В каком слое образуется солнечный ветер. Солнечный ветер. Факты и теория. Быстрый солнечный ветер

В конце 40-х годов американский астроном С. Форбуш обнаружил непонятное явление. Измеряя интенсив­ность космических лучей, Форбуш заметил, что она значительно снижается при возрастании солнечной ак­тивности и совсем резко падает во время магнитных бурь.

Это представлялось довольно странным. Скорее, мож­но было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на земное магнитное поле таким об­разом, что оно начинает отклонять частицы космических лучей - отбрасывать их. Путь к Земле как бы запи­рается.

Объяснение казалось логичным. Но, увы, как выяс­нилось вскоре, оно было явно недостаточным. Подсчеты, проделанные физиками, неопровержимо свидетельство­вали о том, что изменение физических условий только в непосредственной близости от Земли не может вызвать эффекта такого масштаба, какой наблюдается в дей­ствительности. Очевидно, должны существовать и какие-то другие силы, препятствующие проникновению космических лучей в солнечную систему, и притом такие, которые возрастают с увеличением солнечной активности.

Тогда-то и возникло предположение, что виновни­ками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и про­низывающие пространство солнечной системы. Этот свое­образный «солнечный ветер» и очищает межпланетную среду, «выметая» из нее частицы космических лучей.

В пользу подобной гипотезы говорили также явления, наблюдающиеся в кометах. Как известно, кометные хво­сты всегда направлены от Солнца. Вначале это обстоя­тельство связывали со световым давлением солнечных лучей. Однако в середине текущего столетия было уста­новлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты пока­зали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества. Кстати, такие частицы могли бы возбуждать происходящее в кометных хвостах свечение ионов.

Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц - корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Их возникновение астро­номы связывали с появлением вспышек и пятен. Но ко­метные хвосты направлены в противоположную от Солн­ца сторону всегда, а не только в периоды усиления сол­нечной активности. Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возраста­нием солнечной активности, но существует всегда.

Таким образом, околосолнечное пространство непре­рывно обдувается солнечным ветром. Из чего же состоит этот ветер и при каких условиях он возникает?

Познакомимся с самым внешним слоем солнечной ат­мосферы - «короной». Эта часть атмосферы нашего дневного светила необычайно разрежена. Даже в непо­средственной близости от Солнца ее плотность состав­ляет всего около одной стомиллионной доли плотности земной атмосферы. Это значит, что в каждом куби­ческом сантиметре околосолнечного пространства содер­жится всего несколько сотен миллионов частиц короны. Но так называемая «кинетическая температура» короны, определяемая по скорости движения частиц, весьма вели­ка. Она достигает миллиона градусов. Поэтому корональный газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных элект­ронов.

Недавно появилось сообщение о том, что в составе солнечного ветра обнаружено присутствие ионов гелия. Это обстоятельство проливает спет на тот механизм, с помощью которого происходит выброс заряженных

частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее про­тонов и поэтому маловероятно, чтобы они могли выбра­сываться вследствие испарения. Скорее всего образова­ние солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным «цементом», который «скрепляет» воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астронома­ми, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. В этой области солнечной системы на каждый ку­бический сантиметр пространства приходится от ста до тысячи корональных частиц. Другими словами, наша планета находится внутри солнечной атмосферы и, если хотите, мы вправе называть себя не только жителями Земли, но и жителями атмосферы Солнца.

Если вблизи Солнца корона более или менее ста­бильна, то по мере увеличения расстояния она стре­мится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже па расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость звука. И но мере дальнейшего удаления от Солнца и ослабления силы солнечного притяжения эти скорости возрастают еще в несколько раз.

Таким образом, напрашивается вывод о том, что сол­нечная корона - это и есть солнечный ветер, обдуваю­щий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтвер­ждены измерениями па космических ракетах и искус­ственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли «дует» со ско­ростью около 400 км\сек. С увеличением солнечной ак­тивности скорость эта возрастает.

Как далеко дует солнечный ветер? Вопрос этот пред­ставляет значительный интерес, однако для получения соответствующих экспериментальных данных необходимо осуществить зондирование космическими аппаратами внешней части солнечной системы. Пока же это не сде­лано, приходится довольствоваться теоретическими сооб­ражениями.

Однако однозначного ответа получить не удается. В зависимости от исходных предпосылок расчеты при­водят к различным результатам. В одном случае получается, что солнечный ветер затихает уже в районе ор­биты Сатурна, в другом, - что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.

Наиболее достоверными были бы, как мы уже отме­чали, данные космических зондов. Но в принципе воз­можны и некоторые косвенные наблюдения. В частности, было замечено, что после каждого очередного спада сол­нечной активности соответствующее возрастание интен­сивности космических лучей высоких энергий, т. е. лу­чей, приходящих в солнечную систему извне, происходит с запозданием примерно на шесть месяцев. Видимо, это и есть как раз тот срок, который необходим, чтобы оче­редное изменение мощности солнечного ветра дошло до границы его распространения. Так как средняя скорость распространения солнечного ветра составляет около 2,5 астрономической единицы (1 астрономическая еди­ница = 150 млн. км-среднему расстоянию Земли от Солн­ца) в сутки, то это дает расстояние около 40-45 астро­номических единиц. Другими словами, солнечный ветер иссякает где-то в районе орбиты Плутона.

