Структурная формула угарного газа. Какой датчик лучше. Загрязнение воздуха внутри помещений

Оксид углерода(II ), или угарный газ, СО был открыт английским химиком Джозефом Пристли в 1799 г. Это бес-цветный газ без вкуса и запаха, он ма-лорастворим в воде (3,5 мл в 100 мл воды при 0 °С), имеет низкие темпера-туры плавления (-205 °С) и кипения (-192 °С).

В атмосферу Земли угарный газ попадает при неполном сгорании ор-ганических веществ, при извержении вулканов, а также в результате жиз-недеятельности некоторых низших растений (водорослей). Естественный уровень СО в воздухе составляет 0,01—0,9 мг/м 3 . Угарный газ очень ядовит. В организме человека и выс-ших животных он активно реагирует с

Пламя горящего угарного газа — красивого сине-фиолетового цвета. Его легко наблюдать самому. Для этого надо зажечь спичку. Нижняя часть пламени светящаяся — этот цвет придают ему раскалённые частицы углерода (продукта неполного сгорания древесины). Сверху пламя окружено сине-фиолетовой каймой. Это горит образующийся при окислении древесины угарный газ.

комплексным соединением железа — гемом крови (связанным с белком гло-бином), нарушая функции переноса и потребления кислорода тканями. По-мимо этого, он вступает в необрати-мое взаимодействие с некоторыми ферментами, участвующими в энерге-тическом обмене клетки. При концен-трации угарного газа в помещении 880 мг/м 3 смерть наступает через не-сколько часов, а при 10 г/м 3 — прак-тически мгновенно. Предельно допу-стимое содержание угарного газа в воздухе — 20 мг/м 3 . Первыми призна-ками отравления СО (при концентра-ции 6—30 мг/м 3) являются снижение чувствительности зрения и слуха, го-ловная боль, изменение частоты сер-дечных сокращений. Если человек от-равился угарным газом, его надо вывести на свежий воздух, сделать ему искусственное дыхание, в лёгких слу-чаях отравления — дать крепкого чаю или кофе.

Большие количества оксида углерода ( II ) поступают в атмосферу в резуль-тате деятельности человека. Так, авто-мобиль в среднем за год выбрасывает в воздух около 530 кг СО. При сжига-нии в двигателе внутреннего сгорания 1 л бензина выброс угарного газа ко-леблется от 1 50 до 800 г. На автостра-дах России средняя концентрация СО составляет 6—57 мг/м 3 , т. е. превыша-ет порог отравления. Угарный газ на-капливается в плохо проветриваемых дворах перед домами, расположенны-ми вблизи автострад, в подвалах и га-ражах. В последние годы на автодоро-гах организованы специальные пункты по контролю содержания угарного га-за и других продуктов неполного сго-рания топлива (СО-СН-контроль).

При комнатной температуре угар-ный газ довольно инертен. Он не вза-имодействует с водой и растворами щелочей, т. е. является несолеобразующим оксидом, однако при нагревании вступает в реакцию с твёрдыми щело-чами: СО+КОН=НСООК (формиат калия, соль муравьиной кислоты); СО+Са(ОН) 2 =СаСО 3 +Н 2 . Эти реакции применяют для выделения водорода из синтез-газа (СО+3Н 2), образующегося при взаимодействии метана с пере-гретым водяным паром.

Интересным свойством угарного газа является его способность образо-вывать соединения с переходными ме-таллами — карбонилы, например: Ni +4СО ® 70° C Ni (CO ) 4 .

Оксид углерода(II ) — прекрасный восстановитель. При нагревании он окисляется кислородом воздуха: 2СО+О 2 =2СО 2 . Эту реакцию возможно осуществить и при комнатной темпера-туре, используя катализатор — плати-ну или палладий. Такие катализаторы устанавливают на автомобилях для уменьшения выброса СО в атмосферу.

При реакции СО с хлором обра-зуется очень ядовитый газ фосген (t кип =7,6 °С): СО+ Cl 2 = COCl 2 . Рань-ше его применяли в качестве боевого отравляющего вещества, а сейчас ис-пользуют в производстве синтетиче-ских полимеров полиуретанов.

Угарный газ используют при вы-плавке чугуна и стали для восстановле-ния железа из оксидов, он находит ши-рокое применение и в органическом синтезе. При взаимодействии смеси оксида углерола( II ) с водородом в зави-симости от условий (температуры, давления) образуются различные про-дукты — спирты, карбонильные соеди-нения, карбоновые кислоты. Особенно большое значение имеет реакция син-теза метанола: СО+2Н 2 = CH 3 OH , являющегося одним из основных про-дуктов органического синтеза. Угар-ный газ используют для синтеза фос-гена, муравьиной кислоты, в качестве высококалорийного топлива.

