Сложение дробей с целыми числами и разными знаменателями. Правила арифметических действий над обыкновенными дробям

    Сама столкнулась с тем, что дроби оказались достаточно сложной темой для моих детей.

    Есть очень хорошая игра Дроби Никитина, она предназначена для дошкольников, но и в школе отлично поможет ребенку разобраться, что же все-таки это такое - дроби, их соотношение друг к другу..., причем все в доступной, наглядной и увлекательной форме.

    Представляет она из себя двенадцать разноцветных кругов. Один круг - целый, а все остальные поделены на равные части - две, три.... (до двенадцати).

    Ребнку предлагается выполнить несложные игровые задания, например:

    Как называютсячасти кружков? или

    Какая часть больше? (наложить меньшую на большую.)

    Моим эта методика помогла. Вообще очень жалею, что все эти Никитинские развивашки не попались на глаза, когда дети были еще малышами.

    Игру можно сделать самостоятельно или купить готовую, а узнать обо всем подробней - .

    Решение дробей можно объяснить и на кубиках Lego. Он развивает не только воображение, но и творческое и логическое мышление, а значит, его можно использовать и как учебное пособие.

    Алишия Зиммерман придумала использовать кубики известного конструктора для обучения детей основам математики.

    И вот как на основе конструктора Lego можно объяснить дроби.

    Практика показывает, что больше всего трудностей возникает при сложении (вычитании) дробей с разными знаменателями и при делении дробей.

    Трудности возникают из-за кривых указаний в учебнике, как, например, разделить дробь на дробь.

    Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а числитель второй дроби на знаменатель первой дроби.

    Может ли ребенок в 4 классе это понять и не запутаться? НЕТ!

    А нам учительница объяснила элементарно: нужно вторую дробь перевернуть, а потом умножить!

    Тоже самое со сложением.

    Чтобы сложить две дроби, нужно числитель первой дроби умножить на знаменатель второй дроби, а числитель второй дроби умножить на знаменатель первой дроби, полученные числа сложить и записать в числитель. А в знаменатель нужно записать произведение знаменателей дробей. После этого полученную дробь можно (или нужно) сократить.

    А проще так: Приведите дроби к общему знаменателю, который равен НОК знаменателей, а потом сложите числители.

    Показать им на наглядном примере. Например, яблоко разрежьте на 4 части, на 8, на 12 сложите в целое, сложите несколько частей, отнимите. При этом на бумаге объясняйте с использованием правил. Правила сложения, вычитания. деления дробей, а так же как из неправильной дроби выделить целое - вс это учите в ходе манипуляций с яблоком. Не торопите детей, пусть внимательно с вашей помощью разберутся с дольками.

    Научить решать дроби, в частности детей, это дело вполне обычно и не создаст много хлопот. Самое просто что можно сделать, это взять что-то целое, например мандарин, или любой другой плод, разделить его не части, и на примере показывать вычитания, сложение и другие операции с кусочками этого плода, что и будет дробями от целого. Все нужно объяснять и показывать, и завершающим фактором будет на математических примерах объяснять и решать задания совместно, пока ребенок сам не научиться делать эти задания.

    На рисунке наглядно видно что чему соответствует и как смотрится дробь на реальном предмете, именно так и нужно объяснять.

    Вам к этому вопросу, нужно подойти основательно, так как решение дробей в жизни пригодится. Нужно в этом вопросе, как говорится, с детьми быть на равных, и объяснять теорию на им доступном языке, например на языке торта или мандарина. Нужно делить торт на до и раздавать друзьям, после чего ребенок начнет вникать в суть решения дробей. Не начинайте с тяжелых дробей, начните с понятий 1/2, 1/3, 1/10. Сначала отнимайте и прибавляйте, а потом переходите на более сложные понятия как умножение и деление.

    Проблемы с дробями бывают разные. Один ребнок не может понять, что одна вторая и пять десятых - это одно и то же, у других вызывает недоумение приведение различных дробей к одному знаменателю, у третьих - деление дробей. Поэтому и одного правила на все случаи жизни нет.

    Главное в задачах на дроби - не упустить момент, когда понятное перестат таковым быть. Возвращаться к печке и повторять вс сначала, даже если оно кажется убого-примитивным. Например, вернуться к тому, что такое одна вторая .