Может достигать значений до 1,1 миллиона градусов по Цельсию. Поэтому, имея такую температуру, частицы двигаются очень быстро. Гравитация Солнца не может удержать их — и они покидают звезду.

Активность Солнца меняется в течение 11-летнего цикла. При этом количество солнечных пятен, уровни радиации и масса выброшенного в космос материала меняются. И эти изменения влияют на свойства солнечного ветра — его магнитное поле, скорость, температуру и плотность. Поэтому солнечный ветер может иметь разные характеристики. Они зависят от того, где конкретно находился его источник на Солнце. И еще они зависят от того, насколько быстро вращалась эта область.

Скорость солнечного ветра выше скорости движения вещества корональных отверстий. И достигает 800 километров в секунду. Эти отверстия возникают на полюсах Солнца и в его низких широтах. Они приобретают наибольшие размеры в те периоды, когда активность на Солнце минимальна. Температуры вещества, переносимого солнечным ветром, могут достигать 800 000 C.

В поясе коронального стримера, расположенного вокруг экватора, солнечный ветер движется медленнее — около 300 км. в секунду. Установлено, что температура вещества, перемещающегося в медленном солнечном ветре достигает 1,6 млн. C.

Солнце и его атмосфера состоят из плазмы и смеси положительно и отрицательно заряженных частиц. Они имеют чрезвычайно высокие температуры. Поэтому материя постоянно покидает Солнце, уносимая солнечным ветром.

Воздействие на Землю

Когда солнечный ветер покидает Солнце, он несет заряженные частицы и магнитные поля. Излучаемые во всех направлениях частицы солнечного ветра постоянно воздействует на нашу планету. Этот процесс вызывает интересные эффекты.

Если материал, переносимый солнечным ветром, достигнет поверхности планеты, он нанесет серьезный ущерб любой форме жизни, которая существует на . Поэтому магнитное поле Земли служит щитом, перенаправляя траектории солнечных частиц вокруг планеты. Заряженные частицы как бы «стекают» за ее пределами. Воздействие солнечного ветра изменяет магнитное поле Земли таким образом, что оно деформируется и растягивается на ночной стороне нашей планеты.

Иногда Солнце выбрасывает большие объемы плазмы, известные как выбросы корональной массы (CME), или солнечные бури. Чаще всего это происходит в период активного периода солнечного цикла, известного как солнечный максимум. CME имеют более сильный эффект, чем стандартный солнечный ветер.

Некоторые тела Солнечной системы, как и Земля, экранированы магнитным полем. Но многие из них такой защиты не имеют. Спутник нашей Земли — не имеет никакой защиты для своей поверхности. Поэтому испытывает максимальное воздействие солнечного ветра. У Меркурия, ближайшей к Солнцу планеты, есть магнитное поле. Оно защищает планету от обычного стандартного ветра, однако оно не способно противостоять более мощным вспышкам, таким как CME.

Когда высоко — и низкоскоростные потоки солнечного ветра взаимодействуют друг с другом, они создают плотные области, известные как области с вращающимся взаимодействием (CIR). Именно эти области вызывают геомагнитные бури при столкновении с земной атмосферой.

Солнечный ветер и заряженные частицы, которые он несет, могут влиять на спутники Земли и Глобальные системы позиционирования (GPS). Мощные всплески могут повредить спутники или вызвать ошибки определений координат при использовании сигналов GPS в десятки метров.

Солнечный ветер достигает всех планет в . Миссия NASA New Horizons обнаружила его, когда путешествовала между и .

Изучение солнечного ветра

Ученым известно о существовании солнечного ветра с 1950-х годов. Но несмотря на его серьезное воздействие на Землю и космонавтов, ученые все еще не знают многих его характеристик. Несколько космических миссий, совершенных в последние десятилетия, пытались объяснить эту тайну.

Запущенная в космос 6 октября 1990 года миссия NASA Ulysses изучала Солнце на разных его широтах. Она измеряла различные свойства солнечного ветра в течение более чем десяти лет.

Миссия Advanced Composition Explorer () имела орбиту, связанную с одной из особых точек, находящихся между Землей и Солнцем. Она известна как точка Лагранжа. В этой области гравитационные силы от Солнца и Земли имеют одинаковое значение. И это позволяет спутнику иметь стабильную орбиту. Начатый в 1997 году эксперимент ACE изучает солнечный ветер и обеспечивает измерения постоянного потока частиц в реальном масштабе времени.

Космические аппараты NASA STEREO-A и STEREO-B изучают края Солнца с разных сторон, чтобы увидеть, как рождается солнечный ветер. По данным NASA , STEREO представила «уникальный и революционный взгляд на систему Земля — Солнце».

Новые миссии

NASA планирует запуск новой миссии по изучению Солнца. Она дает ученым надежду узнать еще больше о природе Солнца и солнечного ветра. Солнечный зонд NASA Parker , планируемый к запуску (успешно запущен 12.08.2018 — Navigator ) летом 2018 года, будет работать таким образом, чтобы буквально «коснуться Солнца». Спустя несколько лет полета на орбите, близкой к нашей звезде, зонд впервые в истории погрузится в корону Солнца. Это будет сделано для того, чтобы получить комбинацию фантастических изображений и измерений. Эксперимент продвинет вперед наше понимание природы солнечной короны, и улучшит понимание происхождения и эволюции солнечного ветра.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В 1957 профессор Чикагского университета Е.Паркер теоретически предсказал явление, которое и получило наименование «солнечный ветер». Понадобилось два года, чтобы это предсказание было подтверждено экспериментально при помощи приборов, установленных на советских космических аппаратах «Луна-2» и «Луна-3» группой К.И.Грингауза. Что же представляет собой это явление?

