Что такое система краткое определение. Что такое система

Wiki сервисы и движки

Корпоративная вики-система с открытым кодом. Позволяет организовывать рабочие пространства для совместной работы, файлохранилища, дискуссии, блоги. Имеет отличные возможности для интеграции и более 100 плагинов. Хорошо совместима с MS Office

Cервис для создания публичных и интранет сайтов. Позволяет создавать странички различных форматов: текст, список, обсуждения, файлы. На странички можно вставлять мультимедийный контент, а также виджеты (например документы или календарь).

Вики с очень удобным (и не менее мощным, чем текстовый процессор) WYSIWYG редактором, инструментами для контроля версий, организации страниц, поиска и совместной работы. Можно создавать несколько секций

Бесплатный онлайн сервис для создания и структурирования статей и одновременной совместной работы.

Foswiki - бесплатный вики-движок для корпоративного использования, написанный на Perl. Основное отличие от большинства других движков - возможность структурировать информацию по разделам («Webs», «вебы»), и устанавливать для каждого раздела правила доступа.

Сервис по созданию своей базы знаний + встроенный конструктор скриптов продаж. Можно добавлять авторские статьи, выкачивать статьи с внешних сайтов, тегировать контент, группировать по категориям, управлять доступом для сотрудников компании

Бизнес-вики с продвинутыми средствами безопасности и контроля доступа. Хороший редактор, контроль версий, организация с помощью папок и тэгов. Удобно использовать как файлохранилище. Содержит встроенный мессенджер, аудиосвязь. Позволяет совместно редактировать страницы в реальном времени. Есть несколько отраслевых редакций.

Социальное программное обеспечение, включающее wiki, социальную сеть, систему микроблоггинга. Доступно как интернет сервис и как инсталлируемая open-source система. Организация документов производится только с помощью тэгов. Содержит средства работы с загруженными файлами. Есть профайлы пользователей, стартовая страница, полностью совместимая с iGoogle

Комбинация Wiki и файлохранилища. Web-ориентированная инсталлируемая система. Синхронизация файлов между сервером и компьютерами пользователей. Есть контроль версий, права доступа. Мобильный веб-интерфейс. Задачи, события - синхронизируются с Outlook. Есть русский интерфейс.

Движок Википедии, доступный для создания собственной вики-базы знаний. Написан на PHP, распространяется как свободное программное обеспечение с открытым исходным кодом.

Корпоративная вики-система с продвинутыми мерами безопасности. Содержит файлохранилище с поддержкой WebDAV, профайлы, микроблоги, форумы, новости, аналитику. Позволяет создавать рабочие области под разные проекты. Есть полнофункциональная бесплатная версия. Интегрируется с корпоративными приложениями, порталами и базами данных. Есть русский интерфейс.

Бесплатная Open-source CMS/Wiki. Кроме Wiki-функциональности содержит форумы, блоги, статьи, галлерею, баг-трекер. Groupware веб-приложение, которое можно использовать для создания и управления веб-сайтами и порталами, интранетом и экстранетом.

ОБЩАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ СИСТЕМ

Система: Определение и классификация

Понятие системы относится к числу основополагающих и используется в различных научных дисциплинах и сферах человеческой деятельности. Известные словосочетания «информационная система», «человеко-машинная система», «экономическая система», «биологическая система» и многие другие иллюстрируют распространенность этого термина в разных предметных областях.

В литературе существует множество определений того, что есть «система». Несмотря на различия формулировок, все они в той или иной мере опираются на исходный перевод греческого слова systema - целое, составленное из частей, соединенное. Будем использовать следующее достаточно общее определение.

Система - совокупность объектов, объединенных связями так, что они существуют (функционируют) как единое целое, приобретающее новые свойства, которые отсутствуют у этих объектов в отдельности.

Замечание о новых свойствах системы в данном определении является весьма важной особенностью системы, отличающей ее от простого набора несвязанных элементов. Наличие у системы новых свойств, которые не являются суммой свойств ее элементов называют эмерджентностью (например, работоспособность системы «коллектив» не сводится к сумме работоспособности ее элементов - членов этого коллектива).

Объекты в системах могут быть как материальными, так и абстрактными. В первом случае говорят о материальных (эмпирических) системах ; во втором - о системах абстрактных. К числу абстрактных систем можно отнести теории, формальные языки, математические модели, алгоритмы и др.

