Условия возникновения мембранного потенциала. Основные свойства нервной клетки. Соотношение химической и электрической силы

Внереализационные доходы - это поступления, которые не связаны с выручкой от реализации товаров (работ, услуг). Перечень таких доходов приведен в ст. 250 Налогового кодекса. Так, внереализационными признаются, в частности, следующие доходы:

1) доходы от долевого участия в других фирмах;

2) доходы от купли-продажи валюты;

3) штрафы и пени за нарушение контрагентами условий договоров, а также суммы возмещения убытка или ущерба, которые признаны должником или подлежат уплате по решению суда;

4) доходы от сдачи имущества в аренду (субаренду). Если в учредительных документах фирмы указано, что сдача имущества в аренду является предметом деятельности фирмы, то такие доходы следует учитывать как доходы от реализации;

5) доходы в виде процентов по предоставленным кредитам и займам. Исключение сделано только для банков. Для них проценты по кредитам включаются в выручку от реализации;

6) стоимость безвозмездно полученного имущества (работ, услуг). Для целей налогообложения стоимость безвозмездно полученного имущества определяется исходя из рыночных цен. Исключение - некоторые виды имущества, перечисленные в ст. 251 Налогового кодекса (см. далее пункт "Поступления, не учитываемые при расчете налогооблагаемой прибыли");

7) доходы, полученные по договору простого товарищества;

8) доходы прошлых лет, которые выявлены в текущем году;

9) стоимость материалов и запасных частей, которые получены при демонтаже или ликвидации зданий, оборудования и иного имущества фирмы;

10) доходы, полученные по финансовым операциям;

11) суммовые и курсовые разницы;

12) суммы резервов (на оплату отпусков и вознаграждений за выслугу лет, по сомнительным долгам, на ремонт основных средств), не использованных в отчетном (налоговом) периоде;

13) стоимость излишков любого имущества, выявленных в результате инвентаризации;

14) прочие доходы, не связанные с основной деятельностью фирмы;

15) суммы кредиторской задолженности, списанной в связи с истечением срока исковой давности или по другим причинам.

Поступления, не учитываемые при расчете налогооблагаемой прибыли

Перечень поступлений, которые не учитываются при определении налогооблагаемой прибыли, приведен в ст. 251 Налогового кодекса. К ним, в частности, относятся:

1) суммы, которые получены в счет предварительной оплаты (для фирм, определяющих доходы и расходы по методу начисления);

2) имущество или права на него, полученные в виде задатка или залога;

3) имущество и деньги, полученные в качестве вклада в уставный капитал фирмы (включая эмиссионный доход). Эмиссионный доход - это сумма, на которую продажная цена акций превышает их номинальную стоимость.

Пример . ЗАО выпустило 10 000 акций. Номинальная стоимость одной акции - 500 руб. Акционерам акции были проданы по 520 руб. за штуку.

От продажи акций общество получило:

10 000 шт. x 520 руб. = 5 200 000 руб.

Сумма эмиссионного дохода составила:

(520 руб. - 500 руб.) x 10 000 шт. = 200 000 руб.

Вся полученная сумма (5 200 000 руб.) налогом на прибыль не облагается;

4) имущество, полученное участником фирмы при выходе из нее или при ее ликвидации (в части стоимости имущества, не превышающей величину первоначального взноса участника в уставный капитал);

5) средства, полученные посредником от комитента (доверителя, принципала) для выполнения договора комиссии, поручения или агентского договора (например, деньги, полученные от доверителя поверенным для исполнения возложенных на него по договору обязанностей);

6) средства, полученные по договору кредита (займа) или долговым ценным бумагам. Также налогом не облагаются средства, которые поступили в счет погашения таких заимствований;

7) имущество, полученное от организации или гражданина, которые имеют долю в уставном капитале фирмы, получившей это имущество, более 50% от уставного капитала. При этом полученное имущество не должно быть продано, подарено или иным способом передано в течение года с момента получения;

8) проценты, полученные из бюджета за несвоевременный возврат налоговой инспекцией переплаты по налогам.

