Время жизни звезд. Звезды нормальных размеров. Что такое созвездие

Во всех отношениях Солнце является типичной звездой, которая освещает Землю примерно пять миллиардов лет и еще столько же будет светить по данным научных исследований. На продолжительность свечения Солнца влияет количество горючего в небесном теле.

Фактически во всех происходят реакции термоядерного синтеза, благодаря которым и наблюдается зрительное свечение тела. Процесс синтеза происходит в результате реакций в горячих ядрах звезд, где температурный показатель достигает 20 миллионов °С (20000273.15 кельвин).

Относительно температуры и различают происходящих реакций в ядре во многих случаях благодаря цвету поверхности звезды. Цвет наиболее холодных звезд – красный, при температуре реакции в ядре до 3500 К. Желтые звезды, рассматриваемые в бинокле, обладают показателем температуры в ядре до 5500 К, а – от 10 000 и до 50 000 К.

Темп выделения энергии в звезде и ее продолжительность жизни

Жизнь звезд начинается в виде облачного образования, состоящего из пыли и газа. В подобном формировании начинается горение водорода, производство гелия. Когда водород выгорает полностью, стартуют последующие процессы стадий формирования небесного тела, как горение гелия, где в результате получаются более тяжелые элементы.

Именно температурный показатель горения звезды, а так же гравитационное давление внешних слоев, и влияет на темп выделения энергии телом, что и взаимосвязано напрямую с ее общей продолжительностью жизни. Приведенные параметры горения и внешнего давления с последующим общим увеличением массы небесного тела возрастают. Отсюда и повышается темп энергообразования, следовательно, и наблюдаемая светимость звезд.

Звезды с массивной кубатурой веса сжигают собственное ядерное топливо гораздо быстрее, всего в течение нескольких миллионов лет, являясь при этом наиболее яркими небесными телами. Маломассивные тела более экономно сжигают водород и расходуют свое топливо более бережливо, поэтому могут прожить даже дольше Вселенной. Хоть и светимость у маломассивных звезд небольшая и слабое энерговыделение, но их жизнь может достигать до 15 миллиардов лет.

Жизнь звезд и их поколения

Общая продолжительность жизни звезд стоит в зависимости не только от размера, но и от первоначального состава при образовании. Первые небесные тела во Вселенной прожили всего несколько десятков миллионов лет, поскольку они обладали огромными размерами при составе только лишь из водорода.

В ядрах подобных огромных и водородных тел термоядерные реакции происходили быстрее, при которых водород превращался в более тяжелые составляющие и гелий. Далее ядро охлаждается, поскольку ни температуры, ни давления не хватает для переработки более тяжелых элементов, и звезда взрывается. Остатки после взрыва таких небесных тел образуют новые менее горячие и яркие звезды.

Звезда, как Солнце, относится уже к третьему поколению звезд спектрального класса G к желтым карликам. При образовании в своем составе такие звезды имеют не только водород, но литий и гелий. Прежде, чем закончится водородное топливо у полезной жизни на примере такой звезды, как Солнце, пройдет еще не один миллиард лет, поскольку типичные звезды находятся в середине собственного жизненного пути.

ЗВЕЗДЫ 4: МАССА И СРОК ЖИЗНИ

Массу звезды Главной последовательности можно определить по ее светимости в соответствии с отношением между массой и светимостью, открытым сэром Артуром Эддингтоном. Изучая двойные звезды, Эддингтон смог показать, что светимость звезды Главной последовательности приблизительно пропорциональна кубу ее массы.

В результате применения ньютоновской теории тяготения к движению Земли вокруг Солнца известно, что масса Солнца составляет около 2?10 30 кг. Для вычисления массы двух звезд в двойной системе необходимо знать расстояние между ними и орбитальный период. Расчеты производятся по третьему закону Кеплера, выраженному в следующей формуле:

масса (в солнечных массах)?период (годы) 2 = расстояние (в астрономических единицах) 3 .

Массу отдельных звезд в двойной системе легко вычислить из общей массы, так как отношение массы одной звезды к массе другой обратно пропорционально отношению между радиусами их орбит.

