Правило умножения положительных и отрицательных чисел. Умножение дробей с разными знаками. Умножение и деление отрицательных чисел

Таблица 5

Таблица 6

С некоторой натяжкой то же объяснение годится и для произведения 1-5, если считать, что «сумма» из одного-единственного

слагаемого равна этому слагаемому. Но произведение 0 5 или (-3) 5 так не объяснишь: что означает сумма из нуля или из минус трех слагаемых?

Можно, однако, переставить сомножители

Если мы хотим, чтобы произведение не изменялось при перестановке сомножителей - как это было для положительных чисел - то тем самым должны считать, что

Теперь перейдем к произведению (-3) (-5). Чему оно равно: -15 или +15? Оба варианта имеют резон. С одной стороны, минус в одном сомножителе уже делает произведение отрицательным - тем более оно должно быть отрицательным, если отрицательны оба сомножителя. С другой стороны, в табл. 7 уже есть два минуса, но только один плюс, и «по справедливости» (-3)-(-5) должно быть равно +15. Так что же предпочесть?

Таблица 7

Вас, конечно, такими разговорами не запутаешь: из школьного курса математики Вы твердо усвоили, что минус на минус дает плюс. Но представьте себе, что Ваш младший брат или сестра спрашивает Вас: а почему? Что это - каприз учительницы, указание высшего начальства или теорема, которую можно доказать?

Обычно правило умножения отрицательных чисел поясняют на примерах вроде представленного в табл. 8.

Таблица 8

Можно объяснять и иначе. Напишем подряд числа

Теперь напишем те же числа, умноженные на 3:

Легко заметить, что каждое число больше предыдущего на 3. Теперь напишем те же числа в обратном порядке (начав, например, с 5 и 15):

При этом под числом -5 оказалось число -15, так что 3 (-5) = -15: плюс на минус дает минус.

Теперь повторим ту же процедуру, умножая числа 1,2,3,4,5 ... на -3 (мы уже знаем, что плюс на минус дает минус):

Каждое следующее число нижнего ряда меньше предыдущего на 3. Запишем числа в обратном порядке

и продолжим:

Под числом -5 оказалось 15, так что (-3) (-5) = 15.

Возможно, эти объяснения и удовлетворили бы Вашего младшего брата или сестру. Но Вы вправе спросить, как же обстоят дела на самом деле и можно ли доказать, что (-3) (-5) = 15?

Ответ здесь таков: можно доказать, что (-3) (-5) должно равняться 15, если только мы хотим, чтобы обычные свойства сложения, вычитания и умножения оставались верными для всех чисел, включая отрицательные. Схема этого доказательства такова.

Докажем сначала, что 3 (-5) = -15. Что такое -15? Это число, противоположное 15, т. е. число, которое в сумме с 15 дает 0. Так что нам надо доказать, что

Задача 1. Точка движется по прямой слева направо со скоростью 4 дм. в секунду и в настоящий момент проходит через точку A. Где будет находиться движущаяся точка по прошествии 5 секунд?

Нетрудно сообразить, что точка будет находиться на 20 дм. вправо от A. Запишем решение этой задачи относительными числами. Для этого условимся в следующих знакоположениях:

1) скорость вправо будем обозначать знаком +, а влево знаком –, 2) расстояние движущейся точки от A вправо будем обозначать знаком + и влево знаком –, 3) промежуток времени после настоящего момента знаком + и до настоящего момента знаком –. В нашей задаче даны, след., такие числа: скорость = + 4 дм. в секунду, время = + 5 секунд и получилось, как сообразили арифметически, число + 20 дм., выражающее расстояние движущейся точки от A через 5 секунд. По смыслу задачи мы видим, что она относится к умножению. Поэтому решение задачи удобно записать:

(+ 4) ∙ (+ 5) = + 20.

Задача 2. Точка движется по прямой слева направо со скоростью по 4 дм. в секунду и в настоящий момент проходит через точку A. Где находилась эта точка 5 секунд назад?

Ответ ясен: точка находилась влево от A на расстоянии 20 дм.

Решение удобно, согласно условиям относительно знаков, и, имея в виду, что смысл задачи не изменился, записать так:

(+ 4) ∙ (– 5) = – 20.

Задача 3. Точка движется по прямой справа налево со скоростью 4 дм. в секунду и в настоящий момент проходит через точку A. Где будет находиться движущаяся точка спустя 5 секунд?

Ответ ясен: на 20 дм. слева от A. Поэтому, согласно тем же условиям относительно знаков, мы можем записать решение этой задачи так:

(– 4) ∙ (+ 5) = – 20.