    Ребнок должен понять, что математические понятия - абстрактны, что одно и то же явление можно описать разными словами, выразить разными числами.

    Мне нравится ответ, данный Mefody66. Добавлю из личной многолетней практики: научить решать задачи с дробями (а не решать дроби; решать дроби нельзя, равно как невозможно решать числа) довольно несложно, надо лишь быть рядом с ребенком, когда он только приступает к решению таких задач, вовремя корректировать его решение, дабы ошибки, которые неизбежны при любом обучении, не успели закрепиться в сознании ребенка. Переучивать сложнее, чем учить новое. И как можно больше решать таких задач. Довести до автоматизма решение таких заданий - вот это хорошо бы сделать. Умение решать задачи с обыкновенными дробями по важности в школьном курсе математики занимает такое же место, как и знание таблицы умножения. Так что надо не полениться и проследить, как ваш ребенок решает такие задачи.

    И не очень опирайтесь при этом на учебник: учителя в школах объясняют именно так, как писал в своем ответе Mefody66. Лучше поговорить с учителем, выяснить, какими словами учитель объяснял эту тему. И использовать по возможности те же слова и фразы (чтобы не сильно запутывать ребенка)

    Еще: наглядные примеры использовать советую лишь на начальном этапе объяснения, потом побыстрее абстрагироваться, переходить к алгоритму решения. Иначе наглядность может повредить при решении более сложных задач. Например, если надо сложить дроби со знаменателями 29 и 121 - какая тут наглядность поможет? Только запутает.

    Дроби - одна из тех благодатных математических тем, где нет не приложимых к делу абстракций. В ход идти должны продукты (на тортах , как Хуаните Солис в Отчаянных домохозяйках - реально классный метод объяснений). Все эти числители-знаменатели - потом. Потом нужно, чтобы ребенок понял, что деление на дробь уже и не уменьшение вовсе, а умножение- не прибавка. Тут лучше показать, как делить на дробь в форме умножения на перевертыш. В игровой форме подать сокращение, если делятся на одно число, то делить, почти судоку получается, если заинтересовать. Главное вовремя заметить непонятки, потому что дальше будут темы покруче, которые понять не просто. Поэтому побольше практики решении дробей и все быстро наладится. Мне, гуманитарию наичистейшему, далкому от малейшей степени абстракции, дроби всегда были понятны, чем остальные темы.

Дроби

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Дроби в старших классах не сильно досаждают. До поры до времени. Пока не столкнётесь со степенями с рациональными показателями да логарифмами. А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе.

Давайте уже разберёмся с дробями, наконец! Ну сколько можно в них путаться!? Тем более, это всё просто и логично. Итак, какие бывают дроби?

Виды дробей. Преобразования.

Дроби бывают трёх видов.

1. Обыкновенные дроби , например:

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Здесь мы часто будем таким написанием пользоваться. Верхнее число называется числителем , нижнее - знаменателем. Если вы постоянно путаете эти названия (бывает...), скажите себе с выражением фразу: "Ззззз апомни! Ззззз наменатель - вниззззз у!" Глядишь, всё и ззззапомнится.)

Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо чёрточки вполне можно поставить знак деления - две точки.

Когда деление возможно нацело, это надо делать. Так, вместо дроби "32/8" гораздо приятнее написать число "4". Т.е. 32 просто поделить на 8.

32/8 = 32: 8 = 4

Я уж и не говорю про дробь "4/1". Которая тоже просто "4". А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например:

Именно в таком виде нужно будет записывать ответы на задания "В".

3. Смешанные числа , например:

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задачке и зависните... На пустом месте. Но мы-то вспомним эту процедуру! Чуть ниже.

Наиболее универсальны обыкновенные дроби . С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями !

Основное свойство дроби.

Итак, поехали! Для начала я вас удивлю. Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

Понятно, что писать можно дальше, до посинения. Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Главное понять, что все эти разнообразные выражения есть одна и та же дробь . 2/3.

А оно нам надо, все эти превращения? Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей . Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками.

Как правильно и быстро сокращать дроби, не делая лишней работы, можно прочитать в особом Разделе 555 .