Системы. Принципы системности

Для выделения систем в окружающем мире можно использовать следующие принципы системности .

Принцип внешней целостности - обособленность системы от окружающей среды. Система взаимодействует с окружающей средой как единое целое, ее поведение определяется состоянием среды и состоянием всей системы, а не какой-то отдельной ее частью.

Обособление системы в окружающей среде имеет свою цель, т.е. система характеризуется назначением. Другими характеристиками системы в окружающем мире являются ее вход, выход и внутреннее состояние.

Входом абстрактной системы, например некоторой математической теории, является постановка задачи; выходом - результат решения этой задачи, а назначением будет класс задач, решаемых в рамках данной теории.

Принцип внутренней целостности - устойчивость связей между частями системы. Состояние самой системы зависит не только от состояния ее частей - элементов, но и от состояния связей между ними. Именно поэтому свойства системы не сводятся к простой сумме свойств ее элементов, в системе появляются те свойства, которые отсутствуют у элементов в отдельности.

Наличие устойчивых связей между элементами системы определяет ее функциональные возможности. Нарушение этих связей может привести к тому, что система не сможет выполнять назначенные ей функции.

Принцип иерархичности- в системе можно выделить подсистемы, определяя для каждой из них свой вход, выход, назначение. В свою очередь, сама система может рассматриваться как часть более крупной системы.

Дальнейшее разбиение подсистем на части приведет к тому уровню, на котором эти подсистемы называются элементами исходной системы. Теоретически систему можно разбивать на мелкие части, по-видимому, бесконечно. Однако практически это приведет к тому, что появятся элементы, связь которых с исходной системой, с ее функциями будет трудно уловима. Поэтому элементом системы считают такие ее более мелкие части, которые обладают некоторыми качествами, присущими самой системе.

Важным при исследовании, проектировании и разработке систем является понятие ее структуры. Структура системы - совокупность ее элементов и устойчивые связи между ними. Для отображения структуры системы наиболее часто используются графические нотации (языки), структурные схемы. При этом, как правило, представление структуры системы выполняется на нескольких уровнях детализации: сначала описываются связи системы с внешней средой; потом рисуется схема с выделением наиболее крупных подсистем, далее - для подсистем строятся свои схемы и т.д.

Подобная детализация является результатом последовательного структурного анализа системы. Метод структурного системного анализа является подмножеством методов системного анализа вообще и применяется, в частности, в инженерии программирования, при разработке и внедрении сложных информационных систем. Основной идеей структурного системного анализа является поэтапная детализация исследуемой (моделируемой) системы или процесса, которая начинается с общего обзора объекта исследования, а затем предполагает его последовательное уточнение.

В системном подходе к решению исследовательских, проектных, производственных и других теоретических и практических задач этап анализа вместе с этапом синтеза образуют методологическую концепцию решения. В исследовании (проектировании, разработке) систем на этапе анализа производится разбиение исходной (разрабатываемой) системы на части для ее упрощения и последовательного решения задачи. На этапе синтеза полученные результаты, отдельные подсистемы соединяются воедино путем установления связей между входами и выходами подсистем.

Важно отметить, что разбиение системы на части даст разные результаты в зависимости от того, кто и с какой целью выполняет это разбиение. Здесь мы говорим только о таких разбиениях, синтез после которых позволяет получить исходную или задуманную систему. К таким не относится, например, «анализ» системы «компьютер» с помощью молотка и зубила. Так, для специалиста, внедряющего на предприятии автоматизированную информационную систему, важными будут информационные связи между подразделениями предприятия; для специалиста отдела поставок - связи, отображающие движение материальных ресурсов на предприятии. В итоге можно получить различные варианты структурных схем системы, которые будут содержать различные связи между ее элементами, отражающие ту или иную точку зрения и цель исследования.

Представление системы , при котором главным является отображение и исследование ее связей с внешней средой, с внешними системами, называется представлением на макроуровне. Представление внутренней структуры системы есть представление на микроуровне.

Классифкация систем

Классификация систем предполагает разделение всего множества систем на различные группы - классы, обладающие общими признаками. В основу классификации систем могут быть положены различные признаки.

В самом общем случае можно выделить два больших класса систем: абстрактные (символические) и материальные (эмпирические).