Солнечный ветер – это поток полностью ионизованного водородного газа, называемого обычно полностью ионизованной водородной плазмой в силу примерно одинаковой плотности электронов и протонов (условие квазинейтральности), который с ускорением движется от Солнца. В районе орбиты Земли (на одной астрономической единице или, на 1 АЕ от Солнца) его скорость достигает среднего значения V E » 400–500 км/сек при температуре протонов T E » 100 000К и несколько большей температуре электронов (индекс «Е» здесь и в дальнейшем относится к орбите Земли). При таких температурах скорость на 1 АЕ существенно превосходит скорость звука, т.е. поток солнечного ветра в районе орбиты Земли является сверхзвуковым (или гиперзвуковым). Измеренная концентрация протонов (или электронов) достаточно мала и составляет величину n E » 10–20 частиц в кубическом сантиметре. Кроме протонов и электронов, в межпланетном космическом пространстве были обнаружены альфа-частицы (порядка нескольких процентов от концентрации протонов), небольшое количество более тяжелых частиц, а также межпланетное магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1g = 10 –5 гаусс).

Крах представления о статической солнечной короне.

В течение достаточно длительного времени считалось, что все атмосферы звезд находятся в состоянии гидростатического равновесия, т.е. в состоянии, когда сила гравитационного притяжения данной звезды уравновешивается силой, связанной с градиентом давления (изменением давления в атмосфере звезды на расстоянии r от центра звезды. Математически это равновесие выражается в виде обыкновенного дифференциального уравнения,

где G – гравитационная постоянная, M * – масса звезды, p и r – давление и массовая плотность на некотором расстоянии r от звезды. Выражая массовую плотность из уравнения состояния для идеального газа

р = rRT

через давление и температуру и интегрируя полученное уравнение, получаем так называемую барометрическую формулу (R – газовая постоянная), которая в частном случае постоянной температуры Т имеет вид

где p 0 – представляет собой давление у основания атмосферы звезды (при r = r 0). Поскольку до работы Паркера считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось аналогичными формулами. Учитывая необычное и не до конца еще понятое явление резкого возрастания температуры примерно от 10 000 К на поверхности Солнца до 1 000 000 К в солнечной короне, С.Чепмен развил теорию статической солнечной короны, которая должна была плавно переходить в локальную межзвездную среду, окружающую Солнечную систему. Отсюда следовало, что, согласно представлениям С.Чепмена, Земля, совершающая свои обороты вокруг Солнца, погружена в статическую солнечную корону. Эта точка зрения в течение длительного времени разделялась астрофизиками.

Удар по этим уже установившимся представлениям был нанесен Паркером. Он обратил внимание на то, что давление на бесконечности (при r ® Ґ), которое получается из барометрической формулы, по величине почти в 10 раз превосходит давление, которое было принято в то время для локальной межзвездной среды. Чтобы устранить это расхождение Е.Паркер предположил, что солнечная корона не может находиться в гидростатическом равновесии, а должна непрерывно расширяться в окружающую Солнце межпланетную среду, т.е. радиальная скорость V солнечной короны не равна нулю. При этом вместо уравнения гидростатического равновесия он предложил использовать гидродинамическое уравнение движения вида, где М Е – масса Солнца.

При заданном распределении температуры Т , как функции расстояния от Солнца, решение этого уравнения с использованием барометрической формулы для давления и уравнение сохранения массы в виде

можно трактовать как солнечный ветер и именно при помощи этого решения с переходом от дозвукового течения (при r r *) к сверхзвуковому (при r > r *) можно согласовать давление р с давлением в локальной межзвездной среде, а, следовательно, именно это решение, названное солнечным ветром, осуществляется в природе.

Первые прямые измерения параметров межпланетной плазмы, которые проводились на первых космических аппаратах, выходивших в межпланетное космическое пространство, подтвердили правильность идеи Паркера о наличии сверхзвукового солнечного ветра, причем оказалось, что уже в районе орбиты Земли скорость солнечного ветра намного превосходит скорость звука. С тех пор нет сомнения, что представление Чепмена о гидростатическом равновесии солнечной атмосферы ошибочно, а солнечная корона непрерывно расширяется со сверхзвуковой скоростью в межпланетное космическое пространство. Несколько позже астрономические наблюдения показали, что и многие другие звезды обладают «звездными ветрами», аналогичными солнечному ветру.

Несмотря на то, что солнечный ветер предсказан теоретически на основе сферически-симметричной гидродинамической модели, само явление оказалось значительно сложнее.

Какова реальная картина движения солнечного ветра? В течение длительного времени солнечный ветер считался сферически-симметричным, т.е. независимым от солнечных широты и долготы. Поскольку космические аппараты до 1990, когда был запущен космический аппарат «Улисс» (Ulysses), в основном, летали в плоскости эклиптики, то измерения на таких космических аппаратах давали распределения параметров солнечного ветра только в этой плоскости. Расчеты, проводимые по наблюдениям отклонения хвостов комет, указывали на приблизительную независимость параметров солнечного ветра от солнечной широты, однако, этот вывод на основании кометных наблюдений не был достаточно надежен из-за сложностей интерпретации этих наблюдений. Хотя долготная зависимость параметров солнечного ветра измерялась приборами, установленными на космических аппаратах, тем не менее, она была либо незначительной и связывалась с межпланетным магнитным полем солнечного происхождения, либо с кратковременными нестационарными процессами на Солнце (главным образом, с солнечными вспышками).