Нормальный ученик не заморачивается делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение:

Тут и думать нечего, зачеркиваем букву "а" сверху и двойку снизу! Получаем:

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на "а". Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть "а" в выражении

и получить снова

Что будет категорически неверно. Потому что здесь весь числитель на "а" уже не делится ! Эту дробь сократить нельзя. Кстати, такое сокращение – это, гм… серьезный вызов преподавателю. Такого не прощают! Запомнили? При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается, короче. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и наоборот без калькулятора ! Это важно на ЕГЭ, верно?

Как переводить дроби из одного вида в другой.

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это ноль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Типа 0,3. Это три десятых, т.е. 3/10.

А если целых - не ноль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Элементарно, Ватсон! Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную .

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в ответе на задание раздела "В" получилось 1/2? Что в ответ писать будем? Там десятичные требуются...

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель (это нам надо) на 5. Но, тогда и числитель надо умножить тоже на 5. Это уже математика требует! Получим 1/2 = 1х5/2х5 = 5/10 = 0,5. Вот и всё.

Однако, знаменатели всякие попадаются. Попадётся, например дробь 3/16. Попробуй, сообрази тут, на что 16 умножить, чтоб 100 получилось, или 1000... Не получается? Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, на бумажке, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и на бумажке, мы получим 0,3333333... Это значит, что 1/3 в точную десятичную дробь не переводится . Так же, как и 1/7, 5/6 и так далее. Много их, непереводимых. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную !

Кстати, это полезная информация для самопроверки. В разделе "В" в ответ надо десятичную дробь записывать. А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Это означает, что где-то вы ошиблись по дороге! Вернитесь, проверьте решение.

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать шестиклассника и спросить у него. Но не всегда шестиклассник окажется под руками... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задачке вы с ужасом увидели число:

Спокойно, без паники соображаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Ясненько? Тогда закрепите успех! Переведите в обыкновенные дроби. У вас должно получится 10/7, 7/2, 23/10 и 21/4.

Обратная операция - перевод неправильной дроби в смешанное число - в старших классах редко требуется. Ну если уж... И если Вы - не в старших классах - можете заглянуть в особый Раздел 555 . Там же, кстати, и про неправильные дроби узнаете.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Отвечаю. Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать . Ну а если написано, что-нибудь типа 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам !

Если в задании сплошь десятичные дроби, но гм... злые какие-то, перейдите к обыкновенным, попробуйте! Глядишь, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби?

0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. О, ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги этого урока.

1. Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Теперь можно потренироваться. Для начала переведите эти десятичные дроби в обыкновенные:

3,8; 0,75; 0,15; 1,4; 0,725; 0,012

Должны получиться вот такие ответы (в беспорядке!):

На этом и завершим. В этом уроке мы освежили в памяти ключевые моменты по дробям. Бывает, правда, что освежать особо нечего...) Если уж кто совсем крепко забыл, или ещё не освоил... Тем можно пройти в особый Раздел 555 . Там все основы подробненько расписаны. Многие вдруг всё понимать начинают. И решают дроби с лёту).

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Данная статья рассматривает действия над дробями. Будут сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида A B , где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.

Yandex.RTB R-A-339285-1

Правила выполнения действий с числовыми дробями общего вида

Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 3 5 , 2 , 8 4 , 1 + 2 · 3 4 · (5 - 2) , 3 4 + 7 8 2 , 3 - 0 , 8 , 1 2 · 2 , π 1 - 2 3 + π , 2 0 , 5 ln 3 , то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.

Определение 1

Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:

  • При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: a d ± c d = a ± c d , значения a , c и d ≠ 0 являются некоторыми числами или числовыми выражениями.
  • При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями. Буквенно это выглядит таком образом a b ± c d = a · p ± c · r s , где значения a , b ≠ 0 , c , d ≠ 0 , p ≠ 0 , r ≠ 0 , s ≠ 0 являются действительными числами, а b · p = d · r = s . Когда p = d и r = b , тогда a b ± c d = a · d ± c · d b · d .
  • При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим a b · c d = a · c b · d , где a , b ≠ 0 , c , d ≠ 0 выступают в роли действительных чисел.
  • При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: a b: c d = a b · d c .