Пример . Фирма подала заявление на возврат излишне уплаченного налога на прибыль. Налог в срок, установленный ст. 78 НК РФ, возвращен не был.

Фирма обратилась в суд, который обязал налоговую инспекцию за счет федерального бюджета произвести возврат налога, а также выплатить проценты за его несвоевременный возврат. Сумма этих процентов при налогообложении прибыли не учитывается;

9) имущество, которое получено в рамках целевого финансирования;

10) акции, полученные акционерным обществом в результате дополнительного выпуска;

11) положительная разница, которая образовалась при переоценке драгоценных камней (при изменении официальных прейскурантов);

12) суммы, на которые был уменьшен уставный капитал фирмы в соответствии с требованиями законодательства;

13) стоимость объектов сельскохозяйственного назначения, построенных за счет бюджетных средств и полученных фирмами-сельхозпроизводителями;

14) задолженность по налогам, списанная по решению Правительства РФ;

15) оборудование, полученное образовательным учреждением для использования в образовательных целях;

16) положительная разница, образовавшаяся при переоценке ценных бумаг по рыночной стоимости;

17) суммы восстановленных резервов, которые ранее были созданы под обесценение ценных бумаг;

18) целевые средства, полученные некоммерческими организациями на ведение уставной деятельности и бюджетными организациями из бюджета;

19) суммы дохода от инвестирования средств пенсионных накоплений, которые предназначены для финансирования накопительной части трудовой пенсии;

20) имущество, полученное по концессионному соглашению;

21) стоимость эфирного времени, полученного безвозмездно для предвыборных агитаций.

Мембранный потенциал покоя представляет собой электрический потенциал (запас), формирующийся между наружной поверхностью мембраны клетки и внутренней стороной Внутренняя сторона перепонки относительно наружной поверхности имеет всегда отрицательный заряд. Для клеток каждого вида потенциал покоя является величиной практически постоянной. Так, у теплокровных в волокнах скелетной мускулатуры она составляет 90 мВ, для клеток миокарда - 80, нервных клеток - 60-70. Мембранный потенциал присутствует во всех живых клетках.

В соответствии с современной теорией рассматриваемый электрический запас формируется в результате активного и пассивного передвижения ионов.

Пассивное движение происходит по для него не требуется затрат энергии. в состоянии покоя обладает большей проницаемостью для ионов калия. В цитоплазме нервных и мышечных клеток их (ионов калия) присутствует в тридцать-пятьдесят раз больше, нежели в межклеточной жидкости. В цитоплазме ионы находятся в свободном виде и диффундируют, в соответствии с градиентом концентрации, во внеклеточную жидкость сквозь мембрану. В межклеточной жидкости они удерживаются внутриклеточными анионами на внешней поверхности перепонки.

Во внутриклеточном пространстве содержатся в основном анионы пировиноградной, уксусной, аспарагиновой и прочих органических кислот. Неорганические же кислоты содержатся в относительно небольшом количестве. Сквозь мембрану анионы проникать не могут. Они остаются в клетке. Располагаются анионы на внутренней стороне мембраны.

В связи с тем, что у анионов заряд отрицательный, а у катионов - положительный, внешняя поверхность перепонки имеет заряд положительный, а внутренняя - отрицательный.

Во внеклеточной жидкости ионов натрия в восемь-десять раз больше, нежели в клетке. Их проницаемость незначительна. Однако за счет проникновения ионов натрия в некоторой степени уменьшается мембранный потенциал. При этом имеет место и диффузия ионов хлора внутрь клетки. Содержание этих ионов в пятнадцать-тридцать раз выше во внеклеточных жидкостях. За счет их проникновения мембранный потенциал несколько возрастает. Кроме того, в перепонке существует и особый молекулярный механизм. Он обеспечивает активное продвижение ионов калия и натрия в сторону повышенной концентрации. Таким образом поддерживается ионная асимметрия.