Жизненный срок звезды зависит от ее массы, так как звезды состоят в основном из водорода, который является их «топливом». Протоны (то есть ядра водорода) соединяются в ядре звезды, образуя ядра гелия. В ходе этого процесса высвобождается энергия порядка 70 10 12 Вт на каждый килограмм водорода в секунду. Поскольку Солнце излучает энергию порядка 4?10 26 Вт, следовательно, водород в его ядре превращается в гелий со скоростью 6?10 11 = 4?10 26 / 70 х 10 12 кг/с. Общая масса Солнца составляет 2?10 30 кг, поэтому запасы его водородного топлива будут исчерпаны через 3,5?10 18 секунд, что приблизительно равно 10 млрд. лет. Для звезды с массой т, выраженной в эквиваленте солнечных масс, и светимостью L, выраженной в единицах солнечной светимости, срок жизни составит m/L сроков жизни Солнца. Поскольку светимость звезды Главной последовательности приблизительно пропорциональна кубу ее массы, то чем больше масса звезды, тем короче срок ее жизни.

См. также статьи «Двойные звезды», «Законы Кеплера», «Светимость», «Закон тяготения Ньютона».

Из книги ЧЕЛОВЕК И ЕГО ДУША. Жизнь в физическом теле и астральном мире автора Иванов Ю М

Из книги Большая Советская Энциклопедия (БУ) автора БСЭ

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

Из книги Большая Советская Энциклопедия (ЭФ) автора БСЭ

Из книги Стервология. Технологии счастья и успеха в карьере и любви автора Шацкая Евгения

Из книги Русская литература сегодня. Новый путеводитель автора Чупринин Сергей Иванович

Пара слов о наболевшем: карьере, личной жизни, детях и простых радостях жизни Бог на первом месте, семья на втором, но на третьем – карьера. Мэри Кей Увидела как-то на прилавке книжку с подзаголовком «карьеристка поневоле», открыла, посмотрела – внутри все те же лозунги и

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

КРИТИЧЕСКАЯ МАССА Литературно-критический и литературоведческий журнал, учрежденный Глебом Моревым и Фондом научных исследований «Прагматика культуры» (президент - Александр Долгин). Выходил с 2002 года ежеквартально. С 2008 года издается исключительно в электронной

Из книги Русская Доктрина автора Калашников Максим

Масса, кг Таблица

Из книги Справочник гипертоника автора Савко Лилия Мефодьевна

Глава 7. УРОВЕНЬ ЖИЗНИ Что нужно сделать для повышения стандартов жизни населения 1. Оплата труда и уровень доходов При нормальном ходе реформы увеличение доходов верхних 20% населения было бы примерно таким, каким оно является фактически, и даже большим. Но жизненный

Из книги Философский словарь автора Конт-Спонвиль Андре

Масса тела Избыточная масса тела увеличивает риск развития не только артериальной гипертензии, но и многих других серьезных заболеваний: ишемической болезни сердца, мозгового инсульта, сахарного диабета, остеоартроза, злокачественных новообразований.Примерно

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Инфляция См. также «Деньги», «Уровень жизни. Стоимость жизни», «Цена» Иметь небольшую инфляцию – все равно что быть немного беременной. Приписывается Франклину Рузвельту Плохая монета вытесняет из обращения хорошую монету. Томас Грешем (XVI в.) Деньги портят человека,

Из книги автора

Уровень жизни. Стоимость жизни См. также «Доходы и расходы», «Заработок» Уровень жизни – то, выше чего хотелось бы жить. Янина Ипохорская* Все мы находимся за чертой бедности, только по разные ее стороны. Михаил Генин Политику затягивания поясов громче всех одобряют те,

Время жизни звезд состоит из нескольких этапов, проходя через которые миллионы и миллиарды лет светила неуклонно стремятся к неизбежному финалу, превращаясь в яркие вспышки или в угрюмый черных дыр.

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Не пропустите наглядное интерактивное приложение « »!

Эпизод I. Протозвезды

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!

Эта огромная панорама туманности Ориона получена из снимков . Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой (<3), промежуточной (от 2 до 8) и массой больше восьми солнечных единиц. На первом отрезке образования подвержены конвекции, которая затрагивает абсолютно все области молодых звезд. На промежуточном этапе такое явление не наблюдается. В конце своей молодости объекты уже во всей полноте наделены качествами, присущими взрослой звезде. Однако любопытно то, что на данной стадии они обладают колоссально сильной светимостью, которая замедляет или полностью прекращает процесс коллапса в еще не сформировавшихся солнцах.

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Эпизод IV. Конец существования звезд и их гибель

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, и . Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Интересные факты из жизненных циклов звезд

Одним из самых своеобразных и примечательных сведений из звездной жизни космоса является то, что подавляющее большинство светил в нашей находятся на стадии красных карликов. Такие объекты обладают массой значительно меньшей, чем у Солнца.

Довольно интересно также и то, что магнитное притяжение нейтронных звезд в миллиарды раз выше аналогичного излучения земного светила.

