Тип гибридизации атомных орбиталей в молекуле метана. Виды гибридизации ао

В процессе определения геометрической формы химической частицы важно учитывать, что пары валентных электронов основного атома, включая и те, которые не образуют химической связи, находятся на большом расстоянии друг от друга в пространстве.

Особенности термина

Рассматривая вопрос, касающийся ковалентной химической связи, часто применяют какое понятие, как гибридизация атомных орбиталей. Этот термин связан с выравниванием формы и энергии. Гибридизация атомных орбиталей связана с квантово-химическим процессом перестройки. Орбитали в сравнении с исходными атомами имеют иное строение. Суть гибридизации заключается в том, что тот электрон, который располагается рядом с ядром связанного атома, определяется не конкретной атомной орбиталью, а их совокупностью с равным главным квантовым числом. В основном данный процесс касается высших, близких по энергии атомных орбиталей, имеющих электроны.

Специфика процесса

Типы гибридизации атомов в молекулах зависят от того, как происходит ориентация новых орбиталей. По типу гибридизации можно определить геометрию иона либо молекулы, предположить особенности химических свойств.

Типы гибридизации

Такой тип гибридизации, как sp, представляет собой линейную структуру, угол между связями составляет 180 градусов. Примером молекулы с подобным вариантом гибридизации является BeCl 2 .

Следующий тип гибридизации - sp 2 . Молекулы характеризуются треугольной формой, угол между связями составляет 120 градусов. Типичным примером такого варианта гибридизации является BCl 3 .

Тип гибридизации sp 3 предполагает тетраэдрическое строение молекулы, типичным примером вещества с данным вариантом гибридизации является молекула метана CH 4 . Валентный угол в таком случае составляет 109 градусов 28 минут.

В гибридизации принимают непосредственное участие не только парные электроны, но и неразделенные пары электронов.

Гибридизация в молекуле воды

К примеру, в молекуле воды между атомом кислорода и атомами водорода существуют две ковалентные полярные связи. Кроме того, сам атом кислорода обладает двумя парами внешних электронов, которые не принимают участия в создании химической связи. Эти 4 электронные пары в пространстве занимают определенное место вокруг кислородного атома. Так как все они обладают одинаковым зарядом, в пространстве они отталкиваются, электронные облака находятся друг от друга на существенном расстоянии. Тип гибридизации атомов в данном веществе предполагает изменение формы атомных орбиталей, происходит их вытягивание и выстраивание к вершинам тетраэдра. В результате молекула воды приобретает угловую форму, между связями кислород-водород валентный угол составляет 104,5 o .

Чтобы предсказать тип гибридизации, можно воспользоваться донорно-акцепторным механизмом образования химической связи. В результате осуществляется перекрытие свободных орбиталей элемента с меньшей электроотрицательность, а также орбиталей элемента с большей электрической отрицательностью, на которой находится пара электронов. В процессе составления электронной конфигурации атома учитывается их степень окисления.

Правила выявления вида гибридизации

Для того чтобы определить тип гибридизации углерода, можно использовать определённые правила:

  • выявляют центральный атом, вычисляют количество σ-связей;
  • ставят в частице степени окисления атомов;
  • записывают электронную конфигурацию главного атома в требуемой степени окисления;
  • составляют схему распределения по орбиталям валентных электронов, спаривая электроны;
  • выделяют орбитали, которые принимают непосредственно участие в образовании связи, находят неспаренные электроны (при недостаточном для гибридизации количестве валентных орбиталей применяют орбитали следующего энергетического уровня).

Геометрия молекулы определяется типом гибридизации. На нее не влияет присутствие пи-связей. В случае дополнительного связывания возможно изменение валентного угла, причина состоит во взаимном отталкивании электронов, образующих кратную связь. Так, в молекуле оксида азота (4) при sp 2 -гибридизации происходит возрастание валентного угла со 120 градусов до 134 градусов.