Обоснование правил

Определение 2

Существуют следующие математические моменты, на которые следует опираться при вычислении:

  • дробная черта означает знак деления;
  • деление на число рассматривается как умножение на его обратное значение;
  • применение свойства действий с действительными числами;
  • применение основного свойства дроби и числовых неравенств.

С их помощью можно производить преобразования вида:

a d ± c d = a · d - 1 ± c · d - 1 = a ± c · d - 1 = a ± c d ; a b ± c d = a · p b · p ± c · r d · r = a · p s ± c · e s = a · p ± c · r s ; a b · c d = a · d b · d · b · c b · d = a · d · a · d - 1 · b · c · b · d - 1 = = a · d · b · c · b · d - 1 · b · d - 1 = a · d · b · c b · d · b · d - 1 = = (a · c) · (b · d) - 1 = a · c b · d

Примеры

В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.

Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.

Пример 1

Даны дроби 8 2 , 7 и 1 2 , 7 , то по правилу необходимо числитель сложить, а знаменатель переписать.

Решение

Тогда получаем дробь вида 8 + 1 2 , 7 . После выполнения сложения получаем дробь вида 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 . Значит, 8 2 , 7 + 1 2 , 7 = 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 .

Ответ: 8 2 , 7 + 1 2 , 7 = 3 1 3

Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:

8 2 , 7 + 1 2 , 7 = 80 27 + 10 27 = 90 27 = 3 1 3

Пример 2

Произведем вычитание из 1 - 2 3 · log 2 3 · log 2 5 + 1 дроби вида 2 3 3 · log 2 3 · log 2 5 + 1 .

Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что

1 - 2 3 · log 2 3 · log 2 5 + 1 - 2 3 3 · log 2 3 · log 2 5 + 1 = 1 - 2 - 2 3 3 · log 2 3 · log 2 5 + 1

Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.

Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.

Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.

Пример 3

Рассмотрим на примере сложения дробей 2 3 5 + 1 и 1 2 .

Решение

В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2 · 3 5 + 1 . Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2 , а ко второй 3 5 + 1 . После перемножения дроби приводятся к виду 4 2 · 3 5 + 1 . Общее приведение 1 2 будет иметь вид 3 5 + 1 2 · 3 5 + 1 . Полученные дробные выражения складываем и получаем, что

2 3 5 + 1 + 1 2 = 2 · 2 2 · 3 5 + 1 + 1 · 3 5 + 1 2 · 3 5 + 1 = = 4 2 · 3 5 + 1 + 3 5 + 1 2 · 3 5 + 1 = 4 + 3 5 + 1 2 · 3 5 + 1 = 5 + 3 5 2 · 3 5 + 1

Ответ: 2 3 5 + 1 + 1 2 = 5 + 3 5 2 · 3 5 + 1

Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет. В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.

Пример 4

Рассмотрим на примере 1 6 · 2 1 5 и 1 4 · 2 3 5 , когда их произведение будет равно 6 · 2 1 5 · 4 · 2 3 5 = 24 · 2 4 5 . Тогда в качестве общего знаменателя берем 12 · 2 3 5 .

Рассмотрим примеры умножений дробей общего вида.

Пример 5

Для этого необходимо произвести умножение 2 + 1 6 и 2 · 5 3 · 2 + 1 .

Решение

Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2 + 1 6 · 2 · 5 3 · 2 + 1 2 + 1 · 2 · 5 6 · 3 · 2 + 1 . Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10 .

Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:

5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10

После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что

5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 · 9 3 10 · 2 + 1 = 5 · 2 10 · 2 + 1 = 3 2 · 2 + 1 = = 3 · 2 - 1 2 · 2 + 1 · 2 - 1 = 3 · 2 - 1 2 · 2 2 - 1 2 = 3 · 2 - 1 2

Ответ: 5 · 3 3 2 + 1: 10 9 3 = 3 · 2 - 1 2

Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1 , тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 1 6 · 7 4 - 1 · 3 видно, что корень из 3 может быть заменен другим 3 1 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 1 6 · 7 4 - 1 · 3 = 1 6 · 7 4 - 1 · 3 1 .

