Теорема минелая и теорема чевы и их применение. Теорема Чевы. Простое доказательство и широкая применимость


Помню, в школе мы доказывали, что медианы треугольника пересекаются в одной точке. И что биссектрисы треугольника пересекаются в одной точке. Более того, высоты и серединные перпендикуляры треугольника тоже обладают тем же свойством.
Вот только доказывались эти теоремы.... как? Да в том-то и дело, что каждая из них доказывалась как-то по-своему, у каждой из них был свой способ.

Я хочу показать вам, дорогие читатели, единый способ доказательства этих теорем. Доказательства, использующего теорему Чевы.
Вот её формулировка:

Пусть точки A",B",C" лежат на прямых BC,CA,AB треугольника . Прямые AA",BB",CC" пересекаются в одной точке тогда и только тогда, когда

Прежде чем перейти к доказательству, замечу, что равенство в формулировке не такое уж заумное и трудно запоминающееся, как может показаться на первый взгляд. Действительно, чтобы получить это равенство, нам достаточно выбрать произвольную вершину треугольника, например, B, и начать обходить треугольник по часовой стрелке. Обойдя треугольник, мы пройдём по каждому из отрезков как раз в той последовательности, в которой они встречаются в равенстве.

Доказательство .

Прямая теорема.

С одной стороны,
S AOB"/S COB" =AB"/B"C
С другой стороны, это же отношение площадей равно отношению высот треугольников AOB" и COB", проведенных к основанию OB", равно как и отношение площадей треугольников AOB и COB.

Таким образом, AB"/B"C = S AOB/S COB.

Записав аналогичные равенства для отношений CA"/A"B и AC"/C"B и затем перемножив их всех, получим требуемое утверждение.

Обратная теорема.

Итак, допустим, у нас выбраны точки A", B", C" на сторонах треугольника и выполняется равенство из условия.
Пусть AA" и BB" пересекаются в точке О. Проведем прямую СО и пусть она пересекает сторону AB в некоторой точке C"". Тогда, согласно прямой теореме, у нас будет выполняться то самое огромное равенство, в котором вместо точки C" будет точка C"". Исходя из выполнения этих двух равенств - с точкой C"", как мы показали, и с точкой C" из условия обратной теоремы, делаем вывод, что точки C"" и C" совпадают.

Можно записать условие Чевы в форме синусов :
Это условие легко получить, применив теорему синусов к треугольникам ABA" и ACA". Для них получаем A"B/AA"= sinBAA" /sinABA" и A"C/AA"=sinA"AC/sinA"CA. Разделив одно равенство на другое, получаем A"B/A"C=sinBAA" /sinA"AC * (sinBCA/sinABC)

Записав аналогичные равенство для остальных отрезков и перемножив их, получаем условие Чевы в форме синусов.

Согласно теореме Чевы, то, пересечение медиан треугольника в одной точке - доказывается в одну строчку.
Согласно теореме Чевы в форме синусов, пересечение биссектрис в одной точке доказывается в одну строчку.
А вот доказательство того, что высоты треугольника пересекаются в одной точке - это, согласно теореме Чевы в форме синусов, доказывается в две строчки. В первой строчке доказательства нам следует написать известное тригонометрическое тождество -
sin(90 - a ) = cos a

А.В. Шевкин

ФМШ № 2007

Теоремы Чевы и Менелая на ЕГЭ

Подробная статья "Вокруг теорем Чевы и Менелая" опубликована на нашем сайте в разделе СТАТЬИ. Она адресована учителям математики и учащимся старших классов, мотивированным на хорошее знание математики. К ней можно вернуться, если появится желание подробнее разобраться в вопросе. В этой заметке мы приведем краткие сведения из упомянутой статьи и разберём решения задач из сборника для подготовки к ЕГЭ-2016.

Теорема Чевы

Пусть дан треугольник ABC и на его сторонах AB , BC и AC отмечены точки C 1 , A 1 и B 1 соответственно (рис. 1).

а) Если отрезки 1 , BB 1 и 1 пересекаются в одной точке, то

б) Если верно равенство (1), то отрезки 1 , BB 1 и 1 пересекаются в одной точке.