Влияние массы на звезду

Еще одним не менее занимательным фактом можно назвать продолжительность существования самых огромных из известных типов звезд. В силу того, что их масса способна в сотни раз превышать солнечную, выделение ими энергии тоже многократно больше, иногда даже в миллионы раз. Следовательно, период их жизни длится гораздо меньше. В некоторых случаях их существование укладывается всего в несколько миллионов лет, против миллиардов лет жизни звезд с небольшой массой.

Интересным фактом также является противоположность черных дыр белым карликам. Примечательно то, что первые возникают из самых гигантских по массе звезд, а вторые, наоборот, из наименьших.

Во Вселенной существует огромное количество уникальных явлений, о которых можно говорить бесконечно, ведь космос крайне слабо изучен и исследован. Все человеческие знания о звездах и их жизненных циклах, которыми обладает современная наука, в основном получены из наблюдений и теоретических расчетов. Такие малоизученные явления и объекты дают почву для постоянной работы тысячам исследователей и ученых: астрономов, физиков, математиков, химиков. Благодаря их непрерывному труду, эти знания постоянно накапливаются, дополняются и изменяются, становясь, таким образом, более точными, достоверными и всеобъемлющими.

Привет дорогие читатели! Хотелось бы поговорить о прекрасном ночном небе. Почему о ночном? Спросите Вы. Потому, что на нем ярко видны звезды, эти прекрасные светящиеся маленькие точки на черно-синем фоне нашего неба. Но на самом деле они не маленькие, а просто огромные, а из -за большого расстояния кажутся такими крохотными .

Кто-нибудь из Вас представлял себе как рождаются звезды, как проживают свою жизнь, какая она у них вообще? Я предлагаю Вам сейчас прочесть эту статью и по ходу представить эволюцию звезд. Я подготовила парочку видео для наглядного примера 😉

Небо усеяно множеством звезд, среди которых разбросаны огромные облака пыли и газов, водорода в основном. Звезды рождаются именно в таких туманностях, или межзвездных областях.

Звезда живет настолько долго (до десятков миллиардов лет), что астрономам не под силу проследить жизнь от начала и до конца, хотя бы одной из них. Но зато у них есть возможность наблюдать за разными стадиями развития звезд.

Ученные объединили полученные данные, и смогли проследить за этапами жизни типичных звезд: момент рождения звезды в межзвездном облаке, ее молодость, средний возраст, старость и иногда весьма эффектную смерть.

Рождение звезды.


Возникновение звезды начинается с уплотнения вещества внутри туманности. Постепенно, образовавшееся уплотнение, уменьшается в размерах, сжимаясь под воздействием гравитации. Во время этого сжатия, или коллапса , выделяется энергия, которая разогревает пыль и газ и вызывает их свечение.

Возникает так называемая протозвезда . Температура и плотность вещества в ее центре, или ядре максимальные. Когда температура достигает отметки около 10 000 000°С, в газе начинают протекать термоядерные реакции.

Ядра атомов водорода начиняют соединяться и превращаются в ядра атомов гелия. При таком синтезе выделяется огромное количество энергии. Эта энергия, в процессе конвекции, переносится в поверхностный слой, а потом, в виде света и тепла излучается в космос. Таким вот образом, протозвезда превращается в настоящую звезду.

Излучение, которое исходит из ядра, разогревает газовую среду, создавая давление, которое направленное вовне, и таким образом, препятствуя гравитационному коллапсу звезды.

Результатом является, то, что она обретает равновесие, то есть имеет постоянные размеры, постоянную поверхностную температуру и постоянное количество выделяемой энергии.

Астрономы звезду на этой стадии развития называют звездой главной последовательности , таким образом, указывая место, которое она занимает на диаграмме Герцшпрунга-Ресселла. Эта диаграмма выражает связь между температурой звезды и светимостью.

Протозвезды, имеющие небольшую массу, никогда не разогреваются до температур, которые необходимы для начала термоядерной реакции. Эти звезды, в результате сжатия, превращаются в тусклых красных карликов , или даже еще более тусклых коричневых карликов . Первая звезда коричневый карлик была открыта лишь 1987 году.

Гиганты и карлики.

Диаметр Солнца приблизительно равен 1 400 000 км, а температура его поверхности около 6 000°С, и оно излучает желтоватый свет. Оно на протяжении 5 млрд. лет входит в главную последовательность звезд.

Водородное «топливо» на такой звезде, приблизительно за 10 млрд. лет исчерпается, а в ее ядре останется, главным образом, гелий. Когда больше не остается чему «гореть», интенсивность излучения, направленного от ядра, уже не достаточна для уравновешивания гравитационного коллапса ядра.