Гибридизация в молекуле аммиака

Неразделенная пара электронов оказывает влияние на результирующий показатель дипольного момента всей молекулы. В аммиаке тетраэдрическое строение вместе с неразделенной парой электронов. Ионность связи азот-водород и азот-фтор имеют показатели 15 и 19 процентов, длины определены в 101 и 137 пм соответственно. Таким образом, в молекуле фторида азота должен быть больший дипольный момент, но результаты эксперимента свидетельствуют об обратном.

Гибридизация в органических соединениях

Для каждого класса углеводородов характерен свой тип гибридизации. Так, при образовании молекул класса алканов (предельных углеводородов) все четыре электрона атома углерода образуют гибридные орбитали. При их перекрывании образуется 4 гибридных облака, вытраиваемых к вершинам тетраэдра. Далее их вершины перекрываются с негибридными s-орбиталями водорода, образуя простую связь. Для насыщенных углеводородов характерна sp 3 -гибридизация.

У ненасыщенных алкенов (их типичным представителем является этилен) в гибридизации принимают участие только три электронных орбитали - s и 2 p, три гибридных орбитали образуют в пространстве форму треугольника. Негибридные p-орбитали перекрываются, создавая в молекуле кратную связь. Этот класс органических углеводородов характеризуется sp 2 -гибридным состоянием углеродного атома.

Алкины отличаются от предыдущего класса углеводородов тем, что в процессе гибридизации участвуют всего два вида орбиталей: s и p. Оставшиеся у каждого атома углерода два негибридных p-электрона перекрываются в двух направлениях, образуя две кратные связи. Данный класс углеводородов характеризуется sp-гибридным состоянием углеродного атома.

Заключение

Благодаря определению вида гибридизации в молекуле можно объяснить строение разных неорганических и органических веществ, предсказать возможные химические свойства конкретного вещества.

Гибридизацией называется гипотетический процесс смешения различного типа, но близких по энергии орбиталей данного атома с возникновением того же числа новых (гибридных 1) орбиталей, одинаковых по энергии и форме.

Гибридизация атомных орбиталей происходит при образовании ковалентных связей.

Гибридные орбитали имеют форму объёмной несимметричной восьмёрки, сильно вытянутой в одну сторону от атомного ядра: .

Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей. Поэтому энергия, затрачиваемая на гибридизацию атомных орбиталей, с избытком компенсируется выделением энергии за счёт образования более прочных ковалентных связей с участием гибридных орбиталей. Название гибридных орбиталей и тип гибридизации определяются числом и типом участвующих в гибридизации атомных орбиталей, например: sp -, sp 2 -, sp 3 -, sp 2 d - или sp 3 d 2 -гибридизация .

Направленность гибридных орбиталей, а следова­тельно, и геометрия молекулы зависят от типа гибридизации. На практике обычно решается обратная задача: вначале экспери­ментально устанавливается геометрия молекулы, после чего описывается тип и форма гибридных орбиталей, участвующих в её образовании.

sp -Гибридизация. Две гибридных sp - орбитали в результате взаимного отталкивания располагаются относительно атомного ядра таким образом, что угол между ними составляет 180° (рис. 7).

Рис. 7. Взаимное расположение в пространстве двух sp - гибридных орбиталей одного атома: а - поверхности, охватывающие области пространства, где вероятность пребывания электрона составляет 90 %; б - условное изображение.

В результате такого расположения гибридных орбиталей молекулы состава АХ 2 , где А является центральным атомом, имеют линейное строение , то есть ковалентные связи всех трёх атомов располагаются на одной прямой. Например, в состоянии sp - гибридизации находятся валентные орбитали атома бериллия в молекуле ВеС1 2 (рис. 8). Линейную конфигурацию вследствие sp - гибридизации валентных орбиталей атомов имеют также молекулы ВеН 2 , Ве(СН 3) 2 , ZnCl 2 , CO 2 , HC≡N и ряд других.