О том, насколько опасен угарный газ для человека, знают все, кому приходилось сталкиваться с работой отопительных систем, — печек, котлов, бойлеров, водогрейных колонок, рассчитанных на бытовое топливо в любой его форме. Нейтрализовать его в газовом состоянии довольно сложно, эффективных домашних способов бороться с угарным газом не существует, поэтому большая часть защитных мероприятий направлена на предупреждение и своевременное выявление угара в воздухе.

Свойства токсичного вещества

В природе и свойствах угарного газа нет ничего необычного. По сути, это продукт частичного окисления угля или угольсодержащих видов топлива. Формула угарного газа проста и незамысловата – СО, в химических терминах — монооксид углерода. Один атом углерода соединен с атомом кислорода. Так уж устроена природа процессов горения органического топлива, что угарный газ является неотъемлемой частью любого пламени.

Угли, родственные им виды топлива, торф, дрова при нагреве в топке газифицируются в угарный газ, и только потом дожигаются притоком воздуха. Если угар просочился из камеры горения в помещение, то он будет оставаться в стабильном состоянии до момента, когда вентиляцией угарный поток будет вынесен из комнаты или накапливаться, заполняя все пространство, от пола до потолка. В последнем случае спасти положение может только электронный датчик угарного газа, реагирующий на малейшее повышение концентрации токсичного угара в атмосфере помещения.

Что необходимо знать об угарном газе:

  • В стандартных условиях плотность угарного газа – 1,25 кг/м 3 , что очень близко к удельному весу воздуха 1,25 кг/м 3 . Горячий и даже теплый монооксид легко поднимается под потолок, по мере остывания оседает и перемешивается с воздухом;
  • Угарный газ не имеет вкуса, цвета и запаха, даже в условиях высокой концентрации;
  • Для начала образования угарного газа достаточно нагреть металл, контактирующий с углеродом, до температуры в 400-500 о С;
  • Газ способен гореть в воздухе с выделением большого количества тепла, примерно 111 кДж/моль.

Опасно не только вдыхание угарного газа, газовоздушная смесь способна взрываться при достижении объемной концентрации от 12,5% до 74%. В этом смысле газовая смесь похожа на бытовой метан, но гораздо опаснее сетевого газа.

Метан легче воздуха и менее токсичен при вдыхании, кроме того, благодаря добавке в газовый поток специальной присадки – меркаптана, его наличие в помещении легко уловить по запаху. При небольшой загазованности кухни можно без последствий для здоровья войти в помещение и проветрить его.

С угарным газом все сложнее. Близкое родство СО и воздуха препятствует эффективному удалению токсичного газового облака. По мере охлаждения облако газа будет постепенно оседать в области пола. Если сработал датчик угарного газа, или обнаружилась утечка продуктов горения из печи или котла на твердом топливе, необходимо немедленно принимать меры к проветриванию, иначе первыми пострадают дети и домашние питомцы.

Подобное свойство угарного облака ранее широко использовалось для борьбы с грызунами и тараканами, но эффективность газовой атаки значительно ниже современных средств, а риск заработать отравление несоизмеримо выше.

К сведению! Газовое облако СО, при отсутствии вентиляции, способно сохранять свои свойства без изменений длительное время.

При наличии подозрения в накоплении угарного газа в подвальных помещения, подсобках, котельных, погребах первым делом необходимо обеспечить максимальное проветривание с кратностью газообмена 3-4 единицы в течение часа.

Условия появления угара в помещении

Монооксид углерода можно получить с помощью десятков вариантов химических реакций, но для этого необходимы специфические реактивы и условия их взаимодействия. Риск заработать отравление газом таким способом практически равен нулю. Основными причинами появления угарного газа в котельной или в помещении кухни остаются два фактора:

  • Плохая тяга и частичное перетекание продуктов горения из очага горения в помещение кухни;
  • Неправильная эксплуатация котельного, газового и печного оборудования;
  • Пожары и локальные очаги возгорания пластика, проводки, полимерных покрытий и материалов;
  • Отходящие газы из канализационных коммуникаций.

Источником угарного газа может стать вторичное горение золы, рыхлых отложений сажи в дымоходах, копоть и смола, въевшиеся в кирпичную кладку каминных полок и сажегасителей.

Чаще всего источником газового СО становятся тлеющие угли, догорающие в топке при закрытой задвижке. Особенно много выделяется газа при термическом разложении дров в отсутствии воздуха, примерно половину газового облака занимает угарный газ. Поэтому любые эксперименты с копчением мяса и рыбы на дымке, получаемом от тлеющей стружки, должны выполняться только на открытом воздухе.

Незначительное количество угарного газа может появляться и в процессе приготовления пищи. Например, все, кто сталкивался с установкой на кухне газовых отопительных котлов с закрытой топкой, знают, как реагируют датчики угарного газа на жареную картошку или любые продукты, приготовленные в кипящем масле.