По происхождению системы делят на естественные системы (созданные природой), искусственные, а также системы смешанного происхождения, в которых присутствуют как элементы природные, так и элементы, сделанные человеком. Системы, которые являются искусственными или смешанными, создаются человеком для достижения своих целей и потребностей.

Дадим краткие характеристики некоторых общих видов систем.


Техническая система представляет собой взаимосвязанный, взаимообусловленный комплекс материальных элементов, обеспечивающих решение некоторой задачи. К таким системам можно отнести автомобиль, здание, ЭВМ, систему радиосвязи и т.п. Человек не является элементом такой системы, а сама техническая система относится к классу искусственных.

Технологическая система - система правил, норм, определяющих последовательность операций в процессе производства.

Организационная система в общем виде представляет собой множество людей (коллективов), взаимосвязанных определенными отношениями в процессе некоторой деятельности, созданных и управляемых людьми. Известные сочетания «организационно-техническая, организационно-технологическая система» расширяют понимание организационной системы средствами и методами профессиональной деятельности членов организаций.

Другое название - организационно-экономическая система применяют для обозначения систем (организаций, предприятий), участвующих в экономических процессах создания, распределения, обмена материальных благ.

Экономическая система - система производительных сил и производственных отношений, складывающихся в процессе производства, потребления, распределения материальных благ. Более общая социально-экономическая системаотражает дополнительно социальные связи и элементы, включая отношения между людьми и коллективами, условия трудовой деятельности, отдыха и т.п. Организационно-экономические системы функционируют в области производства товаров и/или услуг, т.е. в составе некоторой экономической системы. Эти системы представляют наибольший интерес как объекты внедрения экономических информационных систем (ЭИС), являющихся компьютеризированными системами сбора, хранения, обработки и распространения экономической информации. Частным толкованием ЭИС являются системы, предназначенные для автоматизации задач управления предприятиями (организациями).

По степени сложности различают простые, сложные и очень сложные (большие) системы. Простые системы характеризуются малым числом внутренних связей и относительной легкостью математического описания. Характерным для них является наличие только двух возможных состояний работоспособности: при выходе из строя элементов система или полностью теряет работоспособность (возможность выполнять свое назначение), или продолжает выполнять заданные функции в полном объеме.

Сложные системы имеют разветвленную структуру, большое разнообразие элементов и связей и множество состояний работоспособности (больше двух). Эти системы поддаются математическому описанию, как правило, с помощью сложных математических зависимостей (детерминированных или вероятностных). К числу сложных систем относятся практически все современные технические системы (телевизор, станок, космический корабль и т.д.).

Современные организационно-экономические системы (крупные предприятия, холдинги, производственные, транспортные, энергетические компании) относятся к числу очень сложных (больших) систем. Характерными для таких систем являются следующие признаки:

сложность назначения и многообразие выполняемых функций;

большие размеры системы по числу элементов, их взаимосвязей, входов и выходов;

сложная иерархическая структура системы, позволяющая выделить в ней несколько уровней с достаточно самостоятельными элементами на каждом из уровней, с собственными целями элементов и особенностями функционирования;

наличие общей цели системы и, как следствие, централизованного управления, подчиненности между элементами разных уровней при их относительной автономности;

наличие в системе активно действующих элементов - людей и их коллективов с собственными целями (которые, вообще говоря, могут не совпадать с целями самой системы) и поведением;

многообразие видов взаимосвязей между элементами системы (материальные, информационные, энергетические связи) и системы с внешней средой.

В силу сложности назначения и процессов функционирования построение адекватных математических моделей, характеризующих зависимости выходных, входных и внутренних параметров для больших систем является невыполнимым.

По степени взаимодействия с внешней средой различают открытые системы и замкнутые системы . Замкнутой называют систему, любой элемент которой имеет связи только с элементами самой системы, т.е. замкнутая система не взаимодействует с внешней средой. Открытые системы взаимодействуют с внешней средой, обмениваясь веществом, энергией, информацией. Все реальные системы тесно или слабо связаны с внешней средой и являются открытыми.

По характеру поведения системы делят на детерминированные и недетерминированные. К детерминированным относятся те системы, в которых составные части взаимодействуют между собой точно определенным образом. Поведение и состояние такой системы может быть однозначно предсказано. В случае недетерминированных систем такого однозначного предсказания сделать нельзя.