Выполнение действие с дробями, содержащими переменные

Правила, рассмотренные в первой статье, применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.

Необходимо доказать, что A , C и D (D не равное нулю) могут быть любыми выражениями, причем равенство A D ± C D = A ± C D равноценно с его областью допустимых значений.

Необходимо взять набор переменных ОДЗ. Тогда А, С, D должны принимать соответственные значения a 0 , c 0 и d 0 . Подстановка вида A D ± C D приводит разность вида a 0 d 0 ± c 0 d 0 , где по правилу сложения получаем формулу вида a 0 ± c 0 d 0 . Если подставить выражение A ± C D , тогда получаем ту же дробь вида a 0 ± c 0 d 0 . Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A ± C D и A D ± C D считаются равными.

При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида A D ± C D = A ± C D .

Примеры сложения и вычитания дробей с переменными

Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это незаметно, так как необходимо выполнять некоторые преобразования. Например, x 2 3 · x 1 3 + 1 и x 1 3 + 1 2 или 1 2 · sin 2 α и sin a · cos a . Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.

Пример 6

Вычислить: 1) x 2 + 1 x + x - 2 - 5 - x x + x - 2 , 2) l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) , x - 1 x - 1 + x x + 1 .

Решение

  1. Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x 2 + 1 x + x - 2 - 5 - x x + x - 2 = x 2 + 1 - 5 - x x + x - 2 . После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, что x 2 + 1 - 5 - x x + x - 2 = x 2 + 1 - 5 + x x + x - 2 = x 2 + x - 4 x + x - 2
  2. Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:​​​​​​ l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) = l g 2 x + 4 + 4 x · (l g x + 2)
    Сложение было выполнено. Видно, что можно произвести сокращение дроби. Ее числитель может быть свернут по формуле квадрата суммы, тогда получим (l g x + 2) 2 из формул сокращенного умножения. Тогда получаем, что
    l g 2 x + 4 + 2 · l g x x · (l g x + 2) = (l g x + 2) 2 x · (l g x + 2) = l g x + 2 x
  3. Заданные дроби вида x - 1 x - 1 + x x + 1 с разными знаменателями. После преобразования можно перейти к сложению.

Рассмотрим двоякий способ решения.

Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида

x - 1 x - 1 = x - 1 (x - 1) · x + 1 = 1 x + 1

Значит, x - 1 x - 1 + x x + 1 = 1 x + 1 + x x + 1 = 1 + x x + 1 .

В таком случае необходимо избавляться от иррациональности в знаменателе.

1 + x x + 1 = 1 + x · x - 1 x + 1 · x - 1 = x - 1 + x · x - x x - 1

Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x - 1 . Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда

x - 1 x - 1 + x x + 1 = x - 1 x - 1 + x · x - 1 x + 1 · x - 1 = = x - 1 x - 1 + x · x - x x - 1 = x - 1 + x · x - x x - 1

Ответ: 1) x 2 + 1 x + x - 2 - 5 - x x + x - 2 = x 2 + x - 4 x + x - 2 , 2) l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) = l g x + 2 x , 3) x - 1 x - 1 + x x + 1 = x - 1 + x · x - x x - 1 .

В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей с добавлением дополниетльных множителей к числителям.

Пример 7

Вычислить значения дробей: 1) x 3 + 1 x 7 + 2 · 2 , 2) x + 1 x · ln 2 (x + 1) · (2 x - 4) - sin x x 5 · ln (x + 1) · (2 x - 4) , 3) 1 cos 2 x - x + 1 cos 2 x + 2 · cos x · x + x

Решение

  1. Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3 · x 7 + 2 · 2 , тогда к первой дроби x 7 + 2 · 2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 3 · x 7 + 2 · 2 + 3 · 1 3 · x 7 + 2 · 2 = = x · x 7 + 2 · 2 + 3 3 · x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2
  2. Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться произведение вида x 5 · ln 2 x + 1 · 2 x - 4 . Отсюда x 4 является дополнительным множителем к первой дроби, а ln (x + 1) ко второй. После чего производим вычитание и получаем, что:
    x + 1 x · ln 2 (x + 1) · 2 x - 4 - sin x x 5 · ln (x + 1) · 2 x - 4 = = x + 1 · x 4 x 5 · ln 2 (x + 1) · 2 x - 4 - sin x · ln x + 1 x 5 · ln 2 (x + 1) · (2 x - 4) = = x + 1 · x 4 - sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x - 4) = x · x 4 + x 4 - sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x - 4)
  3. Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1 cos x - x · cos x + x + 1 (cos x + x) 2 . Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x - x · cos x + x 2 .