Но той энергии, которая при этом выделяется, достаточно для того, чтобы разогреть окружающее вещество. В этой оболочке начинается синтез ядер водорода, выделяется больше энергии.

Звезда начинает ярче светиться, но теперь уже красноватым светом, и одновременно она еще и расширяется, увеличиваясь в размере в десятки раз. Теперь такая звезда называются красным гигантом .

Ядро красного гиганта сжимается, а температура возрастает до 100 000 000°С и более. Здесь происходит реакция синтеза ядер гелия, превращая его в углерод. Благодаря той энергии, которая при этом выделяется, звезда еще светится каких-нибудь 100 млн. лет.

После того как заканчивается гелий и реакции затухают, вся звезда постепенно, под влиянием гравитации, сжимается почти до размеров . Энергии, которая при этом выделяется, достаточно для того, чтобы звезда (теперь уже белый карлик) продолжала еще некоторое время ярко светиться.

Степень сжатия вещества в белом карлике очень высока и, следовательно, у него очень большая плотность – вес одной столовой ложки может достигать тысячи тонн. Таким вот образом проходит эволюция звезд размером с наше Солнце.

Видео показывающее эволюцию нашего Солнца в белого карлика

Жизненный цикл у звезды, масса которой в пять раз превышает массу Солнца, значительно короче, и она несколько иначе эволюционирует. Такая звезда намного ярче, а температура ее поверхности 25 000°С и более, период пребывания в главной последовательности звезд всего лишь около 100 млн. лет.

Когда такая звезда входит в стадию красного гиганта , температура в ее ядре превышает 600 000 000°С. В нем происходят реакции синтеза ядер углерода, который превращается в более тяжелые элементы, включая железо.

Звезда, под действием выделяемой энергии, расширяется до размеров, которые в сотни раз превышают ее первоначальные размеры. Звезду на этой стадии называют сверхгигантом .

В ядре внезапно прекращается процесс производства энергии, и оно в течение считаных секунд сжимается. При всем этом выделяется огромное количество энергии и образуется катастрофическая ударная волна.

Эта энергия проходит через всю звезду и выбрасывает значительную ее часть силой взрыва в космическое пространство, вызывая явление, которое известно как вспышка сверхновой звезды .

Для лучшего представления всего написанного, рассмотрим на схеме цикл эволюции звезд

В феврале 1987 года подобная вспышка наблюдалась в соседней галактике – Большом Магеллановом облаке. Эта сверхновая звезда в течение короткого времени светилась ярче целого триллиона Солнц.

Ядро сверхгиганта сжимается и образует небесное тело диаметром всего лишь 10-20 км, а плотность его настолько велика, что чайная ложка его вещества может весить 100 млн. тонн!!! Такое небесное тело состоит из нейтронов и называется нейтронной звездой .

Нейтронная звезда, которая только что образовалась, отличается большой скоростью вращения и очень сильным магнетизмом.

В результате создается мощное электромагнитное поле, которое испускает радиоволны и другие виды излучения. Они распространяются из магнитных полюсов звезды в форме лучей.

Эти лучи, из-за вращения звезды вокруг своей оси, как бы сканируют космическое пространство. Когда они проносятся мимо наших радиотелескопов, мы их воспринимаем как короткие вспышки, или импульсы (англ. Pulse). Поэтому такие звезды называются пульсарами .

Обнаружены пульсары были благодаря именно радиоволнам, которые они излучают. Сейчас стало известно, что многие из них излучают световые и рентгеновские импульсы.

Первый световой пульсар обнаружили в Крабовидной туманности. Его импульсы повторяются с периодичностью 30 раз в секунду.

Импульсы других пульсаров повторяются гораздо чаще: ПИР (пульсирующий источник радиоизлучения) 1937+21 вспыхивает 642 раза в секунду. Представить даже сложно такое!

Звезды, которые имеют наибольшую массу, превышающую в десятки раз массу Солнца, тоже вспыхивают, как сверхновые. Но из-за огромной массы, их коллапс имеет гораздо более катастрофический характер.

Разрушительное сжатие не прекращается даже на стадии образования нейтронной звезды, создавая область, в которой обычное вещество прекращает свое существование.

Остается только лишь одна гравитация, которая настолько сильная, что ничто, даже свет, не может избежать ее воздействия. Эта область называется черной дырой . Да уж, эволюция больших звезд страшная и очень опасная.

В этом видеоролике речь пойдет о том, как сверхновая превращается в пульсар и в черную дыру

Я не знаю как Вы, дорогие читатели, но лично я очень люблю и интересуюсь космосом и всем, что с ним связанно, это так загадочно и прекрасно, аж дух захватывает! Эволюция звезд нам много поведала о будущем нашей и всей .