Под воздействием фермента аденозинтрифосфатазы происходит расщепление АТФ. Отравление цианидами, монойодацетатом, динитрофенолом и прочими веществами, в том числе прекращающими процессы синтеза и гликолиза АТФ, провоцирует его (АТФ) снижение в цитоплазме и прекращение функционирования "помпы".

Перепонка проницаема также и для ионов хлора (в особенности в волокнах мускулатуры). В клетках, обладающих высокой проницаемостью, ионы калия и хлора в равной степени формируют мембранный покой. При этом в прочих клетках вклад последних в указанный процесс незначителен.

Разность электрических потенциалов (в вольтах или мв) между жидкостью, находящейся по одну сторону мембраны и жидкостью по другую ее сторону называется мембранным потенциалом (МП) и обозначается . Величина МП живых клеток составляет обычно от -30 до -100 мв и вся эта разность потенциалов создается в областях непосредственно прилегающих с обоих сторон к клеточной мембране. Уменьшение величины МП называют деполяризацией , увеличение - гиперполяризацией , восстановление исходного значения после деполяризации - реполяризация . Мембранный потенциал существует во всех клетках, но в возбудимых тканях (нервных, мышечных, железистых), мембранный потенциал или как его еще называют в этих тканях, мембранный потенциал покоя , играет ключевую роль в реализации их физиологических функций. Мембранный потенциал обусловлен двумя основными свойствами всех эукариотических клеток: 1) асимметричным распределением ионов между вне- и внутриклеточной жидкостью, поддерживаемым метаболическими процессами; 2) Избирательной проницаемостью ионных каналов клеточных мембран. Чтобы уяснить себе как возникает МП представим себе, что некий сосуд разделен на два отсека мембраной, проницаемой только для ионов калия. Пусть в первом отсеке содержится 0,1 М, а во втором 0,01 М раствор КСl. Поскольку концентрация ионов калия (К +) в первом отсеке в 10 раз выше, чем во втором, то в начальный момент на каждые 10 ионов К + диффундирующих из отсека 1 во второй будет приходится один ион диффундирующий в обратном направлении. Так как анионы хлора (Сl-) не могут переходить через мембрану вместе с катионами калия, то во втором отсеке будет образовываться избыток положительно заряженных ионов и, напротив, в отсеке 1 окажется избыток ионов Сl-. В результате возникает трансмембранная разность потенциалов , препятствующая дальнейшей диффузии К + во второй отсек, поскольку для этого им нужно преодолеть притяжение отрицательных ионов Сl-, в момент вхождения в мембрану со стороны отсека 1 и отталкивание одноименных ионов на выходе из мембраны в отсек 2. Таким образом, на каждый ион К + , проходящий через мембрану в этот момент действуют две силы - химический градиент концентраций (или химическая разность потенциалов), способствующая переходу ионов калия из первого отсека во второй, и электрическая разность потенциалов, заставляющая ионы К + двигаться в обратном направлении. После того как эти две силы уравновесятся, количество ионов К + перемещающееся из отсека 1 в отсек 2 и обратно сравняется, установится электрохимическое равновесие . Соответствующая такому состоянию трансмембранная разность потенциалов называется равновесным потенциалом , в данном конкретном случае равновесным потенциалом для ионов калия (Ек ). В конце 19 века Вальтер Нернст установил, что равновесный потенциал зависит от абсолютной температуры, валентности диффундирующего иона и от отношения концентраций данного иона по разные стороны мембраны:


где Ех- равновесный потенциал для иона X, R - универсальная газовая постоянная = 1,987 кал/(моль град), T - абсолютная температура в градусах Кельвина, F - число Фарадея = 23060 кал/в, Z - заряд переносимого иона, [X] 1 и [X] 2 - концентрации иона в отсеках 1 и 2.