После чего получаем, что

1 cos 2 x - x + 1 cos 2 x + 2 · cos x · x + x = = 1 cos x - x · cos x + x + 1 cos x + x 2 = = cos x + x cos x - x · cos x + x 2 + cos x - x cos x - x · cos x + x 2 = = cos x + x + cos x - x cos x - x · cos x + x 2 = 2 · cos x cos x - x · cos x + x 2

Ответ:

1) x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2 , 2) x + 1 x · ln 2 (x + 1) · 2 x - 4 - sin x x 5 · ln (x + 1) · 2 x - 4 = = x · x 4 + x 4 - sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x - 4) , 3) 1 cos 2 x - x + 1 cos 2 x + 2 · cos x · x + x = 2 · cos x cos x - x · cos x + x 2 .

Примеры умножения дробей с переменными

При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.

Пример 8

Произвести умножение дробей x + 2 · x x 2 · ln x 2 · ln x + 1 и 3 · x 2 1 3 · x + 1 - 2 sin 2 · x - x .

Решение

Необходимо выполнить умножение. Получаем, что

x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x) = = x - 2 · x · 3 · x 2 1 3 · x + 1 - 2 x 2 · ln x 2 · ln x + 1 · sin (2 · x - x)

Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x 2 , тогда получим выражение вида

3 · x - 2 · x · x 1 3 · x + 1 - 2 ln x 2 · ln x + 1 · sin (2 · x - x)

Ответ: x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x) = 3 · x - 2 · x · x 1 3 · x + 1 - 2 ln x 2 · ln x + 1 · sin (2 · x - x) .

Деление

Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x + 2 · x x 2 · ln x 2 · ln x + 1 и разделить на 3 · x 2 1 3 · x + 1 - 2 sin 2 · x - x , тогда это можно записать таким образом, как

x + 2 · x x 2 · ln x 2 · ln x + 1: 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x) , после чего заменить произведением вида x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x)

Возведение в степень

Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С, где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида A C r справедливо равенство A C r = A r C r . Результат – дробь, возведенная в степень. Для примера рассмотрим:

x 0 , 7 - π · ln 3 x - 2 - 5 x + 1 2 , 5 = = x 0 , 7 - π · ln 3 x - 2 - 5 2 , 5 x + 1 2 , 5

Порядок выполнения действий с дробями

Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.

Пример 9

Вычислить 1 - x cos x - 1 c o s x · 1 + 1 x .

Решение

Так как имеем одинаковый знаменатель, то 1 - x cos x и 1 c o s x , но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что

1 + 1 x = 1 1 + 1 x = x x + 1 x = x + 1 x

При подстановке выражения в исходное получаем, что 1 - x cos x - 1 cos x · x + 1 x . При умножении дробей имеем: 1 cos x · x + 1 x = x + 1 cos x · x . Произведя все подстановки, получим 1 - x cos x - x + 1 cos x · x . Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:

x · 1 - x cos x · x - x + 1 cos x · x = x · 1 - x - 1 + x cos x · x = = x - x - x - 1 cos x · x = - x + 1 cos x · x

Ответ: 1 - x cos x - 1 c o s x · 1 + 1 x = - x + 1 cos x · x .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем дроби называется делимое, а знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

Правильной называется дробь, у которой модуль числителя больше модуля знаменателя. Если дробь является правильной, то модуль её значения всегда меньше 1. Все остальные дроби являются неправильными .