Рис. 8. Трёхатомная линейная молекула хлорида бериллия ВеС1 2 (в газообразном состоянии): 1 - 3р- орбиталь атома Cl; 2 - две sp - гибридные орбитали атома Be.

s р 2 -Гибридизация. Рассмотрим гибридизацию одной s - и двух р- орбиталей. В этом случае в результате линейной комбинации трёх орбиталей возникают три гибридные s р 2 -орбитали. Они располагаются в одной плоскости под углом 120° друг к другу (рис. 9). s р 2 -Гибридизация характерна для многих соединений бора, который, как показано выше, в возбуждённом состоянии имеет три неспаренных электрона: один s - и два р -электрона. При перекрывании s р 2 -орбиталей атома бора с орбиталями других атомов образуются три ковалентные связи, равноценные по длине и энергии. Молекулы, в которых валентные орбитали центрального атома находятся в состоянии s р 2 -гибридизации, имеют треугольную конфигурацию. Углы между ковалентными связями равны 120°. В состоянии s р 2 -гибридизации находятся валентные орбитали атомов бора в молекулах BF 3 , BC1 3 , атомов углерода и азота в анионах СО 3 2 - , NO 3 - .

Рис. 9. Взаимное расположение в пространстве трёх s р 2 -гибридных орбиталей.

s р 3 -Гибридизация. Очень большое распространение имеют вещества, в молекулах которых центральный атом содержит четыре s р 3 -орбитали, образующиеся в результате линейной комбина­ции одной s - и трёх р -орбиталей. Эти орбитали располагаются под углом 109˚28′ друг к другу и направлены к вершинам тетраэдра, в центре которого находится атомное ядро (рис. 10 а).

Образование четырёх равноценных ковалентных связей за счёт перекрывания s р 3 -орбиталей с орбиталями других атомов характерно для атомов углерода и других элементов IVA-группы; это обуславлиает тетраэдрическую структуру молекул (СН 4 , CC1 4 , SiH 4 , SiF 4 , GeH 4 , GeBr 4 и др).

Рис. 10. Влияние несвязывающих электронных пар на геометрию молекул:

a – метана (несвязывающих электронных пар нет);

б – аммиака (одна несвязывающая электронная пара);

в – воды (две несвязывающие пары).

Неподелённые электронные пары гибридных орбита лей . Во всех рассмотренных примерах гибридные орбитали были "заселены" одиночными электронами. Однако нередки случаи, когда гибридная орбиталь "заселена" электронной парой. Это оказывает влияние на геометрию молекул. Поскольку несвязывающая электронная пара испытывает воздействие ядра только своего атома, а связывающая электронная пара находится под действием двух атомных ядер, несвязывающая электронная пара находится ближе к атомному ядру, чем связывающая. В результате этого несвязывающая электронная пара сильнее отталкивает связывающие электронные пары, чем те отталкивают друг друга. Графически для наглядности большую отталкивающую силу, действующую между несвязывающей и связывающими электронными парами, можно изобразить большей по объёму электронной орбиталью несвязывающей пары. Несвязывающая электронная пара имеется, например, у атома азота в молекуле аммиака (рис. 10 б ). В результате взаимодействия со связывающими электронными парами валентные углы Н-N-Н сокращаются до 107,78° по сравнению со 109,5°, характерными для правильного тетраэдра.

Ещё большее отталкивание испытывают связывающие электронные пары в молекуле воды, где у атома кислорода имеются две несвязывающие электронные пары. В результате чего валентный угол Н-О-Н в молекуле воды равен 104,5° (рис. 10 в ).

Если несвязывающая электронная пара в результате образования ковалентной связи по донорно-акцепторному механизму превращается в связывающую, то силы отталкивания между этой связью и другими ковалентными связями в молекуле выравниваются; выравниваются и углы между этими связями. Это происходит, например, при образовании катиона аммония:

Участие в гибридизации d -орбиталей. Если энергия атомных d - орбиталей не очень сильно отличается от энергий s - и р- орбиталей, то они могут участвовать в гибридизации. Самым распространённым типом гибридизации с участием d - орбиталей является s р 3 d 2 - гибридизация, в результате которой образуются шесть равноценных по форме и энергии гибридных орбиталей (рис. 11 а ), расположенных под углом 90˚ друг к другу и направленных к вершинам октаэдра, в центре которого находится атомное ядро. Октаэдр (рис. 11 б ) является правильным восьмигранником: все рёбра в нём равной длины, все грани – правильные треугольники.