Если перейти от натурального логарифма к десятичному, то для температуры 18˚С и моновалентного иона можно записать уравнение Нернста следующим образом:

Ех= 0,058 lg

Рассчитаем с помощью уравнения Нернста калиевый равновесный потенциал для воображаемой клетки, приняв, что внеклеточная концентрация калия [К + ]н= 0,01 М, а внутриклеточная - [К + ]в = 0,1 М:

Ек= 0,058 lg = 0,058 lg=0,058 (-1) = -0,058 ‚= -58 мв

В данном случае, Ек отрицателен, поскольку ионы калия будут выходить из гипотетичной клетки, заряжая отрицательно слой цитоплазмы, прилегающий к внутренней стороне мембраны. Поскольку в данной гипотетичной системе имеется только один диффундирующий ион, то калиевый равновесный потенциал будет равен мембранному потенциалу (Ек= Vм ).

Приведенный механизм ответственен и за образование мембранного потенциала в реальных клетках, но в отличие от рассмотренной упрощенной системы, в которой через "идеальную" мембрану мог диффундировать только один ион, реальные клеточные мембраны пропускают в той или иной все неорганические ионы. Однако, чем менее мембрана проницаема для какого-либо иона, тем меньшее влияние он оказывает на МП. Учитывая это обстоятельство, Голдманом в 1943г. было предложено уравнение для расчета величины МП реальных клеток, учитывающее концентрации и относительную проницаемость через плазматическую мембрану всех диффундирующих ионов:

Vм = 0,058 lg

Используя метод меченых изотопов, Ричард Кейнс в 1954 г. определил проницаемость клеток мышц лягушки для основных ионов. Оказалось, что проницаемость для натрия примерно в 100 раз меньше, чем для калия, а ион Сl-не вносит никакого вклада в создание МП. Поэтому для мембран мышечных клеток уравнение Голдмана можно записать в следующем упрощенном виде:

Vм = 0,058 lg

Vм = 0,058 lg

Исследования с применением вводимых в клетки микроэлектродов, показали, что потенциал покоя клеток скелетных мышц лягушки колеблется от -90 до -100 мв. Такое хорошее соответствие экспериментальных данных теоретическим подтверждает, что потенциал покоя определяется диффузионными потоками неорганических ионов. При этом, в реальных клетках мембранный потенциал близок к равновесному потенциалу иона, который характеризуется максимальной трансмембранной проницаемостью, а именно к равновесному потенциалу иона калия.


Мембранный потенциал покоя

В покое на наружной стороне плазматической мембраны располагается тонкий слой положительных зарядов, а на внутренней стороне – отрицательных. Разность между ними называется мембранным потенциалом покоя. Если считать наружный заряд равным нулю, то разность зарядов между наружной и внутренней поверхностями у большинства нейронов оказывается близкой к -65 мВ, хотя она и может у отдельных клеток варьировать от -40 до -80 мВ.

Возникновение этой разности зарядов обусловлено неодинаковым распределением ионов калия, натрия и хлора внутри клетки и снаружи её, а также большей проницаемостью покоящейся клеточной мембраны лишь для ионов калия.

У возбудимых клеток мембранный потенциал покоя (МПП) способен сильно изменяться и эта способность является основой для возникновения электрических сигналов. Уменьшение мембранного потенциала покоя, например, с -65 до -60 мВ, называется деполяризацией , а увеличение, например, с -65 до -70 мВ, – гиперполяризацией .

Если деполяризация достигнет некоторого критического уровня, например -55 мВ, то проницаемость мембраны для ионов натрия на короткое время становится максимальной, они устремляются в клетку и в связи с этим трансмембранная разность потенциалов стремительно уменьшается до 0, а затем приобретает положительное значение. Это обстоятельство приводит к закрытию натриевых каналов и стремительному выходу из клетки ионов калия через предназначенные только для них каналы: в результате восстанавливается первоначальная величина мембранного потенциала покоя. Эти быстро происходящие изменения мембранного потенциала покоя называются потенциалом действия. Потенциал действия является приводящимся электрическим сигналом, он быстро распространяется по мембране аксона до самого его окончания, причём нигде не меняет свою амплитуду.

Кроме потенциалов действия в нервной клетке, вследствие изменения её мембранной проницаемости, могут возникать местные или локальные сигналы: рецепторный потенциал и постсинаптический потенциал . Их амплитуда значительно меньше, чем у потенциала действия, кроме того, она существенно уменьшается при распространении сигнала. По этой причине местные потенциалы и не могут распространяться по мембране далеко от места своего возникновения.

Работой натрий-калиевого насоса в клетке создаётся высокая концентрация ионов калия, а в клеточной мембране для этих ионов есть открытые каналы. Выходящие из клетки по концентрационному градиенту ионы калия увеличивают количество положительных зарядов на наружной поверхности мембраны. В клетке много крупномолекулярных органических анионов и потому изнутри мембрана оказывается заряженной отрицательно. Все остальные ионы могут проходить через покоящуюся мембрану в очень небольшом количестве, их каналы, в основном, закрыты. Следовательно, потенциал покоя обязан своим происхождением, главным образом, току ионов калия из клетки .


Электрические сигналы: входной, объединённый, проводящийся и выходной

Нейроны вступают в контакты с определёнными клетками-мишенями, причём цитоплазма контактирующих клеток не соединяется и между ними всегда сохраняется синаптическая щель.

Современный вариант нейронной теории связывает определённые части нервной клетки с характером возникающих в них электрических сигналов. В типичном нейроне есть четыре определяемые морфологически области: дендриты, сома, аксон и пресинаптическое окончание аксона. При возбуждении нейрона в нём последовательно появляется четыре разновидности электрических сигналов: входной, объединённый, проводящийся и выходной (рис. 3.3). Каждый из этих сигналов возникает только в определённой морфологической области.

Входными сигналами являются либо рецепторный , либо постсинаптический потенциал . Рецепторный потенциал образуется в окончаниях чувствительного нейрона, когда на них действует определённый стимул: растяжение, давление, свет, химическое вещество и т.п. Действие стимула вызывает открытие определённых ионных каналов мембраны, а последующий ток ионов через эти каналы изменяет первоначальное значение мембранного потенциала покоя; в большинстве случаев происходит деполяризация. Эта деполяризация и является рецепторным потенциалом, её амплитуда пропорциональна силе действующего стимула.

Рецепторный потенциал может распространяться от места действия стимула вдоль мембраны на относительно небольшое расстояние – амплитуда рецепторного потенциала уменьшается по мере удаления от места действия стимула, а затем деполяризующий сдвиг и вовсе исчезнет.

Вторая разновидность входного сигнала – постсинаптический потенциал . Он образуется на постсинаптической клетке после того, как возбуждённая пресинаптическая клетка отправит для неё нейромедиатор. Добравшись путём диффузии до постсинаптической клетки, медиатор присоединяется к специфическим белкам-рецепторам её мембраны, что вызывает открытие ионных каналов. Возникший в связи с этим ток ионов через постсинаптическую мембрану изменяет первоначальное значение мембранного потенциала покоя – этот сдвиг и является постсинаптическим потенциалом.

В одних синапсах такой сдвиг представляет собой деполяризацию и, если она достигнет критического уровня, то постсинаптический нейрон возбуждается. В других синапсах возникает противоположный по направленности сдвиг: постсинаптическая мембрана гиперполяризуется: величина мембранного потенциала становится больше и уменьшить её до критического уровня деполяризации становится труднее. Такую клетку трудно возбудить, она заторможена. Таким образом, деполяризующий постсинаптический потенциал является возбуждающим , а гиперполяризующий – тормозным . Соответственно этому и сами синапсы подразделяются на возбуждающие (вызывающие деполяризацию) и тормозные (вызывающие гиперполяризацию).