Измерения параметров плазмы и магнитного поля в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят, таким образом, от солнечной долготы. Качественно четырехсекторная структура показана на рис. 1.

При этом наземные телескопы обнаруживают общее магнитное поле на поверхности Солнца. Его средняя величина оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например, в солнечных пятнах магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то солнечные магнитные поля так или иначе взаимодействуют с солнечным ветром вследствие появления пондеромоторной силы j ґ B . Эта сила мала в радиальном направлении, т.е. она практически не влияет на распределение радиальной компоненты солнечного ветра, однако ее проекция на перпендикулярное к радиальному направление приводит к появлению у солнечного ветра тангенциальной компоненты скорости. Хотя эта компонента почти на два порядка меньше радиальной, она играет существенную роль в выносе из Солнца момента количества движения. Астрофизики предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и у других звезд, у которых обнаружен звездный ветер. В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче ими вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы в присутствии магнитного поля открывает возможность пересмотра этой гипотезы.

Измерения среднего магнитного поля не только в районе орбиты Земли, но и на больших гелиоцентрических расстояниях (например, на космических аппаратах «Вояджер 1 и 2» и «Пионер 10 и 11») показали, что в плоскости эклиптики, почти совпадающей с плоскостью солнечного экватора, его величина и направление хорошо описывается формулами

полученными Паркером. В этих формулах, описывающих так называемую паркеровскую спираль Архимеда, величины B r , B j – радиальная и азимутальная компоненты вектора магнитной индукции соответственно, W – угловая скорость вращения Солнца, V – радиальная компонента солнечного ветра, индекс «0» относится к точке солнечной короны, в которой величина магнитного поля известна.

Запуск Европейским космическим агентством в октябре 1990 космического аппарата «Улисс», траектория которого была рассчитана таким образом, что в настоящее время он вращается вокруг Солнца в плоскости, перпендикулярной плоскости эклиптики, полностью изменил представления о том, что солнечный ветер сферически симметричен. На рис. 2 представлены измеренные на аппарате «Улисс» распределения радиальной скорости и плотности протонов солнечного ветра как функции солнечной широты.

Из этого рисунка видна сильная широтная зависимость параметров солнечного ветра. Оказалось, что скорость солнечного ветра возрастает, а плотность протонов уменьшается с гелиографической широтой. И если в плоскости эклиптики радиальная скорость в среднем ~ 450 км/cек, а плотность протонов ~15 см –3 , то, например, на 75° солнечной широты эти величины ~700км/сек и ~5 см –3 соответственно. Зависимость параметров солнечного ветра от широты менее выражена в периоды минимума солнечной активности.

Нестационарные процессы в солнечном ветре.

Модель, предложенная Паркером, предполагает сферическую симметрию солнечного ветра и независимость его параметров от времени (стационарность рассматриваемого явления). Однако процессы, происходящие на Солнце, вообще говоря, не являются стационарными, а следовательно, и солнечный ветер не является стационарным. Характерные времена изменения параметров имеют самые различные масштабы. В частности, имеют место изменения параметров солнечного ветра, связанные с 11-летним циклом солнечной активности. На рис. 3 показано измеренное при помощи космических аппаратов IMP-8 и Voyager-2 среднее (за 300 дней) динамическое давление солнечного ветра (r V 2) в районе орбиты Земли (на 1 АЕ) в течение одного 11-летнего солнечного цикла солнечной активности (верхняя часть рисунка). На нижней части рис. 3 изображено изменение числа солнечных пятен за время с 1978 по 1991 (максимальное число соответствует максимуму солнечной активности). Видно, что параметры солнечного ветра существенно меняются за характерное время порядка 11-лет. При этом измерения на космическом аппарате «Улисс» показали, что такие изменения происходят не только в плоскости эклиптики, но и на других гелиографических широтах (на полюсах динамическое давление солнечного ветра несколько выше, чем на экваторе).

Изменения параметров солнечного ветра могут происходить и на гораздо меньших временных масштабах. Так, например, вспышки на Солнце и разные скорости истечения плазмы из разных областей солнечной короны приводят к тому, что в межпланетном пространстве образуются межпланетные ударные волны, которые характеризуются резким скачком скорости, плотности, давления, температуры. Качественно механизм их образования показан на рис. 4. Когда быстрый поток какого-либо газа (например, солнечной плазмы) догоняет более медленный, то в месте их соприкосновения возникает произвольный разрыв параметров газа, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности, на две ударные волны (на них законы сохранения массы импульса и энергии приводят к так называемым соотношениям Гюгонио) и тангенциальный разрыв (те же законы сохранения приводят к тому, что на нем давление и нормальная компонента скорости должны быть непрерывны). На рис. 4 этот процесс показан в упрощенной форме сферически симметричной вспышки. Здесь надо отметить, что такие структуры, состоящие из впереди идущей ударной волны (forward shock), тангенциального разрыва и второй ударной волны (reverse shock) движутся от Солнца таким образом, что forward shock движется со скоростью, большей скорости солнечного ветра, reverse shock движется от Солнца со скоростью несколько меньшей скорости солнечного ветра, а скорость тангенциального разрыва равна скорости солнечного ветра. Такие структуры регулярно регистрируются приборами, установленными на космических аппаратах.