Рис. 11. s р 3 d 2 - Гибридизация

Реже встречается s р 3 d - гибридизация с образованием пяти гибридных орбиталей (рис. 12 а ), направленных к вершинам тригональной бипирамиды (рис. 12 б ). Тригональная бипирамида образуется соеинением двух равнобедренных пирамид общим основанием - правильным треугольником. Полужирными штрихами на рис. 12 б показаны рёбра равной длины. Геометрически и энергетически s р 3 d - гибридные орбитали неравноценны: три «экваториальные» орбитали направлены к вершинам правильного треугольника, а две «аксиальные» - вверх и вниз перпендикулярно плоскости этого треугольника (рис. 12в ). Углы между «экваториальными» орбиталями равны 120°, как при s р 2 - гибридизации. Угол между «аксиальной» и любой из «экваториальных» орбиталей равны 90°. Соответственно этому ковалентные связи, которые образуются с участием «экваториальных» орбиталей отличаются по длине и энергии от связей, в образовании которых участвуют «аксиальные» орбитали. Например, в молекуле РС1 5 «аксиальные» связи имеют длину 214 пм, а «экваториальные» - 202 пм.

Рис. 12. s р 3 d - Гибридизация

Таким образом, рассматривая ковалентные связи как результат перекрывания атомных орбиталей, можно объяснить геометрию возникающих при этом молекул и ионов, которая зависит от числа и типа атомных орбиталей, участвующих в образовании связей. Концепцию гибридизации атомных орбиталей, необходимо понимать, что гибридизация представляет собой условный приём, позволяющий наглядно объяснить геометрию молекулы посредством комбинации АО.

Поговорим о том, как определить тип гибридизации, а также рассмотрим геометрическое строение молекулы.

История появления термина

В начале двадцатого века Л. Полинглом была предложена теория геометрии молекул с ковалентной связью. В качестве основы для образования связи было взято перекрывание электронных облаков. Метод стали называть валентными связями. Как определять тип гибридизации атомов в соединениях? Автор теории предлагал учитывать смешивание гибридных орбиталей.

Определение

Для того чтобы понять, как определить тип гибридизации в соединениях, разберем, что обозначает этот термин.

Гибридизация представляет собой смешивание электронных орбиталей. Данный процесс сопровождается распределением в них энергии, изменением их формы. В зависимости от того, в каком количестве будут смешиваться s- и p-орбитали, тип гибридизации может быть различным. В органических соединениях атом углерода может существовать в состоянии sp, sp2, sp3. Есть и более сложные формы, в которых участвуют, помимо sp, d-орбитали.

Правила выявления в молекулах неорганических веществ

Выявить вариант гибридизации можно для соединений с ковалентной химической связью, имеющих тип АВп. А - основной атом, В - лиганд, п - число от двух и выше. В подобной ситуации в гибридизацию будут вступать только валентные орбитали главного атома.

Способы определения

Поговорим подробнее о том, как определить тип гибридизации. В химическом понимании данный термин предполагает изменение энергии и формы орбиталей. Наблюдается подобный процесс в тех случаях, когда для образования связи используют электроны, которые принадлежат различным типам.

Чтобы понять, как определить тип гибридизации, рассмотрим молекулу метана. Данное вещество является первым представителем гомологического ряда насыщенных (предельных) углеводородов. В пространстве молекула СН4 является тетраэдром. Единственный атом углерода образует с водородами связи, сходные по энергии и длине. Для того чтобы образовались такие гибридные облака, используются три р- и один эс-электрон.

Четыре облака смешиваются, и возникает четыре одинаковых (гибридных) вида, имеющих форму неправильной восьмерки. Называют такой тип гибридизации sp3. Все углеводороды, в составе которых только простые (одинарные) связи, характеризуются именно таким типом гибридизации атома углерода. Валентный угол составляет 109 градусов 28 минут.

