Интерполяция методом ньютона примеры. Интерполяционные многочлены ньютона. Математическая модель задачи

Всем привет. Довольно недавно я столкнулся с проблемой на своем новом телефоне, для решения которой мне нужно было достать из прошивки некоторые APK файлы. Поискав в интернете способы решения этой проблемы, я наткнулся на на одну интересную утилиту, которая мне помогла решить эту проблему.

Для работы нам понадобятся: ext4_unpacker_exe.zip ext2explore-2.2.71.zip
Разбираем прошивку Android Распаковываем *.zip архив с прошивкой в любую папку.Запускаем утилиту ext4_unpacker.exe и выбираем файл system.img.

После открытия файла, нажимаем на кнопку сохранить как.

Пишем имя файла с расширением .ext4 (например system.ext4 ).

После завершения распаковки запустите утилиту ext2explore.exe от имени администратора (важно! ).В вкладке File выб…

Программа разделена на два потока в одном из которых выполняется сортировка, а в другом перерисовка графического интерфейса. После нажатия на кнопку «Сортировать», в программе вызывается метод «RunSorting», в котором определяется алгоритм сортировки и создается новый поток с запущенным в нем процессом сортировки.
private void RunSo…

Сегодня я хочу показать свой Качер, который я делал на прошлых зимних каникулах. Описывать весь процесс изготовления не буду, так как в интернете есть много статей. Напишу только об основных его параметрах.

Ниже несколько фото сделанных во время сборки устройства.

Катушка намотана проводом 0,08 мм примерно 2000 витков на ПВХ трубе диаметром 50 мм и высотой 200 мм.

В качестве терминала была использована пластина из старого жесткого диска. Все остальное собиралось по схеме которая находится в самом низу страницы.

Первый вариант питался от блока питания старого компьютера, напряжением 12 В. Затем же был сделан отдельный блок питания, напряжением в 30 В и со встроенным охлаждением.

Схема устройства:

Совместное использование ресурсов (CORS) — это спецификация W3C, которая позволяет осуществлять междоменную связь в браузере. Создавая поверх объекта XMLHttpRequest, CORS позволяет разработчикам работать с одинаковыми идиомами как запросы с одним доменом. Вариант использования для CORS прост. Представьте, что на сайте alice.com есть некоторые данные, которые сайт bob.com хочет получить. Этот тип запроса традиционно не допускается в соответствии с той же политикой происхождения браузера. Однако, поддерживая запросы CORS, alice.com может добавить несколько специальных заголовков ответов, которые позволяют bob.com получать доступ к данным. Как видно из этого примера, поддержка CORS требует координации между сервером и клиентом. К счастью, если вы являетесь разработчиком на стороне клиента, вы защищены от большинства этих деталей. В остальной части этой статьи показано, как клиенты могут выполнять запросы с кросс-началом и как серверы могут настраивать себя для поддержки CORS. Продолжени…

Первая интерполяционная формула Ньютона практически неудобна для интерполирования функции вблизи узлов таблицы. В этом случае обычно применяется .

Описание задачи. Пусть имеем последовательность значений функции

для равноотстоящих значений аргумента, где - шаг интерполяции. Построим полином следующего вида:

или, используя обобщённую степень, получаем:

Тогда, при выполнении равенства, получим

Подставим эти значения в формулу (1). Тогда, окончательно, вторая интерполяционная формула Ньютона имеет вид:

Введём более удобную запись формулы (2). Пусть, тогда

Подставив эти значения в формулу (2), получим:

Это и есть обычный вид второй интерполяционной формулы Ньютона . Для приближённого вычисления значений функции полагают:

Как первая, так и вторая интерполяционные формулы Ньютона могут быть использованы для экстраполирования функции, т. е. для нахождения значений функции для значений аргументов, лежащих вне пределов таблицы.

Если и близко к, то выгодно применять первую интерполяционную формулу Ньютона, причём тогда. Если же и близко к, то удобнее пользоваться второй интерполяционной формулой Ньютона, причём.

Таким образом, первая интерполяционная формула Ньютона обычно используется для интерполирования вперёд и экстраполирования назад , а вторая интерполяционная формула Ньютона, наоборот, - для интерполирования назад и экстраполирования вперёд .

Заметим, что операция экстраполирования, вообще говоря, менее точна, чем операция интерполирования в узком смысле слова.

Пример. Приняв шаг, построить интерполяционный полином Ньютона для функции, заданной таблицей

Решение . Составляем таблицу разностей (таблица 1). Так как разности третьего порядка практически постоянны, то в формуле (3) полагаем. Приняв, будем иметь:

Это и есть искомый интерполяционный полином Ньютона.

Таблица 1

  • 0,875
  • 0,7088
  • 0,5361
  • 0,3572
  • 0,173
  • -0,0156
  • -0,20
  • -0,1662
  • -0,1727
  • -0,1789
  • -0,1842
  • -0,1886
  • -0,1925
  • -0,0065
  • -0,0062
  • -0,0053
  • -0,0044
  • -0,0039
  • 0,0003
  • 0,0009
  • 0,0009
  • 0,0005

Пусть задана функция y=f(x) на отрезке , который разбит на n одинаковых отрезков (случай равноотстоящих значений аргумента). x=h=const. Для каждого узла x 0, x 1 =x 0 +h,..., x n =x 0 +n h определены значения функции в виде: f(x 0)=y 0, f(x 1)=y 1,..., f(x n)=y n.