Задача 4. Точка движется по прямой справа налево со скоростью по 4 дм. в секунду и в настоящий момент проходит через точку A. Где находилась движущаяся точка 5 секунд тому назад?

Ответ ясен: на расстоянии 20 дм. справа от A. Поэтому решение этой задачи следует записать так:

(– 4) ∙ (– 5) = + 20.

Рассмотренные задачи указывают, как следует распространить действие умножения на относительные числа. Мы имеем в задачах 4 случая умножения чисел со всевозможными комбинациями знаков:

1) (+ 4) ∙ (+ 5) = + 20;
2) (+ 4) ∙ (– 5) = – 20;
3) (– 4) ∙ (+ 5) = – 20;
4) (– 4) ∙ (– 5) = + 20.

Во всех четырех случаях абсолютные величины данных чисел следует перемножить, у произведения приходится ставить знак + тогда, когда у множителей одинаковые знаки (1-й и 4-й случаи) и знак –, когда у множителей разные знаки (случаи 2-й и 3-й).

Отсюда же видим, что от перестановки множимого и множителя произведение не изменяется.

Упражнения.

Выполним один пример на вычисление, где входят и сложение и вычитание и умножение.

Чтобы не спутать порядка действий, обратим внимание на формулу

Здесь написана сумма произведений двух пар чисел: надо, следовательно, сперва число a умножить на число b, потом число c умножить на число d и затем полученные произведения сложить. Также в формуле

надо сперва число b умножить на c и затем полученное произведение вычесть из a.

Если бы требовалось произведение чисел a и b сложить с c и полученную сумму умножить на d, то следовало бы написать: (ab + c)d (сравнить с формулой ab + cd).

Если бы надо было разность чисел a и b умножить на c, то написали бы (a – b)c (сравнить с формулой a – bc).

Поэтому установим вообще, что если порядок действий не обозначен скобками, то надо сначала выполнить умножение, а потом уже сложение или вычитание.

Приступаем к вычислению нашего выражения: выполним сначала сложения, написанные внутри всех маленьких скобок, получим:

Теперь надо выполнить умножение внутри квадратных скобок и затем из вычтем полученное произведение:

Теперь выполним действия внутри витых скобок: сначала умножение и потом вычитание:

Теперь останется выполнить умножение и вычитание:

16. Произведение нескольких множителей. Пусть требуется найти

(–5) ∙ (+4) ∙ (–2) ∙ (–3) ∙ (+7) ∙ (–1) ∙ (+5).

Здесь надо первое число умножить на второе, полученное произведение на 3-е и т. д. Не трудно на основании предыдущего установить, что абсолютные величины всех чисел надо между собою перемножить.

Если бы все множители были положительны, то на основании предыдущего найдем, что и у произведения надо написать знак +. Если бы какой-либо один множитель был отрицателен

напр., (+2) ∙ (+3) ∙ (+4) ∙ (–1) ∙ (+5) ∙ (+6),

то произведение всех предшествующих ему множителей дало бы знак + (в нашем примере (+2) ∙ (+3) ∙ (+4) = +24, от умножения полученного произведения на отрицательное число (в нашем примере +24 умножить на –1) получили бы у нового произведения знак –; умножив его на следующий положительный множитель (в нашем примере –24 на +5), получим опять отрицательное число; так как все остальные множители предполагаются положительными, то знак у произведения более изменяться не может.

Если бы было два отрицательных множителя, то, рассуждая, как выше, нашли бы, что сначала, пока не дошил до первого отрицательного множителя, произведение было бы положительно, от умножения его на первый отрицательный множитель новое произведение получилось бы отрицательным и таковы бы оно и оставалось до тех пор, пока не дойдем до второго отрицательного множителя; тогда от умножения отрицательного числа на отрицательно новое произведение получилось бы положительным, которое таким останется и в дальнейшем, если остальные множители положительны.

Если бы был еще третий отрицательный множитель, то полученное положительно произведение от умножения его на этот третий отрицательный множитель сделалось бы отрицательным; оно таковым бы и осталось, если остальные множители были все положительны. Но если есть еще четвертый отрицательный множитель, то от умножения на него произведение сделается положительным. Рассуждая так же, найдем, что вообще:

Чтобы узнать знак произведения нескольких множителей, надо посмотреть, сколько среди этих множителей отрицательных: если их вовсе нет, или если их четное число, то произведение положительно: если же отрицательных множителей нечетное число, то произведение отрицательно.