Я долго стоял неподвижно,
В далекие звезды вглядясь, -
Меж теми звездами и мною
Какая-то связь родилась.
Я думал…не помню, что думал;
Я слушал таинственный хор,
И звезды тихонько дрожали,
И звезды люблю я с тех пор.
А. Фет

Урок 9/26

Тема: Двойные звезды

Цель: Рассмотреть понятие и различные виды двойных звезд: визуальные, спектральные, затменные, астрометрические. Рассмотреть способы определения масс звезд в двойных системах

Задачи :
1. Обучающая : Ввести понятия: двойная звезда (визуально-двойная, спектрально-двойная), затменно-двойная звезда (ее кривая блеска, период, амплитуда), звезды-гиганты, сверхгиганты, карлики, белые карлики, компоненты двойной звезды. Объяснить, в чем заключается эффект Доплера. Изложить сущность определения масс звезд на основе обобщенного третьего закона Кеплера и показать, как это делается на конкретных примерах. Показать, как интерпретируется кривая блеска затменно-двойной звезды и как по этой кривой определяют период и изменение блеска затменно-двойной звезды.
2. Воспитывающая : Акцентировать внимание учащихся на том, что размеры (и средние плотности звезд) меняются в широких, а массы - в ограниченных пределах. Указать, что Солнце по своим физическим характеристикам (размерам, массе, средней плотности, а также по температуре, цвету, спектру и химическому составу) ничем особенным не выделяется среди множества других звезд. Подчеркнуть, что выяснение природы звезд - один из примеров познаваемости мира. Отметить, что открытие двойных звезд астрономы успешно используют не только для определения их размеров и масс (причем масса - важнейшая физическая характеристика звезды, связанная с ее светимостью; от массы зависит также темп и характер эволюции звезды) но и для поиска таких экзотических объектов, как черные дыры. На примере физического состояния, в котором находится вещество белых карликов, отметить возможность использования Вселенной в качестве «физической лаборатории». Обосновать идею о всемирности закона тяготения Ньютона (и законов Кеплера).
3. Развивающая : Важны следующие главные положения: во-первых, существование возможности определения радиусов и массы звезд с помощью соответствующих методов (причем масса звезды - ее важнейшая физическая характеристика), во-вторых, сумма знаний, полученных на предыдущем и данном уроках, позволяет заключить, что Солнце - рядовая звезда. Продолжить формирование умения работать с иллюстрациями. Использовать возможность создания эмоциональной ситуации, сообщая данные об экстремальных размерах и средних плотностях звезд. Учащимся, интересующимся астрономией, предложить подготовить реферат, составить презентацию.

Знать:
1-й уровень (стандарт) - понятие двойных звезд и иметь представление о различных типах двойных звезд. Способ определения масс двойных звезд.
2-й уровень - понятие двойных звезд и иметь представление о различных типах двойных звезд. Способ определения масс двойных звезд.
Уметь:
1-й уровень (стандарт) - определять вид двойных звезд и рассчитывать их массу.
2-й уровень - определять вид двойных звезд и рассчитывать их массу.

Оборудование: Таблицы: звезды, двойные звезды, карта звездного неба, звездный атлас, диаграмма на каждом столе “спектр-светимость”. Д/ф “Звезды”, “Природа звезд”. К/ф “Двойные звезды”, Диапозитивы. CD- "Red Shift 5.1" или фотографии и иллюстрации астрономических объектов из мультимедийного диска «Мультимедиа библиотека по астрономии», коллекция ЦОР.

Межпредметные связи: Закон Всемирного тяготения. Гравитационные силы. Движение под действием силы тяжести (физика, VIII кл). Математика (построение и анализ графиков вычисления, необходимых для решения задач), обществоведение (познаваемость мира и его закономерностей).

Ход урока:

1. Повторение материала
Экспресс-опрос (перед собой иметь диаграмму“спектр-светимость”, используется для показа мультимедийный проектор). Оценивается каждый ученик по количеству правильных ответов (по ходу отмечается отдельным учеником в подготовленном списке-таблице). На каждый вопрос для ответа отводится не более 1 сек. Продолжительность экспресс-опроса 10 минут. Итак вопросы .