Коварный характер угарного газа

Главная опасность монооксида углерода заключается в том, что невозможно ощутить и почувствовать его присутствие в атмосфере помещения до того момента, как газ попадет с воздухом в органы дыхания и растворится в крови.

Последствия от вдыхания СО зависят от концентрации газа в воздухе и длительности пребывания в помещении:

  • Головная боль, недомогание и развитие сонливого состояния начинается при объемном содержании газа в воздухе 0,009-0,011%. Физически здоровый человек способен выдержать до трех часов пребывания в загазованной атмосфере;
  • Тошнота, сильная боль в мышцах, судороги, обмороки, потеря ориентации могут развиться при концентрации 0,065-0,07%. Время пребывания в помещении до момента наступления неотвратимых последствий всего1,5-2 ч;
  • При концентрации угарного газа выше 0,5% даже несколько секунд пребывания в загазованном пространстве означают летальный исход.

Даже если человек благополучно самостоятельно выбрался из помещения с высокой концентрацией угарного газа, все равно потребуется медицинская помощь и использование антидотов, так как последствия отравления кровеносной системы и нарушения кровообращения мозга все равно проявятся, только чуть позже.

Молекулы угарного газа хорошо поглощаются водой и солевыми растворами. Поэтому в качестве первого подручного средства защиты нередко используются обычные полотенца, салфетки, смоченные любой доступной водой. Это позволяет остановить попадание угарного газа в организм на несколько минут, пока появится возможность покинуть помещение.

Нередко этим свойством монооксида углерода злоупотребляют некоторые владельцы отопительной аппаратуры, в которой встроены датчики СО. При срабатывании чувствительного сенсора, вместо проветривания помещения, зачастую прибор просто накрывают мокрым полотенцем. Как результат, после десятка подобных манипуляций датчик угарного газа выходит из строя, и на порядок возрастает риск заработать отравление.

Технические системы регистрации угарного газа

По сути, сегодня существует только один способ успешно бороться с угарным газом, использовать специальные электронные приборы и датчики, регистрирующие превышение концентрации СО в помещении. Можно, конечно, поступить проще, например, обустроить мощную вентиляцию, как это делают любители отдыха у настоящего кирпичного камина. Но в подобном решении есть определенный риск заработать отравление угарным газом при смене направления тяги в трубе, а кроме того, жить под сильным сквозняком тоже не очень полезно для здоровья.

Устройство датчиков наличия угарного газа

Проблема контроля над содержанием угарного газа в атмосфере жилых и подсобных помещений на сегодня настолько же злободневна, как и наличие пожарной или охранной сигнализации.

В специализированных салонах отопительного и газового оборудования можно приобрести несколько вариантов приборов контроля над содержанием газа:

  • Химические сигнализаторы;
  • Инфракрасные сканеры;
  • Твердотельные датчики.

Чувствительный сенсор прибора обычно комплектуется электронной платой, обеспечивающей питание, калибровку и преобразование сигнала в понятную форму индикации. Это могут быть просто зеленые и красные светодиоды на панели, звуковая сирена, цифровая информация для выдачи сигнала в компьютерную сеть или управляющий импульс для автоматического клапана, перекрывающего подачу бытового газа к отопительному котлу.

Понятно, что использование датчиков с управляемым запирающим клапаном является вынужденной мерой, но зачастую производители отопительного оборудования намеренно встраивают «защиту от дурака», чтобы избежать всевозможных манипуляций с безопасностью газового оборудования.

Химические и твердотельные приборы контроля

Наиболее дешевая и доступная версия датчика с химическим индикатором изготавливается в виде сетчатой колбы, легко проницаемой для воздуха. Внутри колбы находится два электрода, разделенных пористой перегородкой, пропитанной раствором щелочи. Появление угарного газа приводит к карбонизации электролита, проводимость сенсора резко падает, что немедленно считывается электроникой в качестве сигнала тревоги. После установки прибор находится в неактивном состоянии и не срабатывает до тех пор, пока в воздухе не появятся следы угарного газа, превышающие допустимую концентрацию.

В твердотельных датчиках вместо пропитанного щелочью куска асбеста используются двухслойные пакеты из диоксидов олова и рутения. Появление газа в воздухе вызывает пробой между контактами сенсорного устройства и автоматически запускает сигнал тревоги.

Сканеры и электронные сторожа

Инфракрасные датчики, работающие по принципу сканирования окружающего воздуха. Встроенный инфракрасный сенсор воспринимает свечение лазерного светодиода, и по изменению интенсивности поглощения газом теплового излучения срабатывает триггерное устройство.

СО очень хорошо поглощает тепловую часть спектра, поэтому подобные приборы работают в режиме сторожа или сканера. Результат сканирования может выдаваться в виде двухцветного сигнала или индикации величины содержания угарного газа в воздухе на цифровой или линейной шкале.