Вне зависимости от того, что происходит на постсинаптической мембране: деполяризация или гиперполяризация, величина постсинаптических потенциалов всегда пропорциональна количеству подействовавших молекул медиатора, но обычно их амплитуда невелика. Так же, как и рецепторный потенциал, они распространяются вдоль мембраны на очень небольшое расстояние, т.е. тоже относятся к местным потенциалам.

Таким образом, входные сигналы представлены двумя разновидностями местных потенциалов, рецепторным и постсинаптическим, а возникают эти потенциалы в строго определённых областях нейрона: либо в чувствительных окончаниях, либо в синапсах. Чувствительные окончания принадлежат сенсорным нейронам, где рецепторный потенциал возникает под действием внешних раздражителей. Для интернейронов, а также для эфферентных нейронов входным сигналом может быть только постсинаптический потенциал.



Объединённый сигнал может возникнуть только в таком участке мембраны, где достаточно много ионных каналов для натрия. В этом отношении идеальным объектом является аксонный холмик – место отхождения аксона от тела клетки, поскольку именно здесь самая высокая во всей мембране плотность каналов для натрия. Такие каналы являются потенциалзависимыми, т.е. открываются лишь тогда, когда исходное значение потенциала покоя достигнет критического уровня. Типичное для среднестатистического нейрона значение потенциала покоя составляет приблизительно -65 мВ, а критический уровень деполяризации соответствует примерно -55 мВ. Стало быть, если удастся деполяризовать мембрану аксонного холмика с -65 мВ до -55 мВ, то там возникнет потенциал действия.

Деполяризовать мембрану способны входные сигналы, т.е. либо постсинаптические потенциалы, либо рецепторные. В случае рецепторных потенциалов местом возникновения объединённого сигнала является ближайший к чувствительным окончаниям перехват Ранвье, где наиболее вероятна деполяризация до критического уровня. Каждый чувствительный нейрон имеет множество окончаний, являющихся ветвями одного отростка. И, если в каждом из этих окончаний при действии стимула возникает очень небольшой по амплитуде рецепторный потенциал и распространяется к перехвату Ранвье с уменьшением амплитуды, то он является лишь малой частью общего деполяризующего сдвига. От каждого чувствительного окончания в одно и то же время перемещаются к ближайшему перехвату Ранвье эти небольшие рецепторные потенциалы, а в области перехвата все они суммируются. Если общая сумма деполяризующего сдвига будет достаточной, то в перехвате возникнет потенциал действия.

Постсинаптические потенциалы, возникающие на дендритах, так же невелики, как и рецепторные потенциалы и так же уменьшаются при распространении от синапса до аксонного холмика, где может возникнуть потенциал действия. Кроме того, на пути распространения постсинаптических потенциалов по телу клетки могут оказаться тормозные гиперполяризующие синапсы и потому возможность деполяризации мембраны аксонного холмика на 10 мВ кажется маловероятной. Тем не менее, этот результат регулярно достигается в результате суммации множества небольших постсинаптических потенциалов, возникающих одновременно в многочисленных синапсах, образованных дендритами нейрона с окончаниями аксонов пресинаптических клеток.

Таким образом, объединённый сигнал возникает, как правило, вследствие суммации одновременно образовавшихся многочисленных местных потенциалов. Такая суммация происходит в том месте, где особенно много потенциалзависимых каналов и поэтому легче достигается критический уровень деполяризации. В случае интеграции постсинаптических потенциалов таким местом является аксонный холмик, а суммация рецепторных потенциалов происходит в ближайшем от чувствительных окончаний перехвате Ранвье (или близко расположенным к ним участком немиелинизированного аксона). Область возникновения объединённого сигнала называется интегративной или триггерной.

Накопление небольших деполяризующих сдвигов молниеносно трансформируется в интегративной зоне в потенциал действия, который является максимальным электрическим потенциалом клетки и возникает по принципу "всё или ничего". Это правило надо понимать так, что деполяризация ниже критического уровня не приносит никакого результата, а при достижении этого уровня всегда, независимо от силы стимулов, обнаруживается максимальный ответ: третьего не дано.