Об изменении параметров солнечного ветра с расстоянием от солнца.

Изменение скорости солнечного ветра с расстоянием от Солнца определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления (градиентом давления). Поскольку сила гравитации убывает как квадрат расстояния от Солнца, то на больших гелиоцентрических расстояниях ее влияние несущественно. Расчеты показывают, что уже на орбите Земли ее влиянием, также как и влиянием градиента давления, можно пренебречь. Следовательно, скорость солнечного ветра можно считать почти постоянной. При этом она существенно превосходит скорость звука (течение гиперзвуковое). Тогда из приведенного выше гидродинамического уравнения для солнечной короны следует, что плотность r убывает как 1/r 2 . Американские космические аппараты «Вояджер 1 и 2», «Пионер 10 и 11», запущенные в середине 1970-ых и сейчас находящиеся на расстояниях от Солнца в несколько десятков астрономических единиц, подтвердили эти представления о параметрах солнечного ветра. Они подтвердили также и предсказанную теоретически паркеровскую спираль Архимеда для межпланетного магнитного поля. Однако температура не следует адиабатическому закону охлаждения при расширении солнечной короны. На очень больших расстояниях от Солнца солнечный ветер имеет даже тенденцию к разогреву. Такой разогрев может быть обусловлен двумя причинами: диссипацией энергии, связанной с плазменной турбулентностью, и влиянием нейтральных атомов водорода, проникающих в солнечный ветер из межзвездной среды, окружающей солнечную систему. Вторая причина приводит и к некоторому торможению солнечного ветра на больших гелиоцентрических расстояниях, обнаруженная на вышеупомянутых космических аппаратах.

Заключение.

Таким образом, солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности Земли, поскольку эти процессы в той или иной степени оказывают влияние на нашу жизнь. В частности, высокоскоростные потоки солнечного ветра, обтекая магнитосферу Земли, влияют на ее строение, а нестационарные процессы на Солнце (например, вспышки) могут приводить к магнитным бурям, нарушающим радиосвязь и влияющим на самочувствие метеочувствительных людей. Поскольку солнечный ветер зарождается в солнечной короне, то его свойства в районе орбиты Земли являются хорошим индикатором для изучения важных для практической деятельности человека солнечно-земных связей. Однако это уже другая область научных исследований, которой мы не будем касаться в настоящей статье.

Владимир Баранов

В.Б.Баранов, Московский государственный университет им. М.В. Ломоносова

В статье рассматривается проблема сверхзвукового расширения солнечной короны (солнечный ветер). Анализируются четыре главные проблемы: 1) причины истечения плазмы из солнечной короны; 2) однородно ли такое истечение; 3) изменение параметров солнечного ветра с удалением от Солнца и 4) как солнечный ветер истекает в межзвездную среду.

Введение

Прошло почти 40 лет с тех пор, как американский физик Е. Паркер теоретически предсказал явление, которое получило название "солнечный ветер" и которое через пару лет было подтверждено экспериментально группой советского ученого К. Грингауза при помощи приборов, установленных на космических аппаратах "Луна-2" и "Луна-3". Солнечный ветер представляет собой поток полностью ионизованной водородной плазмы, то есть газа, состоящего из электронов и протонов примерно одинаковой плотности (условие квазинейтральности), который с большой сверхзвуковой скоростью движется от Солнца. На орбите Земли (на одной астрономической единице (а.е.) от Солнца) скорость VE этого потока равна примерно 400-500 км/с, концентрация протонов (или электронов) ne = 10-20 частиц в кубическом сантиметре, а их температура Te равна примерно 100 000 К (температура электронов несколько выше).

Кроме электронов и протонов в межпланетном пространстве были обнаружены альфа-частицы (порядка нескольких процентов), небольшое количество более тяжелых частиц, а также магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1

= 10- 5 Гс).

Немного истории, связанной с теоретическим предсказанием солнечного ветра

В течение не столь уж длительной истории теоретической астрофизики считалось, что все атмосферы звезд находятся в гидростатическом равновесии, то есть в состоянии, когда сила гравитационного притяжения звезды уравновешивается силой, связанной с градиентом давления в ее атмосфере (с изменением давления на единицу расстояния r от центра звезды). Математически это равновесие выражается в виде обыкновенного дифференциального уравнения

(1)

где G - гравитационная постоянная, M* - масса звезды, р - давление атмосферного газа,

- его массовая плотность. Если распределение температуры T в атмосфере задано, то из уравнения равновесия (1) и уравнения состояния для идеального газа
(2)

где R - газовая постоянная, легко получается так называемая барометрическая формула, которая в частном случае постоянной температуры Т будет иметь вид

(3)

В формуле (3) величина p0 представляет собой давление у основания атмосферы звезды (при r = r0). Из этой формулы видно, что при r

, то есть на очень больших расстояниях от звезды давление p стремится к конечному пределу, который зависит от значения давления p0.

Поскольку считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось формулами, аналогичными формулам (1), (2), (3) . Учитывая необычное и до конца еще непонятое явление резкого возрастания температуры примерно от 10 000 градусов на поверхности Солнца до 1 000 000 градусов в солнечной короне, Чепмен (см., например, ) развил теорию статической солнечной короны, которая должна была плавно переходить в межзвездную среду, окружающую Солнечную систему.

Однако в своей пионерской работе Паркер обратил внимание на то, что давление на бесконечности, получаемое из формулы типа (3) для статической солнечной короны, оказывается почти на порядок величины больше значения давления, которое оценивалось для межзвездного газа на основе наблюдений. Чтобы устранить это расхождение, Паркер предположил, что солнечная корона не находится в состоянии статического равновесия, а непрерывно расширяется в окружающую Солнце межпланетную среду. При этом вместо уравнения равновесия (1) он предложил использовать гидродинамическое уравнение движения вида

(4)

где в системе координат, связанной с Солнцем, величина V представляет собой радиальную скорость движения плазмы. Под

подразумевается масса Солнца.

При заданном распределении температуры Т система уравнений (2) и (4) имеет решения типа представленных на рис. 1. На этом рисунке через a обозначена скорость звука, а r* - расстояние от начала координат, на котором скорость газа равна скорости звука (V = a). Очевидно, что только кривые 1 и 2 на рис. 1 имеют физический смысл для проблемы истечения газа из Солнца, поскольку кривые 3 и 4 имеют неединственные значения скорости в каждой точке, а кривые 5 и 6 соответствуют очень большим скоростям в солнечной атмосфере, что не наблюдается в телескопы. Паркер проанализировал условия, при которых в природе осуществляется решение, соответствующее кривой 1. Он показал, что для согласования давления, получаемого из такого решения, с давлением в межзвездной среде наиболее реален случай перехода газа от дозвукового течения (при r < r*) к сверхзвуковому (при r > r*), и назвал такое течение солнечным ветром. Однако это утверждение оспаривалось в работе Чемберленом, который полагал наиболее реальным решение, соответствующее кривой 2, описывающей всюду дозвуковой "солнечный бриз". При этом первые эксперименты на космических аппаратах (см., например, ), обнаружившие сверхзвуковые потоки газа от Солнца, не казались, судя по литературе, Чемберлену достаточно достоверными.

Рис. 1. Возможные решения одномерных уравнений газовой динамики для скорости V течения газа от поверхности Солнца в присутствии силы гравитации. Кривая 1 соответствует решению для солнечного ветра. Здесь a - скорость звука, r - расстояние от Солнца, r* - расстояние, на котором скорость газа равна скорости звука, - радиус Солнца.

История экспериментов в космическом пространстве блестяще доказала правильность представлений Паркера о солнечном ветре. Подробный материал о теории солнечного ветра можно найти, например, в монографии .

Представления об однородном истечении плазмы из солнечной короны

Из одномерных уравнений газовой динамики можно получить известный результат: при отсутствии массовых сил сферически-симметричное течение газа от точечного источника может быть всюду либо дозвуковым, либо сверхзвуковым. Присутствие в уравнении (4) гравитационной силы (правая часть) приводит к тому, что появляются решения типа кривой 1 на рис. 1, то есть с переходом через скорость звука. Проведем аналогию с классическим течением в сопле Лаваля, которое представляет собой основу всех сверхзвуковых реактивных двигателей. Схематически это течение показано на рис. 2.

Рис. 2. Схема течения в сопле Лаваля: 1 - бак, называемый ресивером, в который с малой скоростью подается очень горячий воздух, 2 - область геометрического поджатия канала с целью ускорения дозвукового потока газа, 3 - область геометрического расширения канала с целью ускорения сверхзвукового потока.

В бак 1, называемый ресивером, с очень маленькой скоростью подается газ, нагретый до очень высокой температуры (внутренняя энергия газа много больше его кинетической энергии направленного движения). Путем геометрического поджатия канала газ ускоряется в области 2 (дозвуковое течение) до тех пор, пока его скорость не достигнет скорости звука. Для дальнейшего его ускорения необходимо канал расширять (область 3 сверхзвукового течения). Во всей области течения ускорение газа происходит за счет его адиабатического (без подвода тепла) охлаждения (внутренняя энергия хаотического движения переходит в энергию направленного движения).

В рассматриваемой проблеме образования солнечного ветра роль ресивера играет солнечная корона, а роль стенок сопла Лаваля - гравитационная сила солнечного притяжения. Согласно теории Паркера, переход через скорость звука должен происходить где-то на расстоянии в несколько солнечных радиусов. Однако анализ получаемых в теории решений показал, что температуры солнечной короны недостаточно, чтобы ее газ мог ускориться до сверхзвуковых скоростей, как это имеет место в теории сопла Лаваля. Должен существовать какой-то дополнительный источник энергии. Таким источником в настоящее время считается диссипация всегда присутствующих в солнечном ветре волновых движений (иногда их называют плазменной турбулентностью), накладывающихся на среднее течение, а само течение уже не является адиабатическим. Количественный анализ таких процессов еще требует своего исследования.

Интересно, что наземные телескопы обнаруживают на поверхности Солнца магнитные поля. Средняя величина их магнитной индукции В оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например в пятнах, магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то естественно, что солнечные магнитные поля взаимодействуют с ее потоками от Солнца. В этом случае чисто газодинамическая теория дает неполное описание рассматриваемого явления. Влияние магнитного поля на течение солнечного ветра можно рассмотреть только в рамках науки, которая называется магнитной гидродинамикой. К каким результатам приводят такие рассмотрения? Согласно пионерской в этом направлении работе (см. также ), магнитное поле приводит к появлению электрических токов j в плазме солнечного ветра, что, в свою очередь, приводит к появлению пондеромоторной силы j x B, которая направлена в перпендикулярном к радиальному направлении. В результате у солнечного ветра появляется тангенциальная компонента скорости. Эта компонента почти на два порядка меньше радиальной, однако она играет существенную роль в выносе из Солнца момента количества движения. Предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и других звезд, у которых обнаружен "звездный ветер". В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы открывает возможность пересмотра этой гипотезы.