На рисунке 1 изображен случай, когда отрезки 1 , BB 1 и 1 пересекаются в одной точке внутри треугольника. Это так называемый случай внутренней точки. Теорема Чевы справедлива и в случае внешней точки, когда одна из точек А 1 , B 1 или С 1 принадлежит стороне треугольника, а две другие - продолжениям сторон треугольника. В этом случае точка пересечения отрезков 1 , BB 1 и 1 лежит вне треугольника (рис. 2).

Как запомнить равенство Чевы?

Обратим внимание на прием запоминания равенства (1). Вершины треугольника в каждом отношении и сами отношения записываются в направлении обхода вершин треугольника ABC , начиная с точки A . От точки A идем к точке B , встречаем точку С 1 , записываем дробь
. Далее от точки В идем к точке С , встречаем точку А 1 , записываем дробь
. Наконец, от точки С идем к точке А , встречаем точку В 1 , записываем дробь
. В случае внешней точки порядок записи дробей сохраняется, хотя две «точки деления» отрезка оказываются вне своих отрезков. В таких случаях говорят, что точка делит отрезок внешним образом.

Отметим, что любой отрезок, соединяющий вершину треугольника с любой точкой прямой, содержащей противоположную сторону треугольника, называют чевианой .

Рассмотрим несколько способов доказательства утверждения а) теоремы Чевы для случая внутренней точки. Чтобы доказать теорему Чевы, надо доказать утверждение а) любым из предложенных ниже способов, а также доказать утверждение б). Доказательство утверждения б) приведено после первого способа доказательства утверждения а). Доказательства теоремы Чевы для случая внешней точки проводятся аналогично.

Доказательство утверждения а) теоремы Чевы с помощью теоремы о пропорциональных отрезках

Пусть три чевианы A A 1 , B B 1 и C C 1 пересекаются в точке Z внутри треугольника ABC .

Идея доказательства заключается в том, чтобы отношения отрезков из равенства (1) заменить отношениями отрезков, лежащих на одной прямой.

Через точку В проведем прямую, параллельную чевиане СС 1 . Прямая АА 1 пересекает построенную прямую в точке М , а прямая, проходящая через точку C и параллельная АА 1 , - в точке Т . Через точки А и С проведем прямые, параллельные чевиане ВВ 1 . Они пересекут прямую ВМ в точках N и R соответственно (рис. 3).

По теореме о пропорциональных отрезках имеем:

,
и
.

Тогда справедливы равенства

.

В параллелограммах ZСTM и ZСRВ отрезки TM , СZ и ВR равны как противоположные стороны параллелограмма. Следовательно,
и верно равенство

.

При доказательстве утверждения б) используем следующее утверждение. Рис. 3

Лемма 1. Если точки С 1 и С 2 делят отрезок AB внутренним (или внешним) образом в одном и том же отношении, считая от одной и той же точки, то эти точки совпадают.

Докажем лемму для случая, когда точки С 1 и С 2 делят отрезок AB внутренним образом в одном и том же отношении:
.

Доказательство. Из равенства
следуют равенства
и
. Последнее из них выполняется лишь при условии, что С 1 B и С 2 B равны, т. е. при условии, что точки С 1 и С 2 совпадают.

Доказательство леммы для случая, когда точки С 1 и С 2 делят отрезок AB внешним образом проводится аналогично.

Доказательство утверждения б) теоремы Чевы

Пусть теперь верно равенство (1). Докажем, что отрезки 1 , BB 1 и 1 пересекаются в одной точке.

Пусть чевианы АА 1 и ВВ 1 пересекаются в точке Z , проведем через эту точку отрезок 2 (С 2 лежит на отрезке AB ). Тогда на основании утверждения а) получаем верное равенство

. (2)

Из сравнения равенств (1) и (2) заключаем, что
, т. е. точки С 1 и С 2 делят отрезок AB в одном и том же отношении, считая от одной и той же точки. Из леммы 1 следует, что точки С 1 и С 2 совпадают. Это означает, что отрезки 1 , BB 1 и 1 пересекаются в одной точке, что и требовалось доказать.