Какой датчик лучше

Для правильного подбора сенсора наличия угарного газа необходимо учитывать режим работы и характер помещения, в котором предстоит установить сенсорное устройство. Например, химические датчики, считающиеся устаревшими, прекрасно работают в условиях котельных и подсобных помещений. Недорогой прибор для обнаружения угарного газа можно установить на даче или в мастерской. На кухне сетка быстро покрывается пылью и жировыми отложениями, что резко снижает чувствительность химической колбочки.

Полупроводниковые сенсоры угарного газа работают одинаково хорошо в любых условиях, но для их функционирования требуется мощный внешний источник питания. Стоимость прибора выше, чем цена на химические сенсорные системы.

Инфракрасные датчики на сегодня наиболее распространены. Они активно используются для комплектации систем безопасности квартирных котлов индивидуального отопления. При этом чувствительность системы контроля практически не меняется с течением времени из-за пыли или температуры воздуха. Мало того, такие системы, как правило, имеют встроенные механизмы тестирования и калибровки, что позволяет периодически проверять их работоспособность.

Установка приборов контроля над содержанием угарного газа

Сенсоры, осуществляющие контроль над содержанием угарного газа, должны устанавливаться и обслуживаться исключительно профильными специалистами. Периодически приборы подлежат проверке, калибровке, обслуживанию и замене.

Датчик должен устанавливаться на удалении от источника газа от 1 до 4 м, корпус или выносные сенсоры крепятся на высоте 150 см над уровнем пола и обязательно калибруются по верхнему и нижнему порогу чувствительности.

Срок службы квартирных датчиков угарного газа составляет 5 лет.

Заключение

Борьба с образованием угарного газа требует аккуратности и ответственного отношения к установленной аппаратуре. Любые эксперименты с сенсорами, особенно полупроводникового типа, резко снижают чувствительность прибора, что в конечном итоге приводит к увеличению содержания угарного газа в атмосфере кухни и всей квартиры, медленному отравлению всех ее обитателей. Проблема контроля угарного газа настолько серьезна, что, возможно, использование сенсоров в будущем могут сделать обязательным для всех категорий индивидуального отопления.

Все, что нас окружает, состоит из соединений различных химических элементов. Мы дышим не просто воздухом, а сложным органическим соединением, имеющим в своем составе кислород, азот, водород, двуокись углерода и другие необходимые составляющие. Влияние множества этих элементов на организм человека в частности и на жизнь на Земле в целом еще не изучено до конца. Для того чтобы понимать процессы взаимодействия элементов, газов, солей и других образований друг с другом, в школьный курс и был введен предмет «Химия». 8 класс - это старт уроков химии по утвержденной общеобразовательной программе.

Одним из самых распространенных соединений, содержащихся как в земной коре, так и в атмосфере, является оксид. Оксидом называется соединение любого химического элемента с атомом кислорода. Даже источник всего живого на Земле - вода, является оксидом водорода. Но в данной статье речь пойдет не об оксидах в общем, а об одном из самых часто встречаемых соединений - оксиде углерода. Данные соединения получаются путем слияния атомов кислорода и углерода. Эти соединения могут иметь в своем составе различные количества атомов углерода и кислорода, однако следует выделить два основных соединения углерода с кислородом: угарный газ и углекислый газ.

Химическая формула и способ получения угарного газа

Какова же его формула? Оксид углерода довольно легко запомнить - CO. Молекула угарного газа образуется тройной связью, в связи с чем обладает довольно высокой прочностью соединения и имеет очень небольшое межъядерное расстояние (0,1128 нм). Энергия разрыва данного химического соединения составляет 1076 кДж/Моль. Тройная связь возникает вследствие того, что элемент углерод имеет в своей структуре атома p-орбиталь, не занятую электронами. Это обстоятельство создает для атома углерода возможность стать акцептором электронной пары. А атом кислорода, наоборот, имеет на одной из p-орбиталей неразделенную пару электронов, а значит имеет электронно-донорные возможности. При соединении этих двух атомов кроме двух ковалентных связей появляется еще и третья - донорно-акцепторная ковалентная связь.

Существуют различные способы получения CO. Одним из самых простейших является пропускание углекислого газа над раскаленным углем. В лабораторных условиях угарный газ получают при помощи следующей реакции: муравьиную кислоту нагревают с серной кислотой, которая разделяет муравьиную кислоту на воду и угарный газ.

Также CO выделяется при нагревании щавелевой и серной кислоты.

Физические свойства CO

Оксид углерода (2) обладает следующими физическими свойствами - это бесцветный газ, не имеющий ярко выраженного запаха. Все посторонние запахи, появляющиеся при утечке угарного газа, являются продуктами распада органических примесей. Он намного легче воздуха, чрезвычайно токсичен, очень плохо растворяется в воде и отличается высокой степенью горючести.