Солнечный ветер и магнитосфера Земли.

Солнечный ветер (Solar wind ) - поток мегаионизированных частиц (в основном гелиево-водородной плазмы), истекающий из солнечной короны со скоростью 300-1200 км/с в окружающее космическое пространство. Является одним из основных компонентов межпланетной среды.

Множество природных явлений связано с солнечным ветром, в том числе такие явления космической погоды, как магнитные бури и полярные сияния.

Не следует путать понятия «солнечный ветер» (поток ионизированных частиц, долетающий от Солнца до за 2-3 суток) и «солнечный свет» (поток фотонов, долетающий от Солнца до Земли в среднем за 8 минут 17 секунд). В частности, именно эффект давления солнечного света (а не ветра) используется в проектах так называемых солнечных парусов. Форма двигателя для , использующая в качестве источника тяги импульс ионов солнечного ветра - электрический парус.

История

Предположение о существовании постоянного потока частиц, летящих от Солнца, впервые было высказано британским астрономом Ричардом Кэррингтоном. В 1859 году Кэррингтон и Ричард Ходжсон независимо наблюдали то, что впоследствии было названо солнечной вспышкой. На следующий день произошла геомагнитная буря, и Кэррингтон предположил связь между этими явлениями. Позже Джордж Фитцджеральд высказал предположение, что материя периодически ускоряется Солнцем и за несколько дней достигает Земли.

В 1916 году норвежский исследователь Кристиан Биркеланд написал: «С физической точки зрения наиболее вероятно, что солнечные лучи не являются ни положительными ни отрицательными, но и теми и другими вместе». Другими словами, солнечный ветер состоит из отрицательных электронов и положительных ионов.

Три года спустя, в 1919 Фридерик Линдеманн также предположил, что частицы обоих зарядов, протоны и электроны, приходят от Солнца.

В 1930-х годах ученые определили, что температура солнечной короны должна достигать миллиона градусов, поскольку корона остается достаточно яркой при большом удалении от Солнца, что хорошо видно во время солнечных затмений. Позднее спектроскопические наблюдения подтвердили этот вывод. В середине 50-х британский математик и астроном Сидни Чепмен определил свойства газов при таких температурах. Оказалось, что газ становится великолепным проводником тепла и должен рассеивать его в пространство за пределы орбиты Земли. В то же время немецкий ученый Людвиг Бирманн заинтересовался тем фактом, что хвосты комет всегда направлены прочь от Солнца. Бирманн постулировал, что Солнце испускает постоянный поток частиц, которые создают давление на газ, окружающий комету, образуя длинный хвост.

В 1955 году советские астрофизики С. К. Всехсвятский, Г. М. Никольский, Е. А. Пономарев и В. И. Чередниченко показали, что протяженная корона теряет энергию на излучение и может находиться в состоянии гидродинамического равновесия только при специальном распределении мощных внутренних источников энергии. Во всех других случаях должен существовать поток вещества и энергии. Этот процесс служит физическим основанием для важного явления - «динамической короны». Величина потока вещества была оценена из следующих соображений: если бы корона находилась в гидростатическом равновесии, то высоты однородной атмосферы для водорода и железа относились бы как 56/1, то есть ионов железа в дальней короне наблюдаться не должно. Но это не так. Железо светится во всей короне, причем FeXIV наблюдается в более высоких слоях, чем FeX, хотя кинетическая температура там ниже. Силой, поддерживающей ионы во «взвешенном» состоянии, может быть импульс, передаваемый при столкновениях восходящим потоком протонов ионам железа. Из условия баланса этих сил легко найти поток протонов. Он оказался таким же, какой следовал из гидродинамической теории, подтвержденной впоследствии прямыми измерениями. Для 1955 г. это было значительным достижением, но в «динамическую корону» никто тогда не поверил.

Тремя годами позже Юджин Паркер сделал вывод, что горячее течение от Солнца в чепменовской модели и поток частиц, сдувающий кометные хвосты в гипотезе Бирманна - это два проявления одного и того же явления, которое он назвал «солнечным ветром» . Паркер показал, что даже несмотря на то, что солнечная корона сильно притягивается Солнцем, она столь хорошо проводит тепло, что остается горячей на большом расстоянии. Так как с расстоянием от Солнца его притяжение ослабевает, из верхней короны начинается сверхзвуковое истечение вещества в межпланетное пространство. Более того, Паркер был первым, кто указал, что эффект ослабления гравитации имеет то же влияние на гидродинамическое течение, что и сопло Лаваля: оно производит переход течения из дозвуковой в сверхзвуковую фазу.

Теория Паркера была подвергнута жесткой критике. Статья, посланная в 1958 году в Astrophysical Journal, была забракована двумя рецензентами и только благодаря редактору, Субраманьяну Чандрасекару, попала на страницы журнала.