Можно доказать, что процедура записи равенства (1) не зависит, от того, от какой точки и в каком направлении совершается обход вершин треугольника.

Задание 1. Найдите длину отрезка А N на рисунке 4, на котором указаны длины других отрезков.

Ответ. 8.

Задание 2. Чевианы AM , BN , CK пересекаются в одной точке внутри треугольника ABC . Найдите отношение
, если
,
. Рис. 4

Ответ.
.

Приведем доказательство теоремы Чевы из статьи . Идея доказательства заключается в том, чтобы заменить отношения отрезков из равенства (1) отношениями отрезков, лежащих на параллельных прямых.

Пусть прямые A A 1 , B B 1 , C C 1 пересекаются в точке O внутри треугольника АВС (рис. 5). Через вершину С треугольника АВС проведем прямую, параллельную AB , и ее точки пересечения с прямыми A A 1 , B B 1 обозначим соответственно A 2 , B 2 .

Из подобия двух пар треугольников CB 2 B 1 и ABB 1 , BAA 1 и CA 2 A 1 , Рис. 5

имеем равенства

,
. (3)

Из подобия треугольников 1 O и B 2 CO , A С 1 O и A 2 CO имеем равенства
, из которых следует, что

. (4)

Перемножив равенства (3) и (4), получим равенство (1).

Утверждение а) теоремы Чевы доказано.

Рассмотрим доказательства утверждения а) теоремы Чевы с помощью площадей для внутренней точки. Оно изложено в книге А.Г. Мякишева и опирается на утверждения, которые мы сформулируем в виде заданий 3 и 4 .

Задание 3. Отношение площадей двух треугольников с общей вершиной и основаниями, лежащими на одной прямой, равно отношению длин этих оснований. Докажите это утверждение.

Задание 4. Докажите, что если
, то
и
. Рис. 6

Пусть отрезки 1 , BB 1 и 1 пересекаются в точке Z (рис. 6), тогда

,
. (5)

Из равенств (5) и второго утверждения задания 4 следует, что
или
. Аналогично получим, что
и
. Перемножив три последние равенства, получим:

,

т. е. верно равенство (1), что и требовалось доказать.

Утверждение а) теоремы Чевы доказано.

Задание 15. Пусть чевианы пересекаются в одной точке внутри треугольника и разбивают его на 6 треугольников, площади которых равны S 1 , S 2 , S 3 , S 4 , S 5 , S 6 (рис. 7). Докажите, что . Рис. 7

Задание 6. Найдите площадь S треугольника CNZ (площади других треугольников указаны на рисунке 8).

Ответ. 15.

Задание 7. Найдите площадь S треугольника CNO , если площадь треугольника А NO равна 10 и
,
(рис. 9).

Ответ. 30.

Задание 8. Найдите площадь S треугольника CNO , если площадь треугольника А BC равна 88 и ,
(рис. 9).

Решение. Так как , то обозначим
,
. Так как , то обозначим
,
. Из теоремы Чевы следует, что
, и тогда
. Если
, то
(рис. 10). У нас три неизвестные величины (x , y и S ), поэтому для нахождения S составим три уравнения.

Так как
, то
= 88. Так как
, то
, откуда
. Так как
, то
.

Итак,
, откуда
. Рис. 10

Задание 9 . В треугольнике ABC точки K и L принадлежат соответственно сторонам AB и B C .
,
. P AL и CK . Площадь треугольника PBC равна 1. Найдите площадь треугольника ABC .

Ответ. 1,75.

Теорема Менелая

Пусть дан треугольник ABC и на его сторонах AC и отмечены точки B 1 и A 1 соответственно, а на продолжении стороны AB отмечена точка C 1 (рис. 11).

а) Если точки А 1 , B 1 и С 1 лежат на одной прямой, то

. (6)

б) Если верно равенство (7), то точки А 1 , B 1 и С 1 лежат на одной прямой. Рис. 11

Как запомнить равенство Менелая?

Прием запоминания равенства (6) тот же, что и для равенства (1). Вершины треугольника в каждом отношении и сами отношения записываются в направлении обхода вершин треугольника ABC - от вершины к вершине, проходя через точки деления (внутренние или внешние).