Продолжим разговор о том, как определить тип гибридизации. Примеры ряда этилена дают представление о sp2-гибридизации. Например, в молекуле этилена из четырех в образовании химической связи используется только три. Оставшийся негибридный р-электрон уходит на образование двойной связи.

Ацетилен является простейшим представителем класса СпН2п-2. Особенностью этого класса углеводородов является наличие тройной связи. Из четырех валентных электронов углеродного атома только два меняют свою форму и энергию, становясь гибридными. Два оставшихся электрона принимают участие в образовании двух двойных связей, определяя ненасыщенный характер этого класса органических соединений.

Заключение

Рассматривая вопрос, касающийся для органических и для учитывают гибридизацию При этом происходит выравнивание их энергии и формы. Электрон, располагающийся вблизи ядра связанного атома, характеризуется совокупностью орбиталей, которые обладают одинаковым Информация о типе гибридизации дает возможность оценивать химические свойства вещества.










Примеры. Определите тип химической связи между атомами в молекулах веществ: гидроксида натрия, серной кислоты, гидроксида мышьяка, сульфата натрия. Покажите стрелкой к какому элементу смещена электронная пара Какая связь более полярна? Каковы степени окисления атомов элементов?


Алгоритм выполнения 1.Изобразить графическую формулу. 2. Под каждым элементом проставить значение электроотрицательности из таблицы. 3. Стрелкой показать смещение электронной плотности. 4. Рассчитать разность относительных электроотрицательностей и указать тип связи (ионная, КП, КНП) 5. По направлению и количеству смещений электронной плотности определить степени окисления атомов элементов.


Пример выполнения NaOH Na OH 0,93 3,5 2, ОЭО(O-Na) ОЭО(O-Na)= 3,5 – 0,93=2,63 ОЭО(О-Н)= 3,5-2,1=1,4 ионная КП


Продолжение H 2 SO 4 S O O O O H H ОЭО(О-Н)=3,5-2.1=1.4 КП ОЭО(O-S)=3,5-2,6=0,9 КП






Определить тип гибридизации центрального атома в молекулах 1. СН 4 метана 2. NH 3 аммиака 3. Н 2 О Пример С НН Н Н Центральный атом – углерод. В(С)=4 3. …2s 2 2p s 1 2p 3


5. В формировании структуры молекулы участвуют одна s и три p- электронные орбитали. Все связи в молекуле метана одинарные -связи. Тип гибридизации sp 3. Все электронные облака участвующие в гибридизации одинаковы. Следовательно углы между ними одинаковы и =0. Молекула неполярна. Геометрическая форма тетраэдр. Ответ sp 3 -гибридизация =0, неполярная молекула


Молекула аммиака Рассуждая аналогично для молекулы аммиака: 1 N H H H 2. B(N)=3, …2s 2 2p 3: связи+электронная пара. 5. SР 3 - гибридизация. Электронные облака разного характера. Углы между ними неодинаковы. 0. Молекула полярна.


Молекула воды 2. Кислород В=2. :O: H H s 2 2p 4 4. В молекуле 2 -связи и две электроные пары. В формировании структуры молекулы участвуют s- и три p-электронные орбитали. Тип гибридизации sp 3. 0 (т.к. Углы между электронными облаками различны). Молекула полярна.


Взаимодействия между молекулами. Водородная связь Водородная связь – это особый вид взаимодействия между молекулами веществ. Водородная связь возникает между атомом водорода и другим более электроотрицательным атомом за счет сил электростатического притяжения по донорно-акцепторному механизму.


Вандерваальсово взаимодействие (межмолекулярное взаимодействие) 1873 год голландский ученый И. Ван-дер-Ваальс, предположил, что существуют силы, обусловливвающие притяжение между молекулами. Типы взаимодействия: 1) диполь-дипольное (ориентационное) Взаимодействие полярных молекул. 2) Индукционное. Взаимодействие полярных и неполярных молекул. Энергия этого вида взаимодействия слабее, чем ориентационного. 3)Дисперсионное. В неполярных молекулах (инертные газы) возникают флуктуации электронной плотности, в результате возникают мгновенные диполи, которые могут индуцировать соседние молекулы.






Дипольные моменты молекул

Метод валентных связей основывается на положении, что каждая пара атомов в химической частице удерживается вместе при помощи одной или нескольких электронных пар. Эти пары электронов принадлежат двум связываемым атомам и локализованы в пространстве между ними. За счет притяжения ядер связываемых атомов к этим электронам и возникает химическая связь.

Перекрывание атомных орбиталей

При описании электронного строения химической частицы электроны, в том числе и обобществленные, относят к отдельным атомам и их состояния описывают атомными орбиталями. При решении уравнения Шредингера приближенную волновую функцию выбирают так, чтобы она давала минимальную электронную энергию системы, то есть наибольшее значение энергии связи. Это условие достигается при наибольшем перекрывании орбиталей, принадлежащей одной связи. Таким образом, пара электронов, связывающих два атома, находится в области перекрывания их атомных орбиталей.

Перекрываемые орбитали должны иметь одинаковую симметрию относительно межъядерной оси.

Перекрывание атомных орбиталей вдоль линии, связывающей ядра атомов, приводит к образованию σ-связей. Между двумя атомами в химической частице возможна только одна σ-связь. Все σ-связи обладают осевой симметрией относительно межъядерной оси. Фрагменты химических частиц могут вращаться вокруг межъядерной оси без нарушения степени перекрывания атомных орбиталей, образующих σ-связи. Совокупность направленных, строго ориентированных в пространстве σ-связей создает структуру химической частицы.

При дополнительном перекрывании атомных орбиталей, перпендикулярных линии связи, образуются π-связи.


В результате этого между атомами возникают кратные связи:

Одинарная (σ) Двойная (σ +π) Тройная (σ + π + π)
F−F O=O N≡N

С появлением π-связи, не имеющей осевой симметрии, свободное вращение фрагментов химической частицы вокруг σ-связи становится невозможным, так как оно должно привести к разрыву π-связи. Помимо σ- и π-связей, возможно образование еще одного вида связи - δ-связи:

Обычно такая связь образуется после образования атомами σ- и π-связей при наличии у атомов d - и f -орбиталей путем перекрывания их "лепестков" сразу в четырех местах. В результате кратность связи может возрасти до 4-5.
Например, в октахлородиренат(III)-ионе 2- между атомами рения образуются четыре связи.

Механизмы образования ковалентных связей

Различают несколько механизмов образования ковалентной связи: обменный (равноценный), донорно-акцепторный , дативный .

При использовании обменного механизма образование связи рассматривается как результат спаривания спинов свободных электронов атомов. При этом осуществляется перекрывание двух атомных орбиталей соседних атомов, каждая из которых занята одним электроном. Таким образом, каждый из связываемых атомов выделяет для обобществления пары по электрону, как бы обмениваясь ими. например, при образовании молекулы трифторида бора из атомов три атомные орбитали бора, на каждой из которых имеется по одному электрону, перекрываются с тремя атомными орбиталями трех атомов фтора (на каждой из них также находится по одному неспаренному электрону). В результате спаривания электронов в областях перекрывания соответствующих атомных орбиталей появляется три пары электронов, связывающих атомы в молекулу.

По донорно-акцепторному механизму перекрывается орбиталь с парой электронов одного атома и свободная орбиталь другого атома. В этом случае в области перекрывания также оказывается пара электронов. По донорно-акцепторному механизму происходит, например, присоединение фторид-иона к молекуле трифторида бора. Вакантная р -орбиталь бора (акцептора электронной пары) в молекуле BF 3 перекрывается с р -орбиталью иона F − , выступающего в роли донора электронной пары. В образовавшемся ионе − все четыре ковалентные связи бор−фтор равноценны по длине и энергии, несмотря на различие в механизме их образования.

Атомы, внешняя электронная оболочка которых состоит только из s - и р -орбиталей, могут быть либо донорами, либо акцепторами электронной пары. Атомы, у которых внешняя электронная оболочка включает d -орбитали, могут выступать в роли и донора, и акцептора пар электронов. В этом случае рассматривается дативный механизм образования связи. Примером проявления дативного механизма при образования связи служит взаимодействие двух атомов хлора. Два атома хлора в молекуле Cl 2 образуют ковалентную связь по обменному механизму, объединяя свои неспаренные 3р -электроны. Кроме того, происходит перекрывание 3р -орбитали атом Cl-1, на которой имеется пара электронов, и вакантной 3d -орбитали атома Cl-2, а также перекрывание 3р -орбитали атом Cl-2, на которой имеется пара электронов, и вакантной 3d -орбитали атома Cl-1. Действие дативного механизма приводит к увеличению прочности связи. Поэтому молекула Cl 2 является более прочной, чем молекула F 2 , в которой ковалентная связь образуются только по обменному механизму:

Гибридизация атомных орбиталей

При определении геометрической формы химической частицы следует учитывать, что пары внешних электронов центрального атома, в том числе и не образующие химическую связь, располагаются в пространстве как можно дальше друг от друга.

При рассмотрении ковалентных химических связей нередко используют понятие о гибридизации орбиталей центрального атома - выравнивание их энергии и формы. Гибридизация является формальным приемом, применяемым для квантово-химического описания перестройки орбиталей в химических частицах по сравнению со свободными атомами. Сущность гибридизации атомных орбиталей состоит в том, что электрон вблизи ядра связанного атома характеризуется не отдельной атомной орбиталью, а комбинацией атомных орбиталей с одинаковым главным квантовым числом. Такая комбинация называется гибридной (гибридизованной) орбиталью. Как правило, гибридизация затрагивает лишь высшие и близкие по энергии атомные орбитали, занятые электронами.

В результате гибридизации появляются новые гибридные орбитали (рис.24), которые ориентируются в пространстве таким образом, чтобы расположенные на них электронные пары (или неспаренные электроны) оказались максимально удаленными друг от друга, что соответствует минимуму энергии межэлектронного отталкивания. Поэтому тип гибридизации определяет геометрию молекулы или иона.

ТИПЫ ГИБРИДИЗАЦИИ

Тип гибридизации Геометрическая форма Угол между связями Примеры
sp линейная 180 o BeCl 2
sp 2 треугольная 120 o BCl 3
sp 3 тетраэдрическая 109,5 o CH 4
sp 3 d тригонально-бипирамидальная 90 o ; 120 o PCl 5
sp 3 d 2 октаэдрическая 90 o SF 6

В гибридизации участвуют не только связывающие электроны, но и неподеленные электронные пары. Например, молекула воды содержит две ковалентные химические связи между атомом кислорода и двумя атомами водорода.

Помимо двух пар электронов, общих с атомами водорода, у атома кислорода имеются две пары внешних электронов, не участвующих в образовании связи (неподеленные электронные пары). Все четыре пары электронов занимают определенные области в пространстве вокруг атома кислорода.
Поскольку электроны отталкиваются друг от друга, электронные облака располагаются на возможно большем расстоянии друг от друга. При этом в результате гибридизации меняется форма атомных орбиталей, они вытянуты и направлены к вершинам тетраэдра. Поэтому молекула воды имеет угловую форму, а угол между связями кислород-водород равен 104,5 o .

Для предсказания типа гибридизации удобно использовать донорно-акцепторный механизм образования связи: происходит перекрывание пустых орбиталей менее электроотрицательного элемента и орбиталей более электроотрицательного элемента с находящимися на них парами электронов. При составлении электронных конфигураций атомов учитывают их степени окисления − условное число, характеризующее заряд атома в соединении, рассчитанный исходя из предположения ионного строения вещества.