Конечные разности первого порядка y 0 = y 1 – y 0 y 1 = y 2 – y y n-1 = y n – y n-1. Конечные разности второго порядка 2 y 0 = y 1 – y 0 2 y 1 = y 2 – y y n-2 = y n-1 – y n-2 Аналогично определяются конечные разности высших порядков: k y 0 = k-1 y 1 – k-1 y 0 k y 1 = k-1 y 2 – k-1 y k y i = k-1 y i+1 – k-1 y i, i = 0,1,...,n-k.






Пусть для функции y = f(x) заданы значения y i = f(x i) для равностоящих значений независимых переменных: x n = x 0 +nh, где h - шаг интерполяции. Необходимо найти полином P n (x) степени не выше n, принимающий в точках (узлах) x i значения: P n (x i) = y i, i=0,...,n. Запишем интерполирующий полином в виде:


Задача построения многочлена сводится к определению коэффициентов а i из условий: P n (x 0)=y 0 P n (x 1)=y P n (x n)=y n






Аналогично можно найти другие коэффициенты. Общая формула имеет вид. Подставляя эти выражения в формулу полинома, получаем: где x i,y i – узлы интерполяции; x – текущая переменная; h – разность между двумя узлами интерполяции h – величина постоянная, т.е. узлы интерполяции равноотстоят друг от друга.
































Особенностью интерполяции являлось то, что интерполирующая функция строго проходит через узловые точки таблицы, т. е. рассчитанные значения совпадали с табличными: y i =f(x i). Эта особенность обуславливалась тем, что количество коэффициентов в интерполирующей функции (m) было равно количеству табличных значений (n)














4. Интерполирующей функцией невозможно описать табличные данные, в которых есть несколько точек с одинаковым значением аргумента. Такая ситуация возможна, если один и тот же эксперимент проводится несколько раз при одних и тех же исходных данных. Однако это не является ограничением для использования аппроксимации, где не ставится условие прохождения графика функции через каждую точку.

Аннотация

Пояснительная записка курсовой работы "Интерполяция функции одной переменной методом Ньютона" содержит в себе введение, анализ задания описанием входных и выходных данных, обзор литературных источников, описание математической модели и методов вычислительной математики, пояснения к алгоритму, текст программы, инструкцию. При изучении дисциплины "Информатика" для написания курсовой работы использовались различные литературные источники, которые перечислены в настоящем документе. В данной курсовой работе приведена программа, которая применяется для интерполяции таблично заданной функции методом Ньютона. В ней был использован метод структурного программирования для облегчения написания и отладки программы, а также повышения ее наглядности и читаемости. Целью написания данной работы было получение и закрепление практических навыков разработки алгоритмов различными методами. Представленная программа реализована на языке программирования Pascal. Пояснительная записка содержит 25 листов, на которых размещено два рисунка, текст программы и описание программы и алгоритма.


Введение

Анализ задания

Математическая модель задачи

Программирование функции формулы Ньютона

Обзор литературных источников

Разработка программы по схеме алгоритма

Инструкция пользования программой

Текст программы

Исходные данные и результат решения контрольного примера

Заключение

Список использованных источников


Введение

Современное развитие физики и техники тесно связано с использованием электронных вычислительных машин (ЭВМ). В настоящее время ЭВМ стали обычным оборудованием многих институтов и конструкторских бюро. Это позволило от простейших расчетов и оценок различных конструкций или процессов перейти к новой стадии работы - детальному математическому моделированию (вычислительному эксперименту), которое существенно сокращает потребность в натурных экспериментах, а в ряде случаев может их заменить.

Сложные вычислительные задачи, возникающие при исследовании физических и технических проблем, можно разбить на ряд элементарных -таких как вычисление интеграла, решение дифференциального уравнения и т. п. Многие элементарные задачи являются несложными и хорошо изучены. Для этих задач уже разработаны методы численного решения, и нередко имеются стандартные программы решения их на ЭВМ. Есть и достаточно сложные элементарные задачи; методы решения таких задач сейчас интенсивно разрабатываются.

В связи с этим современный специалист с высшим образованием должен обладать не только высоким уровнем подготовки по профилю своей специальности, но и хорошо знать математические методы решения инженерных задач, ориентироваться на использование вычислительной техники, практически освоить принципы работы на ЭВМ.


Анализ задания

В качестве входных данных использованы:

1. Количество узлов.

2. Табличные значения функции.

Выходными данными, т.е. результатом программы является:

1. Значения таблично заданной функции в промежуточных значениях.

2. График полинома.


Математическая модель задачи

При выполнении курсовой работы была выбрана следующая математическая модель:

Интерполяция и приближение функций.

1. Постановка задачи.