Задание 10. Докажите, что при записи равенства (6) от любой вершины треугольника в любом направлении получается один и тот же результат.

Чтобы доказать теорему Менелая, надо доказать утверждение а) любым из предложенных ниже способов, а также доказать утверждение б). Доказательство утверждения б) приведено после первого способа доказательства утверждения а).

Доказательство утверждения а) с помощью теоремы о пропорциональных отрезках

I способ. а) Идея доказательства заключается в замене отношений длин отрезков в равенстве (6) отношениями длин отрезков, лежащих на одной прямой.

Пусть точки А 1 , B 1 и С 1 лежат на одной прямой. Через точку C проведем прямую l , параллельную прямой А 1 B 1 , она пересекает прямую АB в точке M (рис. 12).

Р
ис. 12

По теореме о пропорциональных отрезках имеем:
и
.

Тогда верны равенства
.

Доказательство утверждения б) теоремы Менелая

Пусть теперь верно равенство (6), докажем, что точки А 1 , B 1 и С 1 лежат на одной прямой. Пусть прямые АB и А 1 B 1 пересекаются в точке С 2 (рис. 13).

Так как точки А 1 B 1 и С 2 лежат на одной прямой, то по утверждению а) теоремы Менелая


. (7)

Из сравнения равенств (6) и (7) имеем
, откуда следует, что верны равенства

,
,
.

Последнее равенство верно лишь при условии
, т. е. если точки С 1 и С 2 совпадают.

Утверждение б) теоремы Менелая доказано. Рис. 13

Доказательство утверждения а) с помощью подобия треугольников

Идея доказательства заключается в том, чтобы заменить отношения длин отрезков из равенства (6) отношениями длин отрезков, лежащих на параллельных прямых.

Пусть точки А 1 , B 1 и С 1 лежат на одной прямой. Из точек A , B и C проведем перпендикуляры АА 0 , B B 0 и СС 0 к этой прямой (рис. 14).

Р
ис. 14

Из подобия трех пар треугольников AA 0 B 1 и CC 0 B 1 , CC 0 A 1 и BB 0 A 1 , C 1 B 0 B и C 1 A 0 A (по двум углам) имеем верные равенства

,
,
,

перемножив их, получим:

.

Утверждение а) теоремы Менелая доказано.

Доказательство утверждения а) с помощью площадей

Идея доказательства заключается в замене отношения длин отрезков из равенства (7) отношениями площадей треугольников.

Пусть точки А 1 , B 1 и С 1 лежат на одной прямой. Соединим точки C и C 1 . Обозначим площади треугольников S 1 , S 2 , S 3 , S 4 , S 5 (рис. 15).

Тогда справедливы равенства

,
,
. (8)

Перемножив равенства (8), получим:

Утверждение а) теоремы Менелая доказано.

Р
ис. 15

Подобно тому, как теорема Чевы остается справедливой и в том случае, если точка пересечения чевиан находится вне треугольника, теорема Менелая остается справедливой и в том случае, если секущая пересекает только продолжения сторон треугольника. В этом случае можно говорить о пересечении сторон треугольника во внешних точках.

Доказательство утверждения а) для случая внешних точек

Пусть секущая пересекает стороны треугольника ABC во внешних точках, т. е. пересекает продолжения сторон AB , BC и AC в точках C 1 , A 1 и B 1 соответственно и эти точки лежат на одной прямой (рис. 16).

По теореме о пропорциональных отрезках имеем:

и .

Тогда верны равенства

Утверждение а) теоремы Менелая доказано. Рис. 16

Заметим, что приведенное доказательство совпадает с доказательством теоремы Менелая для случая, когда секущая пересекает две стороны треугольника во внутренних точках и одну во внешней.

Доказательство утверждения б) теоремы Менелая для случая внешних точек аналогично доказательству, приведенному выше.

Задание 11. В треугольнике АВС точки А 1 , В 1 лежат соответственно на сторонах ВС и A С . P - точка пересечения отрезков АА 1 и ВВ 1 .
,
. Найдите отношение
.

Решение. Обозначим
,
,
,
(рис. 17). По теореме Менелая для треугольника BC В 1 и секущей PA 1 запишем верное равенство:

,

откуда следует, что

. Рис. 17

Ответ. .

Задание 12 (МГУ, заочные подготовительные курсы). В треугольнике АВС , площадь которого равна 6, на стороне АВ взята точка К , делящая эту сторону в отношении
, а на стороне АС - точка L , делящая АС в отношении
. Точка P пересечения прямых СК и В L удалена от прямой АВ на расстояние 1,5. Найдите длину стороны АВ.

Решение. Из точек Р и С опустим перпендикуляры PR и СМ на прямую АВ . Обозначим
,
,
,
(рис. 18). По теореме Менелая для треугольника AKC и секущей PL запишем верное равенство:
, откуда получим, что
,
. Рис. 18

Из подобия треугольников К MC и К RP (по двум углам) получим, что
, откуда следует, что
.

Теперь, зная длину высоты, проведенной к стороне AB треугольника ABС , и площадь этого треугольника, вычислим длину стороны:
.

Ответ. 4.

Задание 13. Три окружности с центрами А , В , С , радиусы которых относятся как
, касаются друг друга внешним образом в точках X , Y , Z как показано на рисунке 19. Отрезки AX и BY пересекаются в точке O . В каком отношении, считая от точки B , отрезок CZ делит отрезок BY ?

Решение. Обозначим
,
,
(рис. 19). Так как
, то по утверждению б) теоремы Чевы отрезки А X , BY и С Z пересекаются в одной точке - точке O . Тогда отрезок CZ делит отрезок BY в отношении
. Найдем это отношение. Рис. 19

По теореме Менелая для треугольника BCY и секущей OX имеем:
, откуда следует, что
.

Ответ. .

Задание 14 (ЕГЭ-2016).

Точки В 1 и С АС и АВ треугольника ABC , причём АВ 1:B 1 С =
= АС 1:С 1 B . Прямые ВВ 1 и СС 1 пересекаются в точке О.

а) Докажите, что прямая АО делит пополам сторону ВС.

AB 1 OC 1 к площади треугольника ABC , если известно, что АВ 1:B 1 С = 1:4.

Решение. а) Пусть прямая AO пересекает сторону BC в точке A 1 (рис. 20). По теореме Чевы имеем:

. (9)

Так как АВ 1:B 1 С = АС 1:С 1 B , то из равенства (9) следует, что
, то есть CA 1 = А 1 B , что и требовалось доказать. Рис. 20

б) Пусть площадь треугольника AB 1 O равна S . Так как АВ 1:B 1 С CB 1 O равна 4S , а площадь треугольника AOC равна 5S . Тогда площадь треугольника AOB тоже равна 5S , так как треугольники AOB и AOC имеют общее основание AO , а их вершины B и C равноудалены от прямой AO . Причём площадь треугольника AOC 1 равна S , так как АС 1:С 1 B = 1:4. Тогда площадь треугольника ABB 1 равна 6S . Так как АВ 1:B 1 С = 1:4, то площадь треугольника CB 1 O равна 24S , а площадь треугольника ABC равна 30S . Теперь найдём отношение площади четырёхугольника AB 1 OC 1 (2S ) к площади треугольника ABC (30S ), оно равно 1:15.

Ответ. 1:15.

Задание 15 (ЕГЭ-2016).

Точки В 1 и С 1 лежат на сторонах соответственно АС и АВ треугольника ABC , причём АВ 1:B 1 С =
= АС 1:С 1 B . Прямые ВВ 1 и СС 1 пересекаются в точке О.

а) Докажите, что прямая АО делит пополам сторону ВС.

б) Найдите отношение площади четырёхугольника AB 1 OC 1 к площади треугольника ABC , если известно, что АВ 1:B 1 С = 1:3.

Ответ. 1:10.

Задание 1 6 (ЕГЭ-2016). На отрезке BD взята точка С . Биссектриса BL ABC с основанием ВС BLD с основанием BD .

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что cos
ABC
DL , то есть треугольник BD взята точка С . Биссектриса BL равнобедренного треугольника ABC с основанием ВС является боковой стороной равнобедренного треугольника BLD с основанием BD .

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что cosABC = . В каком отношении прямая DL делит сторону АВ ?

Ответ. 4:21.

Литература

1. Смирнова И.М., Смирнов В.А. Замечательные точки и линии треугольника. М.: Математика, 2006, № 17.

2. Мякишев А.Г. Элементы геометрии треугольника. (Серия «Библиотека "Математическое просвещение"»). М.: МЦНМО, 2002. - 32 с.

3. Геометрия. Дополнительные главы к учебнику 8 класса: Учебное пособие для учащихся школ и классов с углубленным изучением / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Вита-Пресс, 2005. - 208 с.

4. Эрдниев П., Манцаев Н. Теоремы Чевы и Менелая. М.: Квант, 1990, № 3, С. 56–59.

5. Шарыгин И.Ф. Теоремы Чевы и Менелая. М.: Квант, 1976, № 11, С. 22–30.

6. Вавилов В.В. Медианы и средние линии треугольника. М.: Математика, 2006, № 1.

7. Ефремов Дм. Новая геометрия треугольника. Одесса, 1902. - 334 с.

8. Математика. 50 вариантов типовых тестовых заданий / И.В. Ященко, М.А. Волкевич, И.Р. Высоцкий и др.; под ред. И.В. Ященко. – М.: Издательство "Экзамен", 2016. - 247 с.

ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

Теорема Чевы

Большинство замечательных точек треугольника могут быть по­лучены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A 1 , на стороне BC (или её про­должении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B 1 , C 1 на двух других сторонах треугольника (в нашем примере еще две середи­ны сторон). Если правило выбора удачное, то прямые AA 1 , BB 1 , CC 1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).

Хотелось бы иметь какой-нибудь общий метод, позво­ляющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.

Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева .

Определение. Отрезки, соеди­няющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.

Возможны два варианта расположения чевиан. В одном варианте точка


пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи).

Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А 1 , В 1 , С 1 , такие, что прямые АА 1 , ВВ 1 , СС 1 пересекаются в некоторой общей точке, тогда

.

Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB 1 и секущей CC 1 (точку пересечения чевиан обозначим Z ):

,

а второй раз для треугольника B 1 BC и секущей AA 1 :

.

Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.

Теорема 4. (Обратная теорема Чевы) . Если для выбранных на сторонах треугольника ABC или их продолжениях точек A 1 , В 1 и C 1 выполняется условие Чевы:

,

то прямые AA 1 , BB 1 и CC 1 пересекаются в одной точке .

Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.

Рассмотрим примеры применения прямой и обратной теорем Чевы.

Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.

Решение. Рассмотрим соотношение

для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.

Теорема (теорема Чевы) . Пусть точки лежат на сторонах и треугольника соответственно. Пусть отрезки и пересекаются в одной точке. Тогда

(обходим треугольник по часовой стрелке).

Доказательство. Обозначим через точку пересечения отрезков и . Опустим из точек и перпендикуляры на прямую до пересечения с ней в точках и соответственно (см. рисунок).


Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. и :

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем

и

Перемножим эти три равенства:

что и требовалось доказать.

Про медианы:

1. Разместим в вершинах треугольника ABC единичные массы.
2. Центр масс точек A и B находится посередине AB. Центр масс всей системы должен находиться на медиане к стороне AB, так как центр масс треугольника ABC - это центр масса центра масс точек A и B, и точки C.
(запутанно получилось)
3. Аналогично - ЦМ должен лежать на медиане к сторонам AC и BC
4. Так как ЦМ - единственная точка, то, следовательно все эти три медианы должны пересекаться в ней.

Кстати, сразу же следует, что пересечением они делятся в отношении 2:1. Так как масса центра масс точек A и B равна 2, а масса точки C равна 1, следовательно, общий центр масс согласно теореме о пропорции будет делить медиану в отношении 2/1.