Чтобы определить тип гибридизации и форму химической частицы, поступают следующим образом:

  • находят центральный атом и определяют число σ-связей (по числу концевых атомов);
  • определяют степени окисления атомов в частице;
  • составляют электронную конфигурацию центрального атома в нужной степени окисления;
  • если это необходимо, проделывают то же самое для концевых атомов;
  • изображают схему распределения валентных электронов центрального атома по орбиталям, при этом, вопреки правилу Гунда, максимально спаривают электроны;
  • отмечают орбитали, участвующие в образовании связей с концевыми атомами;
  • определяют тип гибридизации, учитывая все орбитали, участвующие в образовании связи, а также неподеленные электроны; если валентных орбиталей недостаточно, используют орбитали последующих энергетических уровней;
  • по типу гибридизации определяют геометрию химической частицы.

    Наличие π-связей не влияет на тип гибридизации. Однако наличие дополнительного связывания может привести к изменению валентных углов, поскольку электроны кратных связей сильнее отталкиваются друг от друга. По этой причине, например, валентный угол в молекуле NO 2 (sp 2 -гибридизация) увеличивается от 120 o до 134 o .

    Кратность связи азот−кислород в этой молекуле равна 1,5, где единица отвечает одной σ-связи, а 0,5 равно отношению числа орбиталей атома азота, не участвующих в гибридизации (1) к числу оставшихся активных электронных пар у атома кислорода, образующих π-связи (2). Таким образом, наблюдается делокализация π-связей (делокализованные связи − ковалентные связи, кратность которых не может быть выражена целым числом).

    В случае sp , sp 2 , sp 3 , sp 3 d 2 гибридизации вершины в многограннике, описывающем геометрию химической частицы, равноценны, и поэтому кратные связи и неподеленные пары электронов могут занимать любые из них. Однако sp 3 d -гибридизации отвечает тригональная бипирамида , в которой валентные углы для атомов, расположенных в основании пирамиды (экваториальной плоскости), равны 120 o , а валентные углы с участием атомов, расположенных в вершинах бипирамиды, равны 90 o . Эксперимент показывает, что неподеленные электронные пары всегда располагаются в экваториальной плоскости тригональной бипирамиды. На этом основании делается вывод, что они требуют больше свободного пространства, чем пары электронов, участвующие в образовании связи. Примером частицы с таким расположением неподеленной электронной пары является тетрафторид серы (рис. 27). Если центральный атом одновременно имеет неподеленные пары электронов и образует кратные связи (например, в молекуле XeOF 2), то в случае sp 3 d -гибридизации именно они располагаются в экваториальной плоскости тригональной бипирамиды (рис. 28).

    Дипольные моменты молекул

    Идеальная ковалентная связь существует лишь в частицах, состоящих из одинаковых атомов (Н 2 , N 2 и т.д.). Если образуется связь между различными атомами, то электронная плотность смещается к одному из ядер атомов, то есть происходит поляризация связи. Характеристикой полярности связи служит ее дипольный момент.

    Дипольный момент молекулы равен векторной сумме дипольных моментов ее химических связей (с учетом наличия неподеленных пар электронов). Если полярные связи расположены в молекуле симметрично, то положительные и отрицательные заряды компенсируют друг друга, и молекула в целом является неполярной. Так происходит, например, с молекулой диоксида углерода. Многоатомные молекулы с несимметричным расположением полярных связей (и, следовательно, электронной плотности) являются в целом полярными. Это относится, в частности, к молекуле воды.

    На результирующее значение дипольного момента молекулы может повлиять неподеленная пара электронов. Так, молекулы NH 3 и NF 3 имеют тетраэдрическую геометрию (с учетом неподеленной пары электронов). Степени ионности связей азот−водород и азот−фтор составляют 15 и 19%, соответственно, а их длины - 101 и 137 пм, соответственно. Исходя из этого, можно было бы сделать вывод о большем дипольном моменте NF 3 . Однако эксперимент показывает обратное. При более точном предсказании дипольного момента следует учитывать направление дипольного момента неподеленной пары (рис. 29).