Самое главное свойство CO - его отрицательное воздействие на организм человека. Отравление угарным газом может привести к летальному исходу. Более подробно о воздействии оксида углерода на организм человека будет рассказано ниже.

Химические свойства CO

Основные химические реакции, в которых могут применяться оксиды углерода (2) - это окислительно-восстановительная реакция, а также реакция присоединения. Окислительно-восстановительная реакция выражается в способности CO восстанавливать металл из оксидов при помощи их смешивания с дальнейшим нагреванием.

При взаимодействии с кислородом происходит образование углекислого газа с выделением значительного количества теплоты. Угарный газ горит синеватым пламенем. Очень важная функция оксида углерода - его взаимодействие с металлами. В результате подобных реакций образуются карбонилы металлов, подавляющее большинство которых являются кристаллическими веществами. Они применяются для изготовления сверхчистых металлов, а также для нанесения металлического покрытия. Кстати, карбонилы неплохо себя зарекомендовали в качестве катализаторов химических реакций.

Химическая формула и способ получения углекислого газа

Углекислый газ, или двуокись углерода, имеет химическую формулу CO 2 . Структура молекулы несколько отличается от структуры CO. В данном образовании углерод имеет степень окисления, равную +4. Структура молекулы линейная, а значит, неполярная. Молекула CO 2 не обладает такой сильной прочностью, как CO. В земной атмосфере содержится около 0,03% углекислоты по общему объему. Увеличение этого показателя разрушает озоновый слой Земли. В науке это явление называется парниковым эффектом.

Получить углекислый газ можно различными путями. В промышленности он образуется в результате горения дымовых газов. Может быть побочным продуктом в процессе изготовления алкоголя. Его можно получить в процессе разложения воздуха на основные составляющие, такие как азот, кислород, аргон и другие. В лабораторных условиях оксид углерода (4) можно получить в процессе обжига известняка, а в домашних условиях добыть углекислый газ можно при помощи реакции лимонной кислоты и пищевой соды. Кстати, именно таким образом изготавливались газированные напитки в самом начале их производства.

Физические свойства CO 2

Углекислый газ представляет собой бесцветное газообразное вещество без характерного резкого запаха. Из-за высокого числа окисления данный газ обладает слегка кисловатым привкусом. Данный продукт не поддерживает процесс горения, так как сам является результатом горения. При повышенной концентрации углекислого газа человек утрачивает способность дышать, что приводит к летальному исходу. Более подробно о воздействии углекислого газа на организм человека будет рассказано далее. CO 2 намного тяжелее воздуха и прекрасно растворяется в воде даже при комнатной температуре.

Одним из самых интересных свойств углекислого газа является то, что у него нет жидкого агрегатного состояния при нормальном атмосферном давлении. Однако если воздействовать на структуру углекислого газа воздействие температурой в -56,6 °С и давлением около 519 кПа, то он трансформируется в бесцветную жидкость.

При существенном понижении температуры газ находится в состоянии так называемого «сухого льда» и испаряется при температуре выше чем -78 о С.

Химические свойства CO 2

По своим химическим свойствам оксид углерода (4), формула которого CO 2 , является типичным кислотным оксидом и обладает всеми его свойствами.

1. При взаимодействии с водой образуется угольная кислота, обладающая слабой кислотностью и малой устойчивостью в растворах.

2. При взаимодействии с щелочами углекислый газ образует соответствующую соль и воду.

3. Во время взаимодействия с оксидами активного металла способствует образованию солей.

4. Не поддерживает процесс горения. Активировать данный процесс могут только некоторые активные металлы, такие как литий, калий, натрий.

Влияние угарного газа на организм человека

Вернемся к основной проблеме всех газов - влиянию на организм человека. Угарный газ относится к группе крайне опасных для жизни газов. Для человека и животного он является чрезвычайно сильным ядовитым веществом, которое при попадании в организм серьезно поражает кровь, нервную систему организма и мышцы (в том числе и сердце).

Оксид углерода в воздухе невозможно распознать, так как этот газ не имеет никакого ярко выраженного запаха. Именно этим он и опасен. Попадая через легкие в организм человека, угарный газ активизирует свою разрушительную деятельность в крови и в сотни раз быстрее кислорода начинает взаимодействовать с гемоглобином. В результате этого появляется очень стойкое соединение под названием карбоксигемоглобин. Оно препятствует доставке кислорода из легких к мышцам, что приводит к мышечному голоданию тканей. Особенно серьезно страдает от этого головной мозг.

Из-за отсутствия возможности распознать отравление угарным газом через обоняние, следует знать некоторые основные признаки, которые проявляются на ранних этапах:

  • головокружение, сопровождающееся головной болью;
  • шум в ушах и мерцание перед глазами;
  • сильное сердцебиение и одышка;
  • покраснение лица.

В дальнейшем у жертвы отравления появляется сильная слабость, иногда рвота. В тяжелых случаях отравления возможны непроизвольные судороги, сопровождающиеся дальнейшей потерей сознания и комой. Если же пациенту своевременно не будет оказана соответствующая медицинская помощь, то возможен летальный исход.

Влияние углекислого газа на организм человека

Оксиды углерода с кислотностью +4 относятся к разделу удушающих газов. Иными словами, углекислый газ не является токсичным веществом, однако может существенно влиять на приток кислорода к организму. При повышении уровня углекислого газа до 3-4% у человека возникает серьезная слабость, его начинает клонить в сон. При повышении уровня до 10% начинают развиваться сильнейшие головные боли, головокружение, ухудшение слуха, иногда наблюдается потеря сознания. Если концентрация углекислого газа поднимается до уровня 20%, то наступает смерть от кислородного голодания.

Лечение отравления углекислым газом очень простое - дать жертве доступ к чистому воздуху, при необходимости сделать искусственное дыхание. В крайнем случае нужно подключить пострадавшего к аппарату искусственной вентиляции легких.

Из описаний влияния двух данных оксидов углерода на организм мы можем сделать вывод, что большую опасность для человека все же представляет угарный газ с его высокой токсичностью и направленным воздействием на организм изнутри.

Углекислый газ не отличается таким коварством и менее вреден для человека, поэтому именно это вещество человек активно применяет даже в пищевой промышленности.

Применение оксидов углерода в промышленности и их влияние на различные аспекты жизни

Оксиды углерода имеют очень широкое применение в разных сферах деятельности человека, причем спектр их чрезвычайно богат. Так, окись углерода вовсю применяется в металлургии в процессе выплавки чугуна. Широкую популярность CO получил в качестве материала для хранения продуктов питания в охлажденном виде. Данный оксид применяют для обработки мяса и рыбы, чтобы придать им свежий вид и не изменить вкус. Важно не забывать про токсичность данного газа и помнить, что допустимая доза не должна превышать 200 мг на 1 кг продукта. CO в последнее время все чаще применяют в автомобильной промышленности в качестве топлива для автомобилей на газу.

Диоксид углерода нетоксичен, поэтому сфера его применения широко внедрена в пищевую промышленность, где его применяют в качестве консерванта или разрыхлителя. Также CO 2 применяется при изготовлении минеральных и газированных вод. В твердом состоянии («сухой лед») он часто используется в морозильных установках для поддержания стабильно низкой температуры в помещении или приборе.

Большую популярность приобрели углекислотные огнетушители, пена из которых полностью изолирует огонь от кислорода и не дает пожару разгореться. Соответственно, еще одна сфера применения - пожарная безопасность. Баллоны в пневматических пистолетах также заряжены углекислотой. И конечно же, практически каждый из нас читал, из чего состоит освежитель воздуха для помещений. Да, одной из составляющих является углекислый газ.

Как видим, из-за своей минимальной токсичности углекислый газ больше и чаще встречается в повседневной жизни человека, тогда как угарный газ нашел применение в тяжелой промышленности.

Существуют и другие углеродные соединения с кислородом, благо формула углерода и кислорода позволяет применять различные варианты соединений с разным количеством атомов углерода и кислорода. Ряд оксидов может разниться от C 2 O 2 до C 32 O 8 . И чтобы описать каждый из них, потребуется не одна страница.

Оксиды углерода в природе

Оба вида рассматриваемых здесь оксидов углерода так или иначе присутствуют в природном мире. Так, угарный газ может быть продуктом сгорания лесов или результатом жизнедеятельности человека (выхлопные газы и вредные отходы промышленных предприятий).

Уже известный нам диоксид углерода также является частью сложного состава воздуха. Его содержание в нем составляет около 0,03 % от всего объема. При увеличении этого показателя возникает так называемый «парниковый эффект», которого так опасаются современные ученые.

Углекислый газ выделяют животные и человек путем выдыхания. Он является основным источником такого полезного для растений элемента, как углерод, поэтому многие ученые и бьют на сполох, указывая на недопустимость масштабных вырубок леса. Если растения перестанут поглощать углекислый газ, то процент его содержания в воздухе может повыситься до критических для человеческой жизнедеятельности показателей.

Видимо, многие власть держащие забыли пройденный в детстве материал учебника «Общая химия. 8 класс», иначе вопросу вырубки лесов во многих частях света уделялось бы более серьезное внимание. Это, кстати, касается и проблемы наличия угарного газа в окружающей среде. Количество отходов человеческой жизнедеятельности и процент выбросов этого необычайно токсичного материала в окружающую среду растет изо дня в день. И не факт, что не повторится судьба мира, описанная в прекрасном мультфильме «Волли», когда человечеству пришлось покинуть загаженную до основания Землю и отправиться в другие миры на поиски лучшей жизни.