Дробь называют смешанной , если она записана как целое число и дробь. Это то же самое, что и сумма этого числа и дроби:

Основное свойство дроби

Если числитель и знаменатель дроби умножить на одно и то же число, то значение дроби не изменится, то есть, например,

Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, нужно:

  1. Числитель первой дроби умножить на знаменатель второй
  2. Числитель второй дроби умножить на знаменатель первой
  3. Знаменатели обеих дробей заменить на их произведение

Действия с дробями

Сложение. Чтобы сложить две дроби, нужно

  1. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

Пример:

Вычитание. Чтобы вычесть одну дробь из другой, нужно

  1. Привести дроби к общему знаменателю
  2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

Пример:

Умножение. Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели:

Деление. Чтобы разделить одну дробь на другую, следует числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй:

Когда ученик переходит в старшую школу, математика разделяется на 2 предмета: алгебру и геометрию. Понятий становится все больше, задания все сложнее. У некоторых возникают трудности с восприятием дробей. Пропустили первый урок по этой теме, и вуаля. дроби? Вопрос, который будет мучить на протяжении всей школьной жизни.

Понятие алгебраической дроби

Начнем с определения. Под алгебраической дробью понимается выражения P/Q, где P является числителем, а Q - знаменателем. Под буквенной записью может скрываться число, числовое выражение, численно-буквенное выражение.

Прежде чем задаваться вопросом, как решать алгебраические дроби, для начала нужно понимать, что подобное выражение - часть целого.

Как правило, целое - это 1. Число в знаменателе показывает, на сколько частей разделили единицу. Числитель необходим для того, чтобы узнать, сколько элементов взято. Дробная черта соответствует знаку деления. Допускается запись дробного выражения в качестве математической операции «Деление». В таком случае числитель - делимое, знаменатель - делитель.

Основное правило обыкновенных дробей

Когда учащиеся проходят данную тему в школе, им дают примеры на закрепление. Чтобы правильно их решать и находить различные пути из сложных ситуаций, нужно применять основное свойство дробей.

Оно звучит так: Если умножить и числитель, и знаменатель на одно и то же число или выражение (отличные от нуля), то значение обыкновенной дроби не изменится. Частным случаем от данного правила является разделение обеих частей выражения на одно и то же число или многочлен. Подобные преобразования называются тождественными равенствами.

Ниже будет рассмотрено, как решать сложение и вычитание алгебраических дробей, производить умножение, деление и сокращение дробей.

Математические операции с дробями

Рассмотрим, как решать, основное свойство алгебраической дроби, как применять его на практике. Если нужно перемножить две дроби, сложить их, разделить одну на другую или произвести вычитание, нужно всегда придерживаться правил.

Так, для операции сложения и вычитания следует найти дополнительный множитель, чтобы привести выражения к общему знаменателю. Если изначально дроби даны с одинаковыми выражениями Q, то нужно опустить этот пункт. Когда общий знаменатель найден, как решать алгебраические дроби? Нужно сложить или вычесть числители. Но! Нужно помнить, что при наличии знака «-» перед дробью все знаки в числителе меняются на противоположные. Иногда не следует производить каких-либо подстановок и математических операций. Достаточно поменять знак перед дробью.

Часто используется такое понятие, как сокращение дробей . Это означает следующее: если числитель и знаменатель разделить на отличное от единицы выражение (одинаковое для обеих частей), то получается новая дробь. Делимое и делитель меньше прежних, но в силу основного правила дробей остаются равными изначальному примеру.

Целью этой операции является получение нового несократимого выражения. Решить данную задачу можно, если сократить числитель и знаменатель на наибольший общий делитель. Алгоритм операции состоит из двух пунктов:

  1. Нахождение НОД для обеих частей дроби.
  2. Деление числителя и знаменателя на найденное выражение и получение несократимой дроби, равной предшествующей.

Ниже показана таблица, в которой расписаны формулы. Для удобства ее можно распечатать и носить с собой в тетради. Однако, чтобы в будущем при решении контрольной или экзамена не возникло трудностей в вопросе, как решать алгебраические дроби, указанные формулы нужно выучить наизусть.

Несколько примеров с решениями

С теоретической точки зрения рассмотрен вопрос, как решать алгебраические дроби. Примеры, приведенные в статье, помогут лучше усвоить материал.

1. Преобразовать дроби и привести их к общему знаменателю.

2. Преобразовать дроби и привести их к общему знаменателю.

После изучения теоретической части и расссмотрения практической вопросов больше возникнуть не должно.