в левую часть, обратим внимание, что степени частей неравенства у нас не сбалансированы. Если в примере 1 обе части неравенства были многосленами второй степени, то тут многочлен второй степени сравнивается с суммой многочленов нулевой и третьей. Использлуем то, что сумма a+b+c по условию равна 1 и домножим левую часть на единицу, а двойку из правой части - на единицу в кубе.

$7(ab+bc+ac)(a+b+c)\leq 2(a+b+c)^3+9abc$

Теперь перенесём всё влево и представим левую часть как симметричный многочkен от a, b, c:
$7(ab+bc+ac)(a+b+c)- 2(a+b+c)^3-9abc\leq 0$

Выразим левую чаcть через базовые симметрические многочлены:
$7qp- 2p^3-9r\leq 0$

Выразим левую часть через x, y и c, представив её как многочлен относительно с.
7qp- 2p 3 -9r = 7(3c 2 +2(x+2y)c+(x+y)y)((x+2y)+3c)-2((x+2y)+3c) 3 -9((x+y)yc + (x+2y)c 2 +c 3) = 7 (3(x+2y)c 2 +2(x+2y) 2 c+(x+2y)(x+y)y+9c 3 +6(x+2y)c 2 +3(x+y)yс) - 2 ((x+2y) 3 +9(x+2y) 2 c+27(x+2y)c 2 +27c 3) - 9((x+y)yc + (x+2y)c 2 +c 3) = 21(x+2y)c 2 +14(x+2y) 2 c +7(x+2y)(x+y)y+63c 3 +42(x+2y)c 2 +21(x+y)yс -2(x+2y) 3 -18(x+2y) 2 c -54(x+2y)c 2 -54c 3 -9(x+y)yc -9(x+2y)c 2 -9c 3

Главное - аккуратно и внимательно выполнять преобразования. Как сказал Вячеслав Андреевич, если он выполняет преобразования и его кто-то отвлекает, он выбрасывает листок с формулами и начинает заново.

Для удобства сведения подобных в заключительном многочлене они выделены разными цветами.

Все слагаемые с c 3 уничтожатся: 63c 3 -54c 3 -9c 3 = 0
Это же произойдёт и со второй степенью с: 21(x+2y)c 2 +42(x+2y)c 2 -54(x+2y)c 2 -9(x+2y)c 2 = 0

Преобразуем слагаемые с первой степенью с: 14(x+2y) 2 c+21(x+y)yс-18(x+2y) 2 c-9(x+y)yc = -4(x+2y) 2 c+12(x+y)yс = (12 (x+y)y - 4 (x+2y) 2 )c = (12xy+12y 2 - 4x 2 -16xy-16 y 2 )c = (- 4x 2 -4xy-4 y 2 )c = -4 (x 2 +xy+ y 2 )c - это выражение никогда не будет положительным.

И свободные члены: 7(x+2y)(x+y)y-2(x+2y) 3 = 7(x+2y)(xy+y 2) - 2(x+2y)(x 2 +4xy+4y 2) = (x+2y) (7xy+7y 2 -2x 2 -8xy-8y 2) = - (x+2y)(2x 2 +xy+y 2) - и это выражение тоже.

Таким образом, исходное неравенство будет выполняться всегда, а в равенство оно превратится только при условии равенства a=b=c.

На своей лекции Вячеслав Андреевич разобрал ещё много интересных примеров. Попробуйте и вы применить этот метод для доказательства олимпиадных неравенств. Возможно, он поможет добыть несокольо ценных баллов.

Для любых числовых выражений справедливы следующие свойства.

Свойство 1. Если к обеим частям верного числового неравенства прибавить одно и то же числовое выражение, то получим верное числовое неравенство, то есть справедливо: ; .

Доказательство. Если . Используя коммутативное, ассоциативное и дистрибутивное свойства операции сложения имеем: .

Следовательно, по определению отношения «больше» .

Свойство 2 . Если из обеих частей верного числового неравенства вычесть одно и то же числовое выражение, то получим верное числовое неравенство, то есть справедливо: ;

Доказательство. По условию . Используя предыдущее свойство, прибавим к обеим частям данного неравенства числовое выражение , получим: .

Используя ассоциативное свойство операции сложения, имеем: , следовательно , следовательно .

Следствие. Любое слагаемое можно переносить из одной части числового неравенства в другую с противоположным знаком.

Свойство 3 . Если почленно сложить верные числовые неравенства, то получим верное числовое неравенство, то есть справедливо:

Доказательство. По свойству 1 имеем: и , используя свойство транзитивность отношения «больше», получим: .

Свойство 4. Верные числовые неравенства противоположного смысла можно почленно вычитать, сохраняя знак неравенства, из которого вычитаем, то есть: ;

Доказательство. По определению истинных числовых неравенств . По свойству 3, если . По следствию свойства 2 данной теоремы, любое слагаемое можно переносить из одной части неравенства в другую с противоположным знаком. Следовательно, . Таким образом, если .

Свойство доказывается аналогично.

Свойство 5. Если обе части верного числового неравенства умножить на одно и то же числовое выражение, принимающее положительное значение, не меняя знака неравенства, то получим верное числовое неравенство, то есть:

Доказательство. Из того, что . Имеем: тогда . Используя дистрибутивность операции умножения относительно вычитания, имеем: .

Тогда по определению отношения «больше» .

Свойство доказывается аналогично.

Свойство 6. Если обе части верного числового неравенства умножить на одно и то же числовое выражение, принимающее отрицательное значение, поменяв знак неравенства на противоположный, то получим верное числовое неравенство, то есть: ;

Свойство 7. Если обе части верного числового неравенства разделить на одно и то же числовое выражение, принимающее положительное значение, не меняя знака неравенства, то получим верное числовое неравенство, то есть:


Доказательство. Имеем: . По свойству 5, получим: . Используя ассоциативность операции умножения, имеем: следовательно .

Свойство доказывается аналогично.

Свойство 8. Если обе части верного числового неравенства разделить на одно и то же числовое выражение, принимающее отрицательное значение, поменяв знак неравенства на противоположный, то получим верное числовое неравенство, то есть: ;

Доказательство данного свойства опустим.

Свойство 9. Если почленно перемножить верные числовые неравенства одинакового смысла с отрицательными частями, изменив знак неравенства на противоположный, то получим верное числовое неравенство, то есть:

Доказательство данного свойства опустим.

Свойство 10. Если почленно перемножить верные числовые неравенства одинакового смысла с положительными частями, не меняя знак неравенства, то получим верное числовое неравенство, то есть:

Доказательство данного свойства опустим.

Свойство 11. Если почленно разделить верное числовое неравенство противоположного смысла с положительными частями, сохранив знак первого неравенства, то получим верное числовое неравенство, то есть:

;

.

Доказательство данного свойства опустим.

Пример 1. Являются ли неравенства и равносильными?

Решение. Второе неравенство получено из первого неравенства прибавлением к обеим его частям одного и того же выражения , которое не определенно при . Это означает, что число не может быть решением первого неравенства. Однако является решением второго неравенства. Итак, существует решение второго неравенства, которое не является решением первого неравенства. Следовательно, данные неравенства не являются равносильными. Второе неравенство является следствием первого неравенства, так как любое решение первого неравенства является решением второго.

При этом используются свойства таких операций. Знание этих свойств помогало нам выполнять преобразования алгебраических выражений, решать уравнения.

Там же, в главе 5, мы ввели понятие числового неравенства: а> b - это значит, что а - b - положительное число; а < b - это значит, что а - b - отрицательное число.

Числовые неравенства обладают рядом свойств, знание которых поможет нам в дальнейшем работать с неравенствами.

Для чего нужно уметь решать уравнения, вы знаете: до сих пор математическая модель практически любой реальной ситуации, которую мы рассматривали, представляла собой либо уравнение, либо систему уравнений. На самом деле встречаются и другие математические модели - неравенства, просто мы пока таких ситуаций избегали.

Знание свойств числовых неравенств будет полезно и для исследования функций. Например, с неравенствами связаны такие известные вам свойства функций, как наибольшее и наименьшее значения функции на некотором промежутке, ограниченность функции снизу или сверху. С неравенствами связано и свойство возрастания или убывания функции, о котором пойдет речь в одном из следующих параграфов. Так что, как видите, без знания свойств числовых неравенств нам не обойтись. Да вы и сами уже могли убедиться в необходимости умения работать с неравенствами.

Так, в § 27 мы пользовались оценками для числа у и т. д.), где фактически опирались (хотя и интуитивно) на свойства числовых неравенств. Активно использовали мы знаки (да и свойства) неравенств в § 28 и 30.

Изучением свойств числовых неравенств мы займемся в настоящем параграфе.

Свойство 1 . Если а>b и b> с, то а> с.

Доказательство. По условию, а > b, т. е. а - b - положительное число. Аналогично, так как b > с, делаем вывод, что b - с - .

Сложив положительные числа а - b и b - с, получим положительное число. Имеем (а - b) + (b - с) - а - с. Значит, а- с - положительное число, т. е. а > с, что и требовалось доказать.

Свойство 1 можно обосновать, используя геометрическую модель множества действительных чисел, т. е. числовую прямую. Неравенство а> b означает, что на числовой прямой точка а расположена правее точки b, а неравенство b > с - что точка b расположена правее точки с (рис. 115). Но тогда точка о расположена на прямой правее точки с, т. е. а> с.


Свойство 1 обычно называют свой ством транзитивности (образно с говоря, от пункта а мы добираемся до Рис. 115 пункта с как бы транзитом, с промежуточной остановкой в пункте b).

Свойство 2 . Если а>b, то а + с>Ь + с.

Свойство 3. Если а>b и m> О, то от > bm; если а>b и m < o, то am < bm.

Смысл свойства 3 заключается в следующем: если обе части неравенства умножить на одно и то же положительное число, то знак неравенства следует сохранить;

если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства следует изменить (< на >,> на<).

То же относится к делению обеих частей неравенства на одно и то же положительное или отрицательное число т, поскольку деление на m всегда можно заменить умножением на .
Из свойства 3, в частности, следует, что, умножив обе части неравенства а > b на - 1, получим - а < -b. Это значит, что если изменить знаки у обеих частей неравенства, то надо изменить и знак неравенства: если а>b, то - а <-b.

Свойство 4. Если а>b и c> d, то а + с > b + d.

Доказательство.
I способ. По условию, а > b и с > d, значит, а - b и с - d - положительные числа. Тогда и их сумма, т. е. (а - b) + (с - d) - положительное число. Так как (a-b) + (c-d) = (a + c)-(b + d), то и (а + с) - (b + d) - положительное число. Поэтому a + c>b + d.

II способ. Так как а > Ь, то, согласно свойству 2, а + с > b + с. Аналогично, так как с > d, то с + b > d + b.
Итак, а + с > b + с, b + с > b + d. Тогда, в силу свойства транзитивности, получаем, что а + с > b + d.

Замечание 1 . Мы привели два способа доказательства для того, чтобы вы сами выбрали тот из них, который вам больше понравился или более понятен.

Кроме того, вообще полезно знакомиться с различными обоснованиями одного и того же факта.

Доказательство . Так как а > b и с > 0, то ас > bc. Аналогично, так как с > d и b > o, то cb > db. Итак, ас > bc, bc > bd. Тогда, согласно свойству транзитивности, получаем, что ас > bd.

Обычно неравенства вида а > b, с > d (или а < с, с < d) называют неравенствами одинакового смысла, а неравенства а > b и с < d - неравенствами противоположного смысла.

Свойство 5 означает, что при умножении неравенств одинакового смысла, у которых левые и правые части - положительные числа, получится неравенство того же смысла.

Свойство 6. Если а и b - неотрицательные числа и а > b, то а n > Ь n , где n - любое натуральное число .

Смысл свойства 6 заключается в следующем: если обе части неравенства - неотрицательные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства.

Дополнение к свойству 6. Если n - нечетное число, то для любых чисел а и b из неравенства а > b следует неравенство того же смысла а n > b n .

Вы обратили внимание на то, что в приведенных доказательствах мы пользовались по сути дела всего двумя идеями? Первая идея - составить разность левой и правой частей неравенства и выяснить, какое число получится: положительное или отрицательное. Вторая идея - для доказательства нового свойства использовать уже известные свойства. Так поступают и в других случаях доказательств числовых неравенств: например, так можно доказать те из перечисленных выше свойств, которые мы здесь привели без доказательства (советуем вам в качестве упражнения попробовать восполнить этот пробел). Рассмотрим несколько примеров.

Пусть а и b - положительные числа и а > b.
Доказать, что

Рассмотрим разность. Имеем
По условию, а, b, а - b - положительные числа. Значит, - отрицательное число, т.е. -, откуда следует, что
Пусть а - положительное число. Доказать, что
.


Получили неотрицательное число, значит,
Заметим, что

Пусть а и b неотрицательные числа.
Доказать, что

Составим разность левой и правой частей неравенства. Имеем


называют средним арифметическим чисел а и b число называют средним геометрическим чисел а и b. Таким образом, неравенство, доказанное в примере 3, означает, что среднее арифметическое двух неотрицательных чисел не меньше их среднего геометрического. Доказанное неравенство иногда называют неравенством Коши в честь французского математика XIX века Огюста Коши.

Замечание 2 . Неравенство Коши имеет любопытное геометрическое истолкование. Пусть дан прямоугольный треугольник и пусть высота h, проведенная из вершины прямого угла, делит гипотенузу на отрезки а и b (рис. 116). В геометрии доказано, что

(так что не случайно для этого выражения ввели термин «среднее геометрическое»). А что такое ? Это длина половины гипотенузы. Но из геометрии известно, что медиана m прямоугольного треугольника, проведенная из вершины прямого угла, как раз и равна половине гипотенузы. Таким образом, неравенство Коши означает, что медиана, проведенная к гипотенузе (т. е. ), не меньше высоты, проведенной к гипотенузе (т.е. ), - очевидный геометрический факт (см. рис. 116). Свойства числовых неравенств позволяют сравнивать действительные числа по величине, оценивать результат.

Сравнить числа:

а) Поставим между сравниваемыми числами знак < ; интуиция подсказывает, что первое число меньше второго. Если в результате правильных (т. е. строгих, основанных на свойствах числовых неравенств) рассуждений мы получим верное неравенство, то наша догадка подтвердится.

Если же в результате правильных рассуждений мы получим неверное неравенство, то между заданными числами надо было поставить не знак <, а знак > (или = , если окажется, что числа равны).

Итак, мы считаем, что Тогда, согласно свойству 6, , т. е. 5 < 7. Это верное неравенство, значит, наша догадка подтвердилась: .
б) Поставим между сравниваемыми числами наугад знак > (тут уже действительно наугад, поскольку интуиция здесь не поможет), т. е. предположим,что Возведя обе части неравенства в квадрат и используя свойство 6,получим

Воспользовавшись свойством 2, прибавим к обеим частям этого неравенства число -9; получим

Решение, а) Умножив все части двойного неравенства 2,1<а< 2,2 на одно и то же положительное число 2, получим
2 2,1 < 2а < 2 2,2, т. е. 4,2 <2а< 4,4.

б) Умножив все части двойного неравенства 3,7 < b < 3,8 на одно и то же отрицательное число - 3, получим неравенство противоположного смысла:

3 3,7 > - Зb > - 3 3,8, т. е. - 11,4 < - 36 < - 11,1 (вместо записи вида а > b > с мы перешли к более употребительной записи с

в) Сложив почленно заданные двойные неравенства одинакового смысла, получим

г) Сначала умножим все части двойного неравенства 3,7 < b < < 3,8 на одно и то же отрицательное число -1; получим неравенство противоположного смысла - 3,7 > - b > - 3,8, т. е. - 3,8 < - b < - 3,7.

д) Поскольку все части двойного неравенства 2,1 < а < 2,2 положительны, возведя их в квадрат , получим
2,1 2 <а 2 <2,2 2 , т. е. 4,41 < а 2 < 4,84.

е) Возведя в куб все части двойного неравенства 3,7 < b < 3,8, получим 3,7 3 < b 3 < 3,8 3 , т. е. 50,653 < b 3 < 54,872.

ж) В примере 1 мы установили, что если а и b- положительные числа, то из неравенства а < b следует неравенство противоположного смысла . Значит из двойного неравенства 2,1 < а < 2,2 следует, что


Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Книги и учебники согласно календарному плануванння по математике 8 класса