Окись углерода, или угарный газ (CO) - газ без цвета, запаха и вкуса. Горит синим пламенем, как водород. Из-за этого в 1776 году химики перепутали его с водородом, когда впервые получили угарный газ путем нагревания оксида цинка с углеродом. Молекула этого газа имеет сильную тройную связь, подобно молекуле азота. Вот почему обнаруживается некоторое сходство между ними: температуры плавления и кипения практически одинаковы. Молекула окиси углерода обладает высоким значением потенциала ионизации.

Окисляясь, угарный газ образует углекислый газ. При этой реакции выделяется большое количество тепловой энергии. Вот почему окись углерода применяется в отопительных системах.

Угарный газ при низких температурах почти не вступает в реакции с другими веществами, в случае высоких температур дело обстоит иначе. Очень быстро проходят реакции присоединения различных органических веществ. Смесь CO и кислорода в определенных соотношениях весьма опасна из-за возможности ее взрыва.

Получение окиси углерода

В лабораторных условиях окись углерода получают путем разложения . Оно происходит под влиянием горячей концентрированной серной кислоты, либо при пропускании ее через оксид фосфора. Еще один способ заключается в том, что смесь муравьиной и щавелевой кислот нагревают до определенной температуры. Выделяющийся CO можно удалить из этой смеси, пропустив ее через баритовую воду (насыщенный раствор ).

Опасность угарного газа

Угарный газ чрезвычайно опасен для человека. Он вызывает сильное отравление, нередко может стать причиной смерти. Все дело в том, что окись углерода обладает способностью реагировать с гемоглобином крови, выполняющим перенос кислорода всем клеткам тела. В результате такой реакции образуется карбогемоглобин. Из-за недостатка кислорода клетки испытывают голодание.

Можно выделить следующие симптомы отравления: тошнота, рвота, головная боль, потеря цветоощущения, расстройство дыхания и другие. Человеку, отравившемуся угарным газом, необходимо как можно скорее оказать первую помощь. Сначала его нужно вытащить на свежий воздух и приставить к носу ватку, смоченную в нашатырном спирте. Далее растереть грудь пострадавшего и приложить к его ногам грелки. Рекомендуется обильное теплое питье. Нужно сразу же после обнаружения симптомов вызвать врача.

ОКСИД УГЛЕРОДА (УГАРНЫЙ ГАЗ). Углерода(II) оксид (угарный газ) СО, несолеообразующий оксид углерода. Это означает, что не существует кислоты, соответствующей этому оксиду. Оксид углерода(II) – газ без цвета и запаха, сжижающийся при атмосферном давлении при температуре –191,5о С и затвердевающий при –205о С. Молекула СО по своему строению аналогична молекуле N2: обе содержит равное число электронов (такие молекулы называются изоэлектронными), атомы в них соединены тройной связью (две связи в молекуле СО образованы за счет 2р-электронов атомов углерода и кислорода, а третья – по донорно-акцепторному механизму с участием неподеленной электронной пары кислорода и свободной 2р-орбитали углерода). В результате физические свойства СО и N2 (температуры плавления и кипения, растворимость в воде и т.д.) очень близки.

Оксид углерода(II) образуется при сгорании углеродсодержащих соединений при недостаточном доступе кислорода, а также при соприкосновении раскаленного угля с продуктом полного сгорания – углекислым газом: С + СО2 → 2СО. В лаборатории СО получают дегидратацией муравьиной кислоты действием концентрированной серной кислоты на жидкую муравьиную кислоту при нагревании, либо пропусканием паров муравьиной кислоты над Р2О5: НСООН → СО + Н2О. Получают СО и разложением щавелевой кислоты: Н2С2О4 → СО + СО2 + Н2О. От других газов СО легко отделить пропусканием через раствор щелочи.
При обычных условиях СО, как и азот, химически довольно инертен. Лишь при повышенных температурах проявляется склонность СО к реакциям окисления, присоединения и восстановления. Так, при повышенных температурах он реагирует со щелочами: CO + NaOH → HCOONa, CO + Ca(OH)2 → CaCO3 + H2. Эти реакции используются для удаления СО из технических газов.

Оксид углерода(II) – высококалорийное топливо: горение сопровождается выделением значительного количества теплоты (283 кДж на 1 моль СО). Смеси СО с воздухом взрываются при его содержании от 12 до 74%; к счастью, на практике такие смеси встречаются исключительно редко. В промышленности для получения СО проводят газификацию твердого топлива. Например, продувание водяного пара через слой раскаленного до 1000o С угля приводит к образованию водяного газа: С + Н2О → СО + Н2, обладающего очень высокой теплотворной способностью. Однако сжигание – далеко не самое выгодное использование водяного газа. Из него, например, можно получить (в присутствии различных катализаторов под давлением) смесь твердых, жидких и газообразных углеводородов – ценное сырье для химической промышленности (Реакция Фишера – Тропша). Из той же смеси, обогатив ее водородом и применив нужные катализаторы, можно получить спирты, альдегиды, кислоты. Особое значение имеет синтез метанола: СО + 2Н2 → СН3ОН – важнейшего сырья для органического синтеза, поэтому эту реакцию проводят в промышленности в больших масштабах.