Проведение потенциала действия . Амплитуда входных сигналов пропорциональна силе подействовавшего стимула или количеству выделившегося в синапсе нейромедиатора – такие сигналы называют градуальными . Их длительность определяется длительностью стимула или присутствия медиатора в синаптической щели. Амплитуда и длительность потенциала действия от этих факторов не зависят: оба этих параметра всецело определяются свойствами самой клетки. Стало быть, любая комбинация входных сигналов, любой вариант суммации, при единственном условии деполяризации мембраны до критического значения, вызывает один и тот же стандартный образец потенциала действия в триггерной зоне. Он всегда имеет максимальную для данной клетки амплитуду и примерно одинаковую длительность, сколько бы раз ни повторялись вызывающие его условия.

Возникнув в интегративной зоне, потенциал действия быстро распространяется по мембране аксона. Это происходит благодаря появлению локального электрического тока. Поскольку деполяризованный участок мембраны оказывается иначе заряженным, чем соседствующий с ним, между полярно заряженными участками мембраны возникает электрический ток. Под действием этого локального тока деполяризуется до критического уровня соседний участок, что вызывает появление потенциала действия и в нём. В случае миелинизированного аксона таким соседним участком мембраны является ближайший к триггерной зоне перехват Ранвье, затем следующий, и потенциал действия начинает "перепрыгивать" от одного перехвата к другому со скоростью, достигающей 100 м/с.

Разные нейроны могут многим отличаться друг от друга, но возникающие в них потенциалы действия различить очень трудно, чаще невозможно. Это в высшей степени стереотипный сигнал у самых разных клеток: сенсорных, интернейронов, моторных. Эта стереотипия свидетельствует о том, что сам потенциал действия не содержит никаких сведений о природе породившего его стимула. О силе стимула свидетельствует частота возникающих потенциалов действия, а определением природы стимула занимаются специфические рецепторы и хорошо упорядоченные межнейронные связи.

Таким образом, возникший в триггерной зоне потенциал действия быстро распространяется по ходу аксона к его окончанию. Это передвижение связано с образованием локальных электрических токов, под влиянием которых потенциал действия как бы заново возникает в соседнем участке аксона. Параметры потенциала действия при проведении по аксону нисколько не меняются, что позволяет передавать информацию без искажений. Если аксоны нескольких нейронов оказываются в общем пучке волокон, то по каждому из них возбуждение распространяется изолированно.

Выходной сигнал адресуется другой клетке или одновременно нескольким клеткам и в подавляющем большинстве случаев представляет собой выделение химического посредника – медиатора. В пресинаптических окончаниях аксона заранее запасённый медиатор хранится в синаптических пузырьках, которые накапливаются в специальных участках – активных зонах. Когда потенциал действия добирается до пресинаптического окончания, содержимое синаптических пузырьков путём экзоцитоза опорожняется в синаптическую щель.

Химическими посредниками передачи информации могут служить разные вещества: небольшие молекулы, как, например, ацетилхолин или глутамат, либо достаточно крупные молекулы пептидов – все они специально синтезируются в нейроне для передачи сигнала. Попав в синаптическую щель, медиатор диффундирует к постсинаптической мембране и присоединяется к её рецепторам. В результате связи рецепторов с медиатором изменяется ионный ток через каналы постсинаптической мембраны, а это приводит к изменению значения потенциала покоя постсинаптической клетки, т.е. в ней возникает входной сигнал – в данном случае постсинаптический потенциал.

Таким образом, почти в каждом нейроне, независимо от его величины, формы и занимаемой в цепи нейронов позиции, можно обнаружить четыре функциональные области: локальную рецептивную зону, интегративную, зону проведения сигнала и выходную или секреторную зону (рис. 3.3).