II. Новый материал.

1. Двойная звезда - две звезды, обращающиеся по эллиптическим орбитам вокруг общего центра масс под действием сил тяготения. Приблизительно половина всех ”звезд" на самом деле - двойные или кратные (несколько, не менее 3-х звезд) системы, хотя многие из них расположены так близко, что компоненты по отдельности наблюдать невозможно.
Существуют Оптически двойные - рядом проецируются на воображаемую сферу, но физически не связаны. Так в древности у легионеров А.Македонского проверяли зрение по Дзета (ζ) Большой Медведицы (Мицар -конь, предпоследняя в ручке ковша, 78 св.г, 2,23 m) оптически двойной звезды в 12" от нее 80 UMa (Алькор - всадник, 81,2 св.г, 4,02 m). Может они физически и связаны, но если период обращения очень большой. Зато при наблюдении в телескоп Мицар сам по себе виден как двойная звезда, включающая Мицар A и Мицар B. Мицар B имеет звёздную величину 4.0 и спектральный класс A7, расстояние между Мицаром A и Мицаром B — 380 а.е., период обращения — несколько тысяч лет.
Обнаружена первая двойная звезда , увиденная в телескоп, гамма Овна (γ Овен) - физически двойная звезда, оба компонента бело-голубые звезды с Т≈11000К, находящиеся на угловом расстоянии 8" и имеющие видимую звездную величину 4,7 m и 4,8 m . На всякий случай даже для Солнца придуман (но не обнаружен) гипотетический спутник-звезда Немезида. По методу обнаружения, двойные звезды подразделяются на несколько типов.
Изучение двойных звезд началось в середине 17в, когда Г. Галилей (1564-1642, Италия) открыл несколько звезд и предложил метод определения относительного параллакса яркой главной звезды по отношению к более слабой и поэтому, вероятно, более далёкой. К середине 18в было обнаружено всего около 20 двойных звезд; тогда же начались и первые измерения позиционного угла и расстояния между компонентами. К 1803 году У. Гершель (1738-1822, Англия) опубликовал списки нескольких сотен двойных звезд и отметил среди них 50, у которых обнаружилось смещение компонентов. В дальнейшем наблюдения двойных звезд продолжил сын Вильяма - Джон Гершель (1792-1871, Англия), перенесший свой телескоп в Южную Африку. В Европе планомерные наблюдения двойных звезд организовал русский астроном В. Я. Струве (1793-1864, Россия) на обсерватории в Тарту. В 1824 году Струве применил для своих наблюдений телескоп-рефрактор с объективом Фраунгофера диаметром D=24 см и фокусным расстоянием F=410 см (D/F=24/410) на экваториальной установке с часовым механизмом, который можно считать прототипом современных телескопов-рефракторов. С новым инструментом Струве открыл 3134 звездные пары. Результаты его наблюдений опубликованы в трех каталогах, из которых наибольшей известностью пользуется каталог "Двойные и кратные звезды, измеренные микрометрически", опубликованный в 1837 году на 2714 двойных звезд для которых измерил положение спутников.
В конце XIX века инициативу в исследованиях двойных звезд перехватили американские астрономы, использовавшие в своих наблюдениях новейшие рефракторы высшего класса с объективами Кларка: рефрактор обсерватории Дирборн с диаметром объектива D=47 см, рефрактор Вашингтонской морской обсерватории (D=65 см) и рефрактор Ликской обсерватории (D=91 см). Заслугой американских астрономов было то, что они не только наблюдали двойные звезды, но собрали и систематизировали громадный наблюдательный материал по этим звездам. Эта работа воплощена в "Общем каталоге 13665 звезд" Ш.У. Бернхема (1906 год), охватывающем все известные к тому времени наблюдения двойных звезд в зоне склонений от -30° до Северного полюса. В новое время эта традиция продолжена американским астрономом Р.Дж. Айткеном , создавшим "Новый общий каталог 17180 двойных звезд" (1934 год) и астрономами Ликской обсерватории Г.М. Джефферсом и В.Х. ван ден Босом , составившими "Индекс каталог 64247 двойных звезд" (1961 год). В новое время наблюдения визуально-двойных звезд продолжались во многих странах мира как прежними, визуальными, так и новыми, фотографическими и фотоэлектрическими методами.
На сегодняшний день одним из самых полных сборников является Вашингтонский каталог визуально-двойных звезд (обозначаются порядковым номером с приставкой WDS - Washington Double Star). Впервые появившись в 1984 году, каталог насчитывал 73610 двойных звезд всего неба, для которых имелось хотя бы одно точное измерение, опубликованное до 1983 года. В 1996 году появилась обновленная версия WDS, в которой уже можно найти данные о 78100 двойных, наблюденных до 1995 года. В окрестностях Солнца (d<20 пк) находится более 3000 звезд, среди них около половины - двойные звезды всех типов, включая тесные спектральные и широкие визуальные.
Самая быстрая двойная система - двойная система J0806+1527 (звезды 21-й величины в созвездии Рака) - орбитальный период 321.5 секунды (5.4 минуты). Система состоит из двух белых карликов на расстоянии 80 тыс км друг от друга (почти в 5 раз ближе, чем Луна от Земли). Скорость вращения компонентов по орбите - около 1500 км в секунду (5 млн км в час).

2. Типы двойных (физически двойных) звезд: кратная звезда
1. Визуально-двойные звезды, двойственность которых может быть видна в телескоп. На сегодняшний день в каталогах WDS и CCDM свыше 78 000 и 110 000 объектов соответственно, то только у нескольких сотен можно вычислить орбиту, и у менее чем сотни объектов орбита известна с достаточной точностью, для того чтобы получить массу компонентов.
Чем дальше звезды друг от друга, тем медленнее движутся. Пары, в которых угловое расстояние достаточно велико для того, чтобы звезды можно было разрешить при наблюдении в телескоп, часто имеют период обращения 50 -100 лет. Например:
СИРИУС (α Большого Пса) - самая яркая звезда видимая у нас на небе. Это тройная звезда в 8,56св. годах от нас. Системы из более чем двух звезд называют кратными.
Сириус А -главная звезда в расцвете сил, М А =2,14М ¤ , R А =1,7R ¤ , Т=10400К, L=23,55L ¤ , ρ А =0,36г/см 3 .
Сириус В (Щенок) -белый карлик, открыт в 1862г А.Кларк (США) М В =М ¤ , R В =0,02R ¤ , L=0,002L ¤ ,ρ В =180г/см 3 . Период обращения 49,9 лет с удалением от Сириуса А от 8а.е до 32а.е. На фото справа маленькая светлая точка.
Было в 1995г сообщение об открытии Сириуса С??? -красно-коричневый карлик, М С =0,05М ¤ , Т=2000К, период обращения 6,3 года с максимальным удалением от Сириуса А до 8а.е., но пока не подтвердилоcь.

2. Спектрально-двойные звёзды - выявляемые по периодическим колебаниям или раздвоению спектральных линий. Поскольку члены двойной системы движутся по орбитам, их скорость по отношению к Земле регулярно изменяется. Вариация скорости приводит к изменению длин волн в объединенном спектре системы (так называемый доплеровский эффект). Изучение таких спектров позволяет выяснить детали строения звезд и их орбит. Эти двойные звезды распознаются только спектроскопическими методами. Их периоды обычно составляют от нескольких дней до нескольких недель. Иногда компоненты двойных систем расположены так близко, что гравитация искажает сферическую форму звезд. Они могут обмениваться веществом и могут быть окружены общей газовой оболочкой. Когда потоки вещества устремляются к компактной вращающейся звезде двойной системы, может образоваться аккреционный диск. Освободившаяся энергия излучается в рентгеновском диапазоне.
Первую Мицар (ζ Б.Медведицы), находящуюся в 78,2 св.г от нас, открыл Э.Пикеринг (1889г, США) - Мицар А и Мицар В, а в 1964г выяснилось, что каждая звезда спектрально-двойная (кстати и Алькор также является спектрально-двойной). К 1980г уже было открыто более 2500 звезд, а сейчас в нашей Галактике обнаружено свыше 4000 звёзд этого класса. Определённые периоды спектрально-двойных звёзд заключены в пределах от 0.1084 сут. (гамма Малой Медведицы) до 59.8 лет (визуально двойная кси Большой Медведицы). Подавляющее большинство спектрально-двойных звёзд имеет периоды порядка нескольких суток. Самый известный и самый обширный каталог «SB9» (от англ Spectral Binaries). На данный момент в нем 2839 объектов. На рисунке условный пример раздвоения и смещения линий в спектрах спектрально-двойных звёзд.