Итак, теперь мы легко узнаем, что

(–5) ∙ (+4) ∙ (–2) ∙ (–3) ∙ (+7) ∙ (–1) ∙ (+5) = +4200.

(+3) ∙ (–2) ∙ (+7) ∙ (+3) ∙ (–5) ∙ (–1) = –630.

Теперь нетрудно видеть, что знак произведения, а также и его абсолютная величина, не зависят от порядка множителей.

Удобно, когда имеем дело с дробными числами, находить произведение сразу:

Удобно это потому, то не приходится делать бесполезных умножений, так как предварительно полученное дробное выражение сокращается, сколько возможно.

На этом уроке мы повторим правила сложения положительных и отрицательных чисел. Также научимся умножать числа с разными знаками и узнаем правила знаков для умножения. Рассмотрим примеры умножения положительных и отрицательных чисел.

Свойство умножения на ноль остается верным и в случае отрицательных чисел. Ноль умножить на любое число - будет ноль.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.

Домашнее задание

  1. Интернет-портал Mnemonica.ru ().
  2. Интернет-портал Youtube.com ().
  3. Интернет-портал School-assistant.ru ().
  4. Интернет-портал Bymath.net ().
Цели урока :

Закрепить умение умножать натуральные числа, обыкновенные и десятичные дроби;

Научить умножать положительные и отрицательные числа;

Воспитывать умение работать в группах,

Развивать любознательность, интерес к математике; умение мыслить, высказываться по теме.

Оборудование : модели термометров и дома, карточки для устного счета и проверочной работы, плакат с правилами знаков при умножении.

Ход урока

Мотивация

Учитель . Сегодня мы начинаем изучать новую тему. Мы как бы будем строить новый дом. Скажите, от чего зависит прочность дома?

[От фундамента.]

Сейчас проверим, каков наш фундамент, то есть прочность наших знаний. Я вам не назвала тему урока. Она закодирована, то есть спрятана в задании для устного счета. Будьте внимательны и наблюдательны. Перед вами карточки с примерами. Решив их и поставив в соответствие ответу букву, вы узнаете название темы урока.

[УМНОЖЕНИЕ]

Учитель. Итак, это слово «умножение». Но мы уже с умножением знакомы. Зачем нам еще его изучать? Недавно вы познакомились с какими числами?

[С положительными и отрицательными.]

А умеем ли мы их умножать? Поэтому темой урока будет «Умножение положительных и отрицательных чисел».

Вы быстро и правильно решили примеры. Хороший фундамент заложили. (Учитель на модели дома «закладывает » фундамент .) Думаю, что дом будет прочным.

Изучение новой темы

Учитель . Теперь будем возводить стены. Они соединяют пол и крышу, то есть старую тему с новой. Сейчас вы будете работать группами. Каждая группа получит задачу, которую нужно решить всем вместе, а затем ее решение объяснить классу.

1-я группа

Температура воздуха понижается каждый час на 2°. Сейчас термометр показывает ноль градусов. Какую температуру он покажет через 3 часа?

Решение группы . Так как сейчас температура 0 и за каждый час температура понижается на 2°, то очевидно, что через 3 часа температура будет –6°. Обозначим понижение температуры –2°, а время +3 часа. Тогда можно считать, что (–2)·3 = –6.

Учитель . А что будет, если я множители переставлю, то есть 3·(–2)?

Учащиеся. Ответ тот же: –6, так как используется переместительное свойство умножения.

2-я группа

Температура воздуха понижается каждый час на 2°. Сейчас термометр показывает ноль градусов. Какую температуру воздуха показывал термометр 3 часа назад?

Решение группы . Так как температура за каждый час понижалась на 2°, а сейчас 0, то очевидно, что 3 часа назад она была +6°. Обозначим понижение температуры –2°, а прошедшее время –3 часа. Тогда можно считать, что (–2)·(–3) = 6.

Учитель . Вы пока не умеете умножать положительные и отрицательные числа. Но решали задачи, где нужно было умножать такие числа. Попробуйте сами вывести правила умножения положительного и отрицательного чисел, двух отрицательных чисел. (Ученики пытаются вывести правило. ) Хорошо. Сейчас откроем учебники и прочитаем правила умножения положительных и отрицательных чисел. Сравните свое правило с тем, что записано в учебнике.

Учитель. Как вы видели при строительстве фундамента, у вас с умножением натуральных и дробных чисел нет проблем. Проблемы могут возникнуть при умножении положительных и отрицательных чисел. Почему?

Запомните! При умножении положительных и отрицательных чисел:

1) определяют знак;
2) находят произведение модулей.