Если поведение системы подчиняется вероятностным законам, то она называется вероятностной. В таком случае прогнозирование поведения системы выполняется с помощью вероятностных математических моделей. Можно сказать, что вероятностные модели являются определенной идеализацией, позволяющей описывать поведение недетерминированных систем. Практически отнесение системы к детерминированным или недетерминированным часто зависит от задач исследования и подробности рассмотрения системы.

это структура, рассматриваемая в отношении определенной функции. Более подробный анализ понятия "система" позволяет выделить следующие общие моменты, присущие любой системе. Во-первых, "система" представляет собой нечто целостное, отличное от окружающей ее среды; во-вторых, эта целостность носит функциональный характер, в-третьих, система представляется дифференцируемой на конечное множество взаимосвязанных элементов, обладающих вполне определенными свойствами; в-четвертых, отдельные, элементы взаимосодействуют в плане общего назначения системы, в-пятых, свойства системы не сводятся к свойствам, образующих ее компонентов; в-шестых, система находится в информационном и энергетическом взаимодействии с окружающей средой; в-седьмых, система изменяет характер функционирования в зависимости от информации о полученных результатах; в-восьмых, системы могут обладать свойствами адаптивности. Целесообразно отметить, что один и тот же результат может быть достигнут разными системами, а в одной и той же структуре одни и те же элементы могут группироваться в разные системы, в зависимости от целевого назначения.

Система всегда носит функциональный характер, поэтому понятия "система" и "функциональная система" следует рассматривать как синонимы.

СИСТЕМА

сложный объект - совокупность качественно различных достаточно устойчивых элементов, взаимно связанных сложными и динамическими отношениями. Система как целое не сводится к "сумме своих частей", но проявляет системные свойства, коими не обладает ни одна из составных частей системы. Она подчиняется особым законам, не сводимым и не выводимым из законов функционирования отдельных элементов или частных связей, между ними. Это понятие изошло из теории систем, пограничной с математикой и кибернетикой, но стало общенаучным.

СИСТЕМА (ОРГАНИЗМА)

Совокупность органов и тканей, взаимосвязанных анатомически и функционально, отличающихся структурной общностью и эмбриогенетически.

С. АФФЕРЕНТНАЯ. Часть нервной системы, преобразующая энергию поступающих раздражений в нервные импульсы, поступающие в ЦНС.

С. ВЕСТИБУЛОМОЗЖЕЧКОВАЯ. Охватывает вестибулярные ядра ствола головного мозга, вестибулярный отдел мозжечка и их проводящие пути. Регулирует положение тела и его частей в пространстве, сохранение равновесия тела, координацию движений.

С. ЛИМБИЧЕСКАЯ. Включает участки коры головного мозга, расположенные на медиальной поверхности полушарий, связанные с ними проводящими путями базальные ядра, часть ядер гипоталамуса, гипоталамус, поводок. Выполняет функцию регулятора сна и бодрствования, эмоций, мотиваций и других наиболее общих состояний и реакций организма.

С. НЕРВНАЯ. Включает в себя нервные клетки (нейроны) и вспомогательные элементы. Осуществляет регуляцию и координацию всех органов и систем организма в их адаптации к условиям внешней среды.

С. НЕРВНАЯ ВЕГЕТАТИВНАЯ. Иннервирует внутренние органы, гладкие мышцы, железы, кровеносные и лимфатические сосуды, осуществляет адаптационно-трофическую функцию. Разделяется на симпатическую и парасимпатическую части.

Син.: С. нервная автономная.

С. НЕРВНАЯ ТРОФОТРОПНАЯ. Отдел С. нервной вегетативной, осуществляет функции регуляции анаболизма и поддержания гомеостаза в периоды отдыха.

С. НЕРВНАЯ ЦЕНТРАЛЬНАЯ. Включает головной и спинной мозг.

С. НЕРВНАЯ ЭРГОТРОПНАЯ. Регулирует катаболизм, осуществляет обеспечение приспособления к изменению условий окружающей среды, физическую и психическую деятельность. Как и С. нервная трофотропная, не связана с определенной структурной основой.

С. ПИРАМИДНАЯ. Включает проводящие пути, идущие от коры прецентральных извилин к двигательным ядрам и передним рогам спинного мозга (пирамидные пути). Участвует в организации произвольных движений.

С. СЕНСОРНАЯ. Включает С. афферентную и органы чувств.

С. СТРИОПАЛЛИДАРНАЯ. Часть экстрапирамидной (ядра полосатого тела и их проводящие, афферентные и эфферентные, пути).

С. ЭКСТРАПИРАМИДНАЯ Включает проекционные эфферентные пути от коры головного мозга, ядра полосатого тела, некоторые ядра ствола, мозжечок. Руководит координацией движений, осуществляет регуляцию мышечного тонуса.

С. ЭФФЕРЕНТНАЯ. Осуществляет передачу нервных импульсов из ЦНС к исполнительным органам (мышцам, железам и др.).

СИСТЕМА

1. В переводе с греческого означает организованное целое. Это значение термина сохраняется в большинстве специализированных контекстов, в которых он встречается. Фактически из-за ширины и разнообразия способов употребления этот термин редко встречается изолированно, он чаще модифицируется или определяется другим (одним или более) термином или фразой, например, кровеносная система, динамическая система, открытая система, нервная система и т.д. 2. Более или менее хорошо структурированный набор идей, предположений, понятий и интерпретативных тенденций, который служит для того, чтобы структурировать данные в определенной научной области, например, система Коперника в астрономии, или любая из школ в психологии, например, бихевиоризм, структурализм и т.д. 3. Более узкое значение – определенным образом организованные или взаимосвязанные вещи (объекты, механизмы, стимулы и т.д.); см. конфигурация.

Система

это комплекс объектов, а также взаимоотношения между объектами и их атрибутами (определениями). В качестве объектов семейной системы, являющихся ее составными частями, выступают подсистемы (супружеская, детско-родительская, сиблинговая и индивидуальная), в то время как атрибуты представляют собой свойства подсистем.

Система

от греч. systema - составленное из частей, соединенное) - совокупность элементов, находящихся в отношениях и связях между собой и образующих определенную целостность, единство, качество.

СИСТЕМА

от греч. syst?ma – составленное из частей, соединенное) – совокупность элементов, находящихся в отношениях и связях между собой и образующих определенную целостность, единство. Понятие «C.» играет важную роль в философии, науке, технике и практической деятельности. Начиная с середины ХХ в. ведутся интенсивные разработки в области системного подхода и общей теории систем. Для С. характерно не только наличие связей и отношений между образующими ее элементами (определенная организованность), но и неразрывное единство со средой, во взаимоотношениях с которой C. проявляет свою целостность. Любая C. м. б. рассмотрена как элемент C. более высокого порядка, в то время как ее элементы могут выступать в качестве C. более низкого порядка. Для большинства C. характерно наличие процессов передачи информации и управления. K наиболее сложным типам C. относятся целенаправленные С, поведение которых подчинено достижению определенной цели, и самоорганизующиеся C., способные в процессе своего функционирования изменять свою структуру. Для многих сложных C. (живых, социальных и т. д.) характерно существование разных по уровню, часто не согласующихся целей, кооперирование и конфликт этих целей и т. д. Конфликт является классической социальной С, имеющей свою структуру, функции, информационную подсистему и др. Конфликт входит как один из компонентов в С. более высокого порядка. Системный подход к исследованию конфликтов является одним из наиболее перспективных на сегодняшнем этапе развития отечественной конфликтологии.

Система

греч. systema – соединение, целое, состоящее из частей). Совокупность каких-либо компонентов, взаимосвязанных и взаимодействующих, имеющих общие происхождение и общие черты строения и выполняемых функций.

СИСТЕМА

от греч. systema - целое, составленное из частей; соединение] - 1) множество закономерно связанных друг с другом элементов (предметов, явлений, взглядов, знаний и т.д.), представляющее собой определенное целостное образование, единство. Выделяют материальные и абстрактные С. Первые подразделяются на С. неорганической природы и живые С. Абстрактные С. - понятия, гипотезы, теории, научные знания о С., лингв. (языковые), формализованные, логические С. и др. 2) физиол. совокупность тканей, органов, их частей, представляющих собой определенное единство и связанных общей функцией (см., напр., Нервная система, Дыхательная система)

СИСТЕМА

от греч. systema - составленное из частей, соединение) - совокупность элементов, находящихся в отношениях и связях между собой и образующих определенную целостность, единство. Понятие С. играет важную роль в науке, технике, практической деятельности. Велико его значение для психологии вообще и инженерной психологии в частности. Изучение С. ведется с позиций системного подхода, общей теории систем, системотехники. Большую роль для понимания механизмов С. управления (больших, сложных С.) сыграли кибернетика и ряд смежных с ней технических дисциплин. Для С. характерно не только наличие связей и отношений между образующими ее элементами (определенная организованность), но и неразрывное единство со средой, во взаимодействии с которой С. проявляет свою целостность. Любая С. может быть рассмотрена как элемент С. более высокого порядка, в то время как ее элементы могут выступать в качестве С. более низкого порядка. Напр., человек, являясь элементом СЧМ, в качестве входящих в него элементов содержит нервную систему, сердечно-сосудистую систему и др. Иерархичность, многоуровневость характеризуют строение, морфологию С. и ее поведение, функционирование: отдельные уровни С. обусловливают определенные аспекты ее поведения, а целостное функционирование оказывается результатом взаимодействия всех ее сторон, уровней. Для большинства С. характерно наличие в них процессов передачи информации и управления. В наиболее общем плане С. делятся на материальные и абстрактные (идеальные). Первые, в свою очередь, включают С. неорганической природы (технические, геологические и др.), живые С, особый класс материальных С. образуют социальные С. Абстрактные С. являются продуктом человеческого мышления (напр., С. психологических понятий, С. стандартов безопасности труда и т. п.). По степени сложности различают простые и сложные С, для последних характерны существование различных по уровню, часто не согласующихся между собой целей, кооперирование и конфликт этих целей и т. д. К наиболее сложным относятся целеустремленные С. По величине и размерам могут быть малые и большие С, причем большая С. не всегда является сложной и наоборот. При использовании других оснований классификации выделяются статичные (не меняющие своего состояния с течением времени) и динамичные (меняющие свое состояние; человек) С.; детерминированные и стохастические (вероятностные) С. Для последней знание значений переменных в данный момент времени позволяет, в отличие от статичных С, только предсказать вероятность распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношения С. и среды С. делятся на закрытые - замкнутые (в них не поступает и из них не выделяется вещество, происходит только обмен энергией) и открытые - не замкнутые (в них постоянно происходит ввод-вывод не только энергии, но и вещества). По второму закону термодинамики каждая закрытая С. в конечном итоге достигает состояния равновесия. Рост научно-технического прогресса привел к необходимости разработки и создания автоматизированных С. управления в различных отраслях народного хозяйства. Теоретические вопросы создания таких С. разрабатываются в теориях иерархических, многоуровневых С, целенаправленных С, в своем функционировании стремящихся к достижению определенных целей), самоорганизующихся С. (способных менять свою организацию, структуру) и др. Сложность, многокомпонентность, стохастичность и др. важнейшие особенности современных технических С. потребовали разработки теорий СЧМ, сложных систем, системотехники, системного анализа.

Скорее всего, вы уже слышали о вики - они, кажется, выскакивают отовсюду. К примеру, наиболее известный вики-сайт называется Википедией. Это большая интернет-энциклопедия. Википедия стала такой большой (более миллиона статей), что при поиске в Google все время сталкиваешься со ссылками на нее. Она так популярна, что в настоящее время входит в первую сотню наиболее популярных WEB узлов мира!

Вики получают широкое распространение по той причине, что они по своей сути настолько просты, насколько это возможно. Благодаря этой простоте, людям легко ими пользоваться, так же, как электронной почтой и блогами. Подобно электронной почте и блогам, вики также выполняют полезные функции простым способом. Благодаря вики, группа людей получает возможность вводить и сообща редактировать участки текста. Эти участки текста может просматривать и редактировать любой посетитель вики-сайта.

Вот и все. Это означает, что, попав на вики-сайт, вы сможете редактировать то, что было написано вики-сообществом. Нажав кнопку «edit» («Редактировать»), относящуюся к статье, вы сможете редактировать текст этой статьи. В статье, которую вы читаете, можно будет добавлять или изменять все, что угодно, на ваше усмотрение.

Эта простота и абсолютная открытость вики привели к тому, что многие немедленно отвергли эту идею. Для многих людей вики представляются также очень странными. Откуда поступает вся информация? Надежна ли она? Что удержит людей от злонамеренного разрушения вики-сайта, пока тот не исчезнет окончательно? Бытует мнение, что поскольку редактировать вики может кто угодно в любое время, то вики обязательно испортят. Однако приверженцы вики считают, что это неверное предположение. Рассмотрим реальный вики-сайт, чтобы понять, что в действительности происходит.

Как работает Википедия

Поскольку Википедия - самый большой и очень популярный вики-сайт на планете, используем его в качестве примера того, как на практике действуют вики.

Если зайти на Wikipedia.org и взглянуть на домашнюю страницу, вы увидите окно приветствия, в котором показано, как получить доступ к разным версиям Википедии, а также окно поиска.

Наберите в окне поиска фразу «wing warping» - и откроется типичная статья Википедии. На странице «Wing warping» («Закручивание крыла») предлагается краткое описание закручивания крыла, приводятся ссылки на близкие по теме статьи в Википедии и предлагается несколько ссылок на внешние источники.

Это обычная практика для любой вики-страницы. Ведь вики - не больше, чем собранные вместе WEB страницы, соединенные между собой внутренними ссылками. В англоязычной версии Википедии имеется более миллиона таких страниц.

Прочитав статью, понимаешь, что это полезный источник информации. Здесь просто рассказывается, что представляет собой закручивание крыла, и предлагаются ссылки на другие ресурсы. Несмотря на то, что редактировать страницу может любой (даже вы), здесь нет порнографии, сквернословия или нацистских лозунгов. Весь материал только по теме.

Теперь можно задать главный вопрос, который задается о вики-страницах: откуда взялась эта страница о закручивании крыла? Кто ее написал? Для любой «нормальной» энциклопедии ответить на этот вопрос просто - создатели энциклопедии заплатили определенным людям и те написали статью. По отношению к Википедии ответ на этот вопрос будет совсем другим.

Вернемся к соотнесению понятий «простое» - «сложное». Если нечто определяем как «сложное», то подразумеваем, что оно имеет какое-то строение, т.е. из чего-то состоит. В дальнейшем эту составную часть сложного будем называть компонентом. Очевидно, компоненты могут быть двух типов:

· сложные, т.е. те, которые в свою очередь состоят из чего-то еще.

Теперь можно попытаться определить понятие система.

Система - совокупность взаимодействующих компонентов, каждый из которых в отдельности не обладает свойствами системы в целом, но является ее неотъемлемой частью.

Комментарии к определению:

1. Системой может называться не любая совокупность (объединение) неких сущностей, а только сущностей взаимодействующих, т.е. связанных друг с другом. Например, груду кирпичей или набор радиодеталей считать системами нельзя; если же эти кирпичи разместить в определенном порядке и связать раствором, а радиодетали нужным образом соединить между собой, то получатся системы - дом и телевизор. Следствием взаимодействия оказывается то, что компоненты системы определенным образом организованы, т.е. система имеет структуру, отражающую ее организацию (устройство). Взаимодействия (связи) могут быть различной природы: механические, физические, информационные и др. К способам описания структуры необходимо отнести языковый (с использованием естественного или формализованного языка) и графический.

2. Любая система обладает двумя качествами: системности и единства.

· системность означает, что при объединении компонентов возникает некоторое новое качество - системное свойство - которым изначально не обладали отдельные компоненты; в рассмотренном выше примере с телевизором совершенно очевидно, что никакая его деталь (компонент) по отдельности не обладают свойством демонстрации изображения и звука, перенесенных радиоволнами;

· единство или, по-другому, целостность системы означает, что удаление из нее какого-либо компонента приводит фактически к ее уничтожению, поскольку меняется (или исчезает) системное свойство (в этом легко убедиться, если из телевизионной схемы убрать какую-либо деталь).

3. Уточним терминологию: предельно простые компоненты системы далее будем называть объектами; сложные, которые также состоят из связанных простых (и, следовательно, подпадают под определение системы), будем называть подсистемами. Например, двигатель является подсистемой автомобиля, а болт - объектом.

4. Понятия «система» и «модель» неразрывно связаны друг с другом. Выделение, изучение и описание каких-либо систем неизбежно сопровождается моделированием, т.е. упрощениями, причем, моделирование осуществляется на двух уровнях. На внешнем уровне производится выделение самой системы: поскольку любое реальное объединение (прототип системы) включает множество составляющих и связей между ними, на этапе постановки задачи приходится какие-то из них включать в систему и рассматривать далее, а какие-то отбрасывать как второстепенные. На внутреннем уровне моделирование состоит в том, что часть составляющих системы принимаются и рассматриваются в качестве объектов, что, как указывалось выше, также является упрощением. Кроме того, пренебрегается некоторыми внутренними взаимосвязями. Таким образом, в задачах, связанных с изучением и описанием сложных объединений, система - это модельное представление. Однако это утверждение не будет справедливым для задач, в которых системы создаются искусственно (т.е. человеком) - технические конструкции и механизмы, здания, художественные произведения, компьютерные программы и пр. - порождаемые фантазией автора, они не имеют прототипов и, следовательно, не могут быть моделями, хотя подпадают под определение системы. С другой стороны, модель сложного прототипа также представляет собой объединение связанных составных частей, т.е. модель является системой. Однако модель объекта, очевидно, системой быть не может. Следовательно, несмотря на связь понятий «система» и «модель», их нельзя отождествлять; соотношение понятий определяется характером решаемой задачи.

5. Приведенное определение является инвариантным по отношению к области знаний или технологий, в которой система исследуется или создается. Другими словами, степень общности определения высока.

На практике необходимость выделения систем связаны с постановкой и решением следующих задач:

· изучение прототипа системы, т.е. выяснение строения природного или искусственного прототипа системы, особенностей связей между компонентами, влияния внешних и внутренних факторов на характер протекающих процессов;

· описание системы, т.е. представление системы языковыми или графическими средствами;

· построение системы - создание новой системы из компонентов;

· использование системы - решение с помощью системы каких-то проблем практики.

При решении перечисленных системных задач используются два метода - анализ и синтез.

Анализ - метод исследования, основанный на выделении отдельных компонентов системы и рассмотрении их свойств и связей.

Анализ - это декомпозиция (расчленение) сложного объединения на составные части и рассмотрение их и связей между ними по отдельности. В информатике имеется раздел (это и самостоятельная наука) - системный анализ, в котором изучаются способы выделения, описания и исследования систем. В то же время, анализ является универсальным методом познания, применяемым во всех без исключения научных и прикладных дисциплинах. Его альтернативой и дополнением является синтез.

Синтез - (1) метод исследования (изучения) системы в целом (т.е. компонентов в их взаимосвязи), сведение в единое целое данных, полученных в результате анализа.

(2) создание системы путем соединения отдельных компонентов на основании законов, определяющих их взаимосвязь.

Синтез - это объединение составляющих для получения нового качества (системного свойства). Такое объединение возможно только после изучения свойств компонентов и закономерностей их взаимодействий, а также изучения влияния различных факторов на системные свойства. Синтез - целенаправленная деятельность человека, следовательно, его результатом будет искусственная система (в отличие от природных естественных). Создание системы может производиться с конечной целью изучения и описания ее прототипа - подобную систему, как было сказано выше, следует считать моделью. Примером может служить упоминавшаяся ранее имитационная модель процессов в атмосфере Земли, на основании которой прогнозируется погода. Другой целью создания (построения) системы может быть ее практическое использование для удовлетворения каких-либо потребностей человека, например, сооружения, транспортные средства, электронные устройства. Эти системы нельзя считать моделями, поскольку отсутствуют их прототипы. Однако они сами являются прототипами для чертежей и схем, по которым создаются. К этой же категории искусственных систем необходимо отнести художественные произведения, компьютерные программы и другие построения, выполненные посредством некоторого языка (естественного или формализованного) и имеющие смысловую завершенность.

Использование системы - это конечная цель ее изучения или создания. Часто использование связано с управлением системой; общие законы управления системами изучает раздел информатики под названием кибернетика.

Прежде чем выделить различные классы систем, произведем ряд терминологических уточнений. Полный набор свойств системы - поле свойств системы - составляют поля свойств ее отдельных компонентов, а также системные свойства. В дальнейшем из индивидуальных свойств компонентов будем включать в поле свойств системы лишь те, которые оказываются существенными для системы, т.е. определяют характер связей (отношений) с другими компонентами или внешними по отношению к системе телами. Таким образом, на данном этапе обсуждения можем каждой системе поставить в соответствие три множества: множество компонентов {А }, множество отношений между ними {R }, а также множество (поле) свойств системы {P }.

Рассмотрим некоторые признаки, которые могут быть положены в основу классификации систем.