3. Затменные двойные звёзды - изменяющие свой блеск вследствие затмения одного компонента двойной звезды. Это происходит, если орбиты двойной системы сориентированы в пространстве так, что при наблюдении с Земли одна звезда проходит перед другой. Такая система имеет переменную яркость, так как одна звезда периодически заслоняет свет другой. Сейчас известно более 5000 таких звезд. Самая известная и первая открытая в 1669г итальянцем Г. Монтанари (1632-1687) Алголь (β Персея, арабское "эль гуль" - дьявол). Алголь А - бело-голубая, М А =5М ¤ , R А =3R ¤ . Алголь В - тускло-желтая, М В =М ¤ , R В =3,2R ¤ . Видимая яркость системы меняется от 2,1 m до 3,4 m c периодом 12,914 дня=12дн20час48мин53с. Период установил в 1782г Дж. Гудрайк , который в 1783г верно объяснил причину изменения блеска. В 1784 году Гудрайк открывает вторую затменную звезду - β Лиры. Ее период 12 суток 21 час и 56 минут, и, в отличие от Алголя, блеск изменяется плавно. В 1911 русский астроном С. Н. Блажко (1870-1956) разработал первый общий метод вычисления орбит затменно-двойных звёзд. В 1970 году известный советский астроном П. Н. Холопов впервые обнаружил пульсирующую переменную звезду типа RR Лиры в затменно-двойной системе. Эта двойная система с периодом чуть более двух суток принадлежит карликовой сферической галактике в созвездии Малой Медведицы.
Рекорцменом среди затменно-двойных звезд является ε Возничего в 2700R ¤ - 5,7 млрд. км. При периоде обращения спутника вокруг главной звезды за 27 лет, его затмение длится два года, что говорит об огромном размере главной звезды. А по прохождении света спутника через атмосферу главной звезды можно исследовать строение атмосферы главной звезды.
А самое глубокое затмение наблюдается у катаклизмической переменной (затменного поляра) J0155+0028 в созвездии Кита, который каждые 87 минут гаснет на 5 звездных величин (с 15.0m до 20.0m), то есть в 100 раз! Затмения открыты в августе 2002 года аспиранткой Санкт-Петербургского Университета Дарьей Дубковой с коллегами Надеждой Кудрявцевой и Анти Хирв.
Из анализа кривых блеска затменно-переменных звезд можно:

  • определить период обращения T;
  • определить параметры орбит компонентов (эксцентриситет орбиты e, долготу периастра ω и другие параметры);
  • оценить массы компонентов;
  • оценить радиус звезд R 1 и R 2

4. Астрометрически двойные - выявляются по отклонению в движении (колебаниям) главной звезды, вызванное орбитальным движением более слабого спутника. Если одна звезда намного слабее другой (невидимый спутник), ее присутствие можно обнаружить только по видимому движению более яркого компаньона. Этот способ, как и исследование спектральных смещений, позволяет определить наличие планетных систем у звезд (открыты у более 180 звезд).
Некоторые звёздные системы:

3. Определение масс звезд в двойных системах

Хотя двойных звезд много, но надежно определены их орбиты примерно только для сотни. Используя третий (уточненный) закон Кеплера получим Двойные звёзды (физические двойные). П.Г Куликовский
Из рисунка А=а"r=a"/π" и учитывая, что Т ¤ =1 и а=1, а массой Земли можно пренебречь, получим в солнечных массах М 1 +М 2 =А 3 :Т 2 . Или, учитывая соотношение из рисунка, получим М 1 +М 2 =a 3 /π 3 Т 2 .Чтобы определить массу каждой звезды, надо определить расстояние до каждой звезды от центра масс (А=А 1 +А 2 ) и тогда получим второе уравнение М 1 :М 2 =А 2 :А 1 . Решая систему двух уравнений, можно определить массу каждой звезды.

Исследование масс двойных звезд показало, что они заключены в пределах от 0,3 до 60 масс Солнца. При этом большинство звезд имеют массы от 0,3 до 3 масс Солнца.

III Закрепление материала
1. По рис. 85 - максимум блеска, минимум блеска
- период колебаний блеска
- какова амплитуда изменение блеска?
- за какое время блеск изменится от минимума к максимуму?
2. Пример №12 . Просмотреть, записать решение и найти массу каждой звезды, если их отношение 2:1.
3. Задача: (самостоятельно) Период обращения двойной звезды 100 лет. Большая полуось видимой орбиты 2", параллакс звезды 0,05". Звезды отстоят от центра масс на расстоянии, относящихся как 1:4. Определит сумму масс и массу каждой звезды. (из формулы М 1 +М 2 =a 3 /π 3 Т 2 М 1 +М 2 = 2 3 /0,05 3 100 2 =6,4М ¤ , в частях 1+4=5, отсюда на одну часть приходится 6,4М ¤ :5=1,28М ¤ тогда компоненты имеют массы 1,28М ¤ и 4 . 1,28М ¤ =5,12М ¤ ).

Итог урока
1. Какие звезды называют двойными?
2. Назовите виды двойных звезд.
3. Как можно определить массу звезд в двойных системах?

4. Оценки.

Дома: §26, вопросы стр. 145- 146, стр.153 (п.2-7), реферат (презентация) для интересующихся астрономией.

140,6 кб
Аккреция в тесных двойных системах 129,7 кб
Мир планет в тесных двойных звездных системах 132,8 кб
«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".