Однако в январе 1959 года первые прямые измерения характеристик солнечного ветра (Константин Грингауз, ИКИ РАН) были проведены советской “Луна-1”, посредством установленных на ней сцинтилляционного счетчика и газового ионизационного детектора. Три года спустя такие же измерения были проведены и американкой Марсией Нейгебауэр по данным станции “Маринер-2”.

Всё же ускорение ветра до высоких скоростей ещё не было понято и не могло быть объяснено из теории Паркера. Первые численные модели солнечного ветра в короне с использованием уравнений магнитной гидродинамики были созданы Пневманом и Кноппом в 1971 г.

В конце 1990-х с помощью Ультрафиолетового коронального спектрометра (Ultraviolet Coronal Spectrometer (UVCS) ) на борту были проведены наблюдения областей возникновения быстрого солнечного ветра на солнечных полюсах. Оказалось, что ускорение ветра много больше, чем предполагалось, исходя из чисто термодинамического расширения. Модель Паркера предсказывала, что скорость ветра становится сверхзвуковой на высоте 4 радиусов Солнца от фотосферы, а наблюдения показали, что этот переход происходит существенно ниже, примерно на высоте 1 радиуса Солнца, подтверждая, что существует дополнительный механизм ускорения солнечного ветра.

Характеристики

Гелиосферный токовый слой - результат влияния вращающегося магнитного поля Солнца на плазму в солнечном ветре.

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов, протонов и ядер гелия (альфа-частиц); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает реального состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Интенсивность солнечного ветра зависит от изменений солнечной активности и его источников. Многолетние наблюдения на орбите Земли (около 150 млн км от Солнца) показали, что солнечный ветер структурирован и обычно делится на спокойный и возмущенный (спорадический и рекуррентный). Спокойные потоки, в зависимости от скорости, делятся на два класса:медленные (примерно 300-500 км/с около орбиты Земли) и быстрые (500-800 км/с около орбиты Земли). Иногда к стационарному ветру относят область гелиосферного токового слоя, который разделяет области различной полярности межпланетного магнитного поля, и по своим характеристикам близок к медленному ветру.

Медленный солнечный ветер

Медленный солнечный ветер порождается «спокойной» частью солнечной короны (областью корональных стримеров) при её газодинамическом расширении: при температуре короны около 2·10 6 К корона не может находиться в условиях гидростатического равновесия, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей. Нагрев солнечной короны до таких температур происходит вследствие конвективной природы теплопереноса в фотосфере Солнца: развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн; в свою очередь при распространении в направлении уменьшения плотности солнечной атмосферы звуковые волны трансформируются в ударные; ударные волны эффективно поглощаются веществом короны и разогревают её до температуры (1-3)·10 6 К.

Быстрый солнечный ветер

Потоки рекуррентного быстрого солнечного ветра испускаются Солнцем в течение нескольких месяцев и имеют период повторяемости при наблюдениях с Земли в 27 суток (период вращения Солнца). Эти потоки ассоциированы с корональными дырами - областями короны с относительно низкой температурой (примерно 0,8·10 6 К), пониженной плотностью плазмы (всего четверть плотности спокойных областей короны) и радиальным по отношению к Солнцу магнитным полем.

Возмущенные потоки

К возмущенным потокам относят межпланетное проявление корональных выбросов массы (СМЕ), а также области сжатия перед быстрыми СМЕ (называемыми в англоязычной литературе Sheath) и перед быстрыми потоками из корональных дыр (называемыми в англоязычной литературе Corotating interaction region - CIR). Около половины случаев наблюдений Sheath и CIR могут иметь впереди себя межпланетную ударную волну. Именно в возмущенных типах солнечного ветра межпланетное магнитное поле может отклоняться от плоскости эклиптики и содержать южную компоненту поля, которая приводит ко многим эффектам космической погоды (геомагнитной активности, включая магнитные бури). Ранее предполагалось, что возмущенные спорадические потоки вызываются солнечными вспышками, однако в настоящее время считается, что спорадические потоки в солнечном ветре обусловлены корональными выбросами. Вместе с тем следует отметить, что и солнечные вспышки, и корональные выбросы связаны с одними и теми же источниками энергии на Солнце и между ними существует статистическая зависимость.

По времени наблюдения различных крупномасштабных типов солнечного ветра быстрые и медленные потоки составляют около 53 %, гелиосферный токовый слой 6 %, CIR - 10 %, CME - 22 %, Sheath - 9 %, и соотношение между временем наблюдения различных типов сильно изменяется в цикле солнечной активности.

Феномены, порождаемые солнечным ветром

Благодаря высокой проводимости плазмы солнечного ветра магнитное поле Солнца оказывается вмороженным в истекающие потоки ветра и наблюдается в межпланетной среде в виде межпланетного магнитного поля.

Солнечный ветер образует границу гелиосферы, благодаря чему препятствует проникновению в . Магнитное поле солнечного ветра значительно ослабляет приходящие извне галактические космические лучи. Локальное повышение межпланетного магнитного поля приводит к краткосрочным понижениям космических лучей, Форбуш-понижениям, а крупномасштабные уменьшения поля приводят к их долгосрочным возрастаниям. Так в 2009 году, в период затянувшегося минимума солнечной активности, интенсивность излучения вблизи Земли выросла на 19 % относительно всех наблюдаемых ранее максимумов.

Солнечный ветер порождает на Солнечной системы, обладающих магнитным полем, такие явления, как магнитосфера, полярные сияния и радиационные пояса планет.