Спасибо большое, доступно изложено, думаю, будет не лишним представить док-во и при помощи методов геометрии масс, например:
Прямые AA1 и CC1 пересекаются в точке O; AC1: C1B = p и BA1: A1C = q. Нужно доказать, что прямая BB1 проходит через точку O тогда и только тогда, когда CB1: B1A = 1: pq.
Поместим в точки A, B и C массы 1, p и pq соответственно. Тогда точка C1 является центром масс точек A и B, а точка A1 - центром масс точек B и C. Поэтому центр масс точек A, B и C с данными массами является точкой O пересечения прямых CC1 и AA1. С другой стороны, точка O лежит на отрезке, соединяющем точку B с центром масс точек A и C. Если B1 - центр масс точек A и C с массами 1 и pq, то AB1: B1C = pq: 1. Остается заметить, что на отрезке AC существует единственная точка, делящая его в данном отношении AB1: B1C.

2. Теорема Чевы

Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой . Таким образом, если в треугольнике ABC X , Y и Z - точки, лежащие на сторонах BC , CA , AB соответственно, то отрезки AX , BY , CZ являются чевианами. Этот термин происходит от имени итальянского математика Джованни Чевы, который в 1678 году опубликовал следующую очень полезную теорему:

Теорема 1.21. Если три чевианы AX, BY, CZ (по одной из каждой вершины) треугольника ABC конкурентны, то

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Рис. 3.

Когда мы говорим, что три прямые (или отрезка) конкурентны , то мы имеем в виду, что все они проходят через одну точку, которую обозначим через P . Для доказательства теоремы Чевы вспомним, что площади треугольников с равными высотами пропорциональны основаниям треугольников. Ссылаясь на рисунок 3, мы имеем:

|BX| |XC| = SABX SAXC = SPBX SPXC = SABX− SPBX SAXC− SPXC = SABP SCAP .

Аналогично,

|CY| |YA| = SBCP SABP , |AZ| |ZB| = SCAP SBCP .

Теперь, если мы перемножим их, то получим

|BX| |XC| · |CY| |YA| · |AZ| |ZB| = SABP SCAP · SBCP SABP · SCAP SBCP =1 .

Теорема, обратная к этой теореме, также верна:

Теорема 1.22. Если три чевианы AX, BY, CZ удовлетворяют соотношению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 ,

то они конкурентны .

Чтобы это показать, предположим, что две первые чевианы пересекаются в точке P , как и прежде, а третья чевиана, проходящая через точку P , будет CZ′ . Тогда, по теореме 1.21,

|BX| |XC| · |CY| |YA| · |AZ′| |Z′B| =1 .

Но по предположению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Следовательно,

|AZ| |ZB| = |AZ′| |Z′B| ,

точка Z′ совпадает с точкой Z , и мы доказали, что отрезки AX , BY и CZ конкурентны (, стр. 54 и , стр, 48, 317).

Теорема Чевы. Дан треугольник и точки
на сторонах BC, AC и AB соответственно. Отрезки
пересекаются в одной точке тогда и только тогда, когда

Лемма. Если числа таковы, что

то

лишь бы знаменатель в ноль не обращался.

Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.

Обозначим общее значение дробей и
буквой
Тогда

что и требовалось доказать.

Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но помогающее приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.

Доказательство теоремы.

1. Пусть указанные отрезки пересекаются в точке , тогда треугольник оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже. Рассмотрим первую дробь

Поскольку числитель и знаменатель этой дроби являются основаниями треугольников и с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники
и , можно заменить числитель и знаменатель и на их площади.

Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:

Проведя аналогичное рассуждение для двух других дробей, получаем:

что и доказывает теорему Чевы в одну сторону.

2. Пусть не пересекаются в одной точке.Проведем через точку пересечения и
отрезок (точка расположена на стороне ).
По доказанному,

Если бы было выполнено

,

то

что невозможно при

(скажем, если точки на стороне
расположены в порядке
то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).

На этом доказательство завершается.

Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы.
Воспользуемся для этого теоремой синусов:

Аналогично получаем

Отсюда получается новая формулировка теоремы Чевы.

Отрезки пересекаются в одной точке тогда и только тогда, когда

Примеры.

1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.

2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.

3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.