Одной из основных задач численного анализа является задача об интерполяции функций. Часто требуется восстановить функцию

для всех значений на отрезке если известны ее значения в некотором конечном числе точек этого отрезка. Эти значения могут быть найдены в результате наблюдений (измерений) в каком-то натурном эксперименте, либо в результате вычислений. Кроме того, может оказаться, что функция задается формулой и вычисления ее значений по этой формуле очень трудоемки, поэтому желательно иметь для функции более простую (менее трудоемкую для вычислении) формулу, которая позволяла бы находить приближенное значение рассматриваемой функции с требуемой точностью в любой точке отрезка. В результате возникает следующая математическая задача.

Пусть и» отрезке

задана сетка со

и в ее узлах заданы значения функции

, равные .

Требуется построить интерполянту - функцию

, совпадающую с функцией в узлах сетки: .

Основная цель интерполяции - получить быстрый (экономичный) алгоритм вычисления значений

для значений , не содержащихся в таблице данных.

2. Интерполяция по Ньютону

Дана табличная функция:

i
0
1
2
.. .. ..
n
, (1)

Точки с координатами

называются узловыми точками или узлами.

Количество узлов в табличной функции равно N=n+1.

Необходимо найти значение этой функции в промежуточной точке, например,

, причем . Для решения задачи используется интерполяционный многочлен.

Интерполяционный многочлен по формуле Ньютона имеет вид:

где n – степень многочлена,

Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен

через значение в одном из узлов и через разделенные разности функции , построенные по узлам .

Сначала приведем необходимые сведения о разделенных разностях.

Пусть в узлах

,

известны значения функции

. Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения , , .

Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения

Довольно распространенным методом интерполирования является метод Ньютона. Интерполяционный полином для этого метода имеет вид:

P n (x) = a 0 + a 1 (x-x 0) + a 2 (x-x 0)(x-x 1) + ... + a n (x-x 0)(x-x 1)...(x-x n-1).

Задача состоит в отыскании коэффициентов a i полинома P n (x). Коэффициенты находят из уравнения:

P n (x i) = y i , i = 0, 1, ..., n,

позволяющего записать систему:

a 0 + a 1 (x 1 - x 0) = y 1 ;

a 0 + a 1 (x 2 - x 0) + a 2 (x 2 - x 0)(x 2 - x 1) = y 2 ;

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

a 0 +... + a n (x n - x 0)(x n - x 1) ... (x n - x n-1) = y n ;

Используем метод конечных разностей. Если узлы x i заданы через равные промежутки h, т.е.

x i+1 - x i = h,

то в общем случае x i = x 0 + i×h, где i = 1, 2, ..., n. Последнее выражение позволяет привести решаемое уравнение к виду

y 1 = a 0 + a 1 ×h;

y 2 = a 0 + a 1 (2h) + a 2 (2h)h;

- - - - - - - - - - - - - - - - - - -

y i = a 0 + a 1 ×i×h + a 2 ×i×h[(i-1)h] + ... + a i ×i!×h i ,

откуда для коэффициентов получаем

где Dу 0 – первая конечная разность.

Продолжая вычисления, получим:

где D 2 у 0 - вторая конечная разность, представляющая собой разность разностей. Коэффициент а i можно представить в виде:

Поставляя найденные значения коэффициентов а i в значения для P n (x), получим интерполяционный полином Ньютона:

Преобразуем формулу, для чего введем новую переменную , где q – число шагов, необходимых для достижения точки х, двигаясь из точки х 0 . После преобразований получаем:

Полученная формула известна как первая интерполяционная формула Ньютона, или формула Ньютона для интерполирования "вперед". Ее выгодно использовать для интерполирования функции y = f(x) в окрестности начального значения х – х 0 , где q мало по абсолютной величине.

Если записать интерполяционный многочлен в виде:

то аналогичным образом можно получить вторую интерполяционную формулу Ньютона, или формулу Ньютона для интерполирования "назад":

Ее обычно используют для интерполирования функции вблизи конца таблицы.

При изучении данной темы необходимо помнить, что интерполяционные многочлены совпадают с заданной функцией f(x) в узлах интерполяции, а в остальных точках, в общем случае, будут отличаться. Указанная ошибка дает нам погрешность метода. Погрешность метода интерполяции определяется остаточным членом, который для формул Лагранжа и Ньютона одинаков и который позволяет получить следующую оценку для абсолютной погрешности:


Если интерполирование осуществляется с одинаковым шагом, то формула для остаточного члена видоизменяется. В частности, при интерполировании "вперед" и "назад" по формуле Ньютона выражение для R(x) несколько отличаются друг от друга.

Анализируя полученную формулу, видно, что погрешность R(x) представляет собой, с точностью до постоянной произведение двух множителей, из которых один, f (n+1) (x), где x лежит внутри , зависит от свойств функции f(x) и не поддается регулированию, а величина другого,

определяется исключительно выбором узлов интерполирования.

При неудачном расположении этих узлов верхняя граница модуля |R(x)| может быть весьма большой. Поэтому возникает задача о наиболее рациональном выборе узлов интерполирования x i (при заданном числе узлов n) с тем, чтобы полином П n+1 (х) имел наименьшее значение.