Реакции, в которых СО является восстановителем, можно продемонстрировать на примере восстановления железа из руды в ходе доменного процесса: Fe3O4 + 4CO → 3Fe + 4CO2. Восстановление оксидов металлов оксидом углерода(II) имеет большое значение в металлургических процессах.

Для молекул СО характерны реакции присоединения к переходным металлам и их соединениям с образованием комплексных соединений – карбонилов. Примерами могут служить жидкие или твердые карбонилы металлов Fe(CO)4, Fe(CO)5, Fe2(CO)9, Ni(CO)4, Cr(CO)6 и др. Это очень ядовитые вещества, при нагревании вновь распадающиеся на металл и СО. Так можно получить порошкообразные металлы высокой чистоты. Иногда на конфорке газовой плиты видны «подтеки» металла, это – следствие образования и распада карбонила железа. В настоящее время синтезированы тысячи разнообразных карбонилов металлов, содержащих, помимо СО, неорганические и органические лиганды, например, PtCl2(CO), K3, Cr(C6H5Cl)(CO)3.

Для СО характерна также реакция соединения с хлором, которая на свету идет уже при комнатной температуре с образованием исключительно ядовитого фосгена: CO + Cl2 → COCl2. Реакция эта цепная, она идет по радикальному механизму с участием атомов хлора и свободных радикалов COCl. Несмотря на ядовитость, фосген широко применяется для синтеза многих органических соединений.

Оксид углерода(II) – сильный яд, так как образует с металлсодержащими биологически активными молекулами прочные комплексы; при этом нарушается тканевое дыхание. Особенно страдают клетки центральной нервной системы. Связывание СО с атомами Fe(II) в гемоглобине крови препятствует образованию оксигемоглоблина, который и переносит кислород из легких к тканям. Уже при содержании в воздухе 0,1% СО этот газ вытесняет из оксигемоглобина половину кислорода. В присутствии СО может наступить смерть от удушья даже при наличии большого количества кислорода. Поэтому СО получил название угарного газа. У «угоревшего» человека в первую очередь страдают головной мозг и нервная система. Для спасения необходим прежде всего чистый воздух, не содержащий СО (а еще лучше – чистый кислород), при этом связанный с гемоглобином СО постепенно замещается молекулами О2 и удушье проходит. Предельно допустимая среднесуточная концентрация СО в атмосферном воздухе составляет 3 мг/м3 (около 3.10–5%), в воздухе рабочей зоны – 20 мг/м3.

Обычно в атмосфере содержание СО не превышает 10–5%. Этот газ попадает в воздух в составе вулканических и болотных газов, с выделениями планктона и других микроорганизмов. Так, из поверхностных слоев океана в атмосферу ежегодно выделяется 220 млн тонн СО. Высока концентрация СО в угольных шахтах. Много угарного газа образуется при лесных пожарах. Выплавка каждого миллиона тонн стали сопровождается образованием 300 – 400 т СО. В сумме техногенное выделение СО в воздух достигает 600 млн тонн в год, из них более половины приходится на автотранспорт. При неотрегулированном карбюраторе в выхлопных газах может содержаться до 12% СО! Поэтому в большинстве стран введены жесткие нормы на содержание СО в выхлопе автомобилей.

Образование СО всегда происходит при сгорании углеродсодержащих соединений, в том числе древесины, при недостаточном доступе кислорода, а также при соприкосновении раскаленного угля с углекислым газом: С + СО2 → 2СО. Такие процессы происходят и деревенских печах. Поэтому преждевременное закрывание дымохода печи для сохранения тепла часто приводит к отравлению угарным газом. Не следует думать что горожане, которые не топят печи, застрахованы от отравления СО; им, например, легко отравиться в плохо проветриваемом гараже, где стоит автомобиль с работающим мотором. Содержится СО и в продуктах сгорания природного газа на кухне. Многие авиационные катастрофы в прошлом произошли из-за износа двигателей или плохой их регулировки: в кабину пилотов проникал СО и отравлял экипаж. Опасность усугубляется тем, что СО невозможно обнаружить по запаху; в этом отношении угарный газ опаснее хлора!

Оксид углерода(II) практически не сорбируется активным углем и потому обычный противогаз не спасает от этого газа; для его поглощения необходим дополнительный гопкалитовый патрон, содержащий катализатор, который «дожигает» СО до СО2 с помощью кислорода воздуха. Катализаторами дожигания снабжается сейчас все больше легковых автомобилей, несмотря на высокую стоимость этих катализаторов на основе платиновых металлов.