Учитель . Для знаков при умножении есть свои мнемонические правила, которые запомнить очень просто. Коротко их формулируют так:

(В тетрадях ученики записывают правило знаков. )

Учитель . Если себя и своих друзей считать положительными, а наших врагов отрицательными, то можно сказать так:

Друг моего друга - мой друг.
Враг моего друга - мой враг.
Друг моего врага - мой враг.
Враг моего врага - мой друг.

Первичное осмысление и применение изученного

На доске примеры для устного решения. Ученики проговаривают правило:

–5·6;
–8·(–7);
9·(–3);
–45·0;
6·8.

Учитель . Все понятно? Нет вопросов? Таким образом, стены построены. (Учитель ставит стены. ) Теперь что строим?

Закрепление.

(К доске вызывается четверо учеников. )

Учитель. Крыша готова?

(Учитель ставит крышу на модель домика. )

Проверочная работа

Ученики выполняют работу в один вариант.

После выполнения работы меняются тетрадями со своим соседом. Учитель сообщает верные ответы, а ученики выставляют отметки друг другу.

Итог урока. Рефлексия

Учитель. Какую цель мы ставили в начале урока? Вы научились умножать положительные и отрицательные числа? (Повторяют правила. ) Как вы увидели на этом уроке, каждая новая тема - это дом, который нужно строить капитально, на годы. Иначе все ваши постройки через непродолжительное время рухнут. Поэтому всё зависит от вас. Я желаю, ребята, чтобы вам всегда улыбалась удача, успехов в усвоении знаний.

В данной статье сформулируем правило умножения отрицательных чисел и дадим ему объяснение. Будет подробно рассмотрен процесс умножения отрицательных чисел. На примерах показаны все возможные случаи.

Yandex.RTB R-A-339285-1

Умножение отрицательных чисел

Определение 1

Правило умножения отрицательных чисел заключается в том, что для того, чтобы умножить два отрицательных числа, необходимо перемножить их модули. Данное правило записывается так: для любых отрицательных чисел – a , - b данное равенство считается верным.

(- а) · (- b) = a · b .

Выше приведено правило умножения двух отрицательных чисел. Исходя из него, докажем выражение: (- а) · (- b) = a · b . Статья умножение чисел с разными знаками рассказывает о том, что равенств а · (- b) = - a · b справедливое, как и (- а) · b = - a · b . Это следует из свойства противоположных чисел, благодаря которому равенства запишутся следующим образом:

(- a) · (- b) = (- a · (- b)) = - (- (a · b)) = a · b .

Тут явно видно доказательство правила умножения отрицательных чисел. Исходя из примеров явно, что произведение двух отрицательных чисел – положительное число. При перемножении модулей чисел результат всегда положительное число.

Данное правило применимо для умножения действительных чисел, рациональных чисел, целых чисел.

Теперь рассмотрим подробно примеры умножения двух отрицательных чисел. При вычислении необходимо пользоваться правилом, написанным выше.

Пример 1

Произвести умножение чисел - 3 и - 5 .

Решение.

По модулю умножаемые данные два числа равны положительным числам 3 и 5 . Их произведение дает в результате 15 . Отсюда следует, что произведение заданных чисел равно 15

Запишем кратко само умножение отрицательных чисел:

(- 3) · (- 5) = 3 · 5 = 15

Ответ: (- 3) · (- 5) = 15 .

При умножении отрицательных рациональных чисел, применив разобранное правило, можно мобилизоваться к умножению дробей, умножению смешанных чисел, умножению десятичных дробей.

Пример 2

Вычислить произведение (- 0 , 125) · (- 6) .

Решение.

Используя правило умножения отрицательных чисел, получим, что (− 0 , 125) · (− 6) = 0 , 125 · 6 . Для получения результата необходимо выполнить умножение десятичной дроби на натуральное число столбиков. Это выглядит так:

Получили, что выражение примет вид (− 0 , 125) · (− 6) = 0 , 125 · 6 = 0 , 75 .

Ответ: (− 0 , 125) · (− 6) = 0 , 75 .

В случае, когда множители – иррациональные числа, тогда их произведение может быть записано в виде числового выражения. Значение вычисляется только по необходимости.

Пример 3

Необходимо произвести умножение отрицательного - 2 на неотрицательное log 5 1 3 .

Решение

Находим модули заданных чисел:

2 = 2 и log 5 1 3 = - log 5 3 = log 5 3 .

Следуя из правил умножения отрицательных чисел, получим результат - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 . Это выражение и является ответом.

Ответ: - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 .

Для продолжения изучения темы необходимо повторить раздел умножение действительных чисел.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter