Каким бывает освещение – искусственное или естественное? Искусственные источники света

  • электрическая энергия;
  • световая энергия;
  • тепловая энергия;
  • энергия химических связей, которая находится в пище и в топливе каждый этот вид энергии был когда-то солнечной энергией!

Таким образом, самая главная -основная энергия для жизни на земле -это солнечная энергия.

Искусственные источники света

Современный технический прогресс шагнул очень далеко. Человечество смогло создать искусственную энергию света и тепла, которая прочно вошла в жизнь человека и без которой человечество уже не может существовать. На сегодняшний день в современном мире существует изобилие различных искусственных источников света и тепла.

Искусственные источники света - технические устройства различной конструкции и различными способами преобразования энергии, основным предназначением которых является получение светового излучения. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света.

Самым первым из используемых людьми в своей деятельности источником света был огонь костра. С течением времени и ростом опыта сжигания различных горючих материалов люди обнаружили, что большее количество света может быть получено при сжигании каких либо смолистых пород дерева, природных смол и масел и воска. С точки зрения химических свойств подобные материалы содержат больший процент углерода по массе и при сгорании сажистые частицы углерода сильно раскаляются в пламени и излучают свет. В дальнейшем при развитии технологий обработки металлов, развития способов быстрого зажигания с помощью огнива позволили создать и в значительной степени усовершенствовать первые независимые источники света, которые можно было устанавливать в любом пространственном положении, переносить и перезаряжать горючим. А также определенный прогресс в переработке нефти, восков, жиров и масел и некоторых природных смол позволил выделять необходимые топливные фракции: очищенный воск, парафин, стеарин, пальмитин, керосин и т. п. Такими источниками стали, прежде всего свечи, факелы, масляные, а позже нефтяные лампы и фонари. С точки зрения автономности и удобства, источники света, использующие энергию горения топлив, очень удобны, но с точки зрения пожаробезопасности, выделений продуктов неполного сгорания представляют известную опасность как источник возгорания, и история знает великое множество примеров возникновения больших пожаров, причиной которых были масляные лампы и фонари, свечи и пр.

Газовые фонари

Дальнейший прогресс и развитие знаний в области химии, физики и материаловедения, позволили людям использовать также и различные горючие газы, отдающие при сгорании большее количество света. Особым удобством газового освещения было то, что появилась возможность освещения больших площадей в городах, зданий и др., за счёт того, что газы очень удобно и быстро можно было доставить из центрального хранилища с помощью прорезиненных рукавов, либо стальных или медных трубопроводов, а также легко отсекать поток газа от горелки простым поворотом запорного крана.

Важнейшим газом для организации городского газового освещения стал так называемый «Светильный газ», производимый с помощью пиролиза жира морских животных, а несколько позже производимый в больших количествах из каменного угля при коксовании последнего на газосветильных заводах. Одним из важнейших компонентов светильного газа, который давал наибольшее количество света, был бензол, открытый в светильном газе М. Фарадеем. Другим газом, который нашел значительное применение в газосветильной промышленности, был ацетилен, но ввиду его значительной склонности к возгоранию при относительно низких температурах и большим концентрационным пределам воспламенения, он не нашел широкого применения в уличном освещении и применялся в шахтерских и велосипедных «карбидных» фонарях. Другой причиной, затруднившей применение ацетилена в области газового освещения, была его исключительная дороговизна в сравнении с светильным газом. Параллельно с развитием применения самых разнообразных топлив в химических источниках света, совершенствовалась их конструкция и наиболее выгодный способ сжигания, а также конструкция и материалы для усиления отдачи света и питания. На смену недолговечным фитилям из растительных материалов стали применять пропитку растительных фитилей борной кислотой, и волокна асбеста, а с открытием минерала монацита обнаружили его замечательное свойство при накаливании очень ярко светиться и способствовать полноте сгорания светильного газа. В целях повышения безопасности использования рабочее пламя стали ограждать металлическими сетками и стеклянными колпаками.

Появление электрических источников света

Дальнейший прогресс в области изобретения и конструирования источников света в значительной степени был связан с открытием электричества и изобретением источников тока. На этом этапе научно-технического прогресса стало совершенно очевидно, что необходимо для увеличения яркости источников света увеличить температуру области, излучающей свет. Если в случае применения реакций горения разнообразных топлив на воздухе температура продуктов сгорания достигает 1500-2300°С, то при использовании электричества температура может быть еще значительно увеличена. При нагревании электрическим током различных токопроводящих материалов с высокой температурой плавления они излучают видимый свет и могут служить в качестве источников света той или иной интенсивности. Такими материалами были предложены: графит, платина, вольфрам, молибден, рений и их сплавы. Для увеличения долговечности электрических источников света их рабочие тела стали размещать в специальных стеклянных баллонах, вакуумированных или заполненных инертными либо неактивными газами. При выборе рабочего материала конструкторы ламп руководствовались максимальной рабочей температурой нагреваемой спирали, и основное предпочтение было отдано углероду и в дальнейшем вольфраму. Вольфрам и его сплавы с рением и по настоящее время являются наиболее широкоприменяемыми материалами для изготовления электрических ламп накаливания, так как в наилучших условиях они способны быть нагреты до температур в 2800-3200°С. Параллельно с работой над лампами накаливания, в эпоху открытия и использования электричества также были начаты и значительно развиты работы по электродуговым источником света и по источникам света на основе тлеющего разряда.

Электродуговые источники света позволили реализовать возможность получения колоссальных по мощности потоков света, а источники света на основе тлеющего разряда - необычайно высокую экономичность. В настоящее время наиболее совершенные источники света на основе электрической дуги - криптоновые, ксеноновые и ртутные лампы, а на основе тлеющего разряда в инертных газах с парами ртути и другие.

Типы источников света

Для получения света могут быть использованы различные формы энергии, и в этой связи мы бы хоти выделить основные виды источников света.

  • Электрические: Электрический нагрев тел каления или плазмы.Джоулево тепло, вихревые токи, потоки электронов или ионов;
  • Ядерные: распад изотопов или деление ядер;
  • Химические:горение топлив и нагрев продуктов сгорания или тел каления;
  • Термолюминесцентные: преобразование тепла в свет в полупроводниках.
  • Триболюминесцентные: преобразования механических воздействий в свет.
  • Биолюминесцентные: бактериальные источники света в живой природе.

Опасные факторы источников света

Источники света той или иной конструкции очень часто сопровождаются наличием опасных факторов, главными из которых являются:

  • Открытое пламя;
  • Яркое световое излучение опасное для органов зрения и открытых участков кожи;
  • Тепловое излучение и наличие раскаленных рабочих поверхностей могущих привести к ожогу;
  • Высокоинтенсивное световое излучение могущее привести к возгоранию, ожогу, и ранению -излучение лазеров, дуговых ламп и др;
  • Горючие газы или жидкости;
  • Высокое напряжение питания;
  • Радиоактивность.

Самые яркие представители искусственных источников света

Факел

Факел - вид светильника, способный обеспечить продолжительный интенсивный свет на открытом воздухе при всякой погоде.

Простейшая форма факела - пучок бересты или лучин из смолистых пород деревьев, связка соломы и т. п. Дальнейшим усовершенствованием является применение различных сортов смолы, воска и т. п. горючих веществ. Иногда эти вещества служат простой обмазкой для факельного остова.

В начале XX века входят в употребление факелы электрические, с аккумуляторами. В крестьянском быту можно было встретить ещё и самые первобытные формы факелов. Факелы во все времена употреблялись для целей как утилитарных, так и для религиозных. Ими пользовались при лучении рыбы, при ночных переходах через густой лес, при исследовании пещер, для иллюминаций - словом, в тех случаях, когда неудобно употребление фонарей.

Современные факелы используются для придания романтики во время различных церемоний. Как правило, они изготовлены из бамбука и имеют в качестве источника огня картридж с жидким минеральным маслом. Обычно изготовляются в Китае, но бывают и исключения. Известные европейские дизайнеры также занимаются производством факелов.

Масляная лампа

Масляная лампа - светильник, работающий на основе сгорания масла. Принцип действия схож с принципом действия керосиновой лампы: в некую ёмкость заливается масло, туда опускается фитиль - верёвка, состоящая из растительных или искусственных волокон, по которым, согласно свойству капиллярного эффекта масло поднимается наверх. Второй конец фитиля, закреплённый над маслом, поджигается, и масло, поднимаясь по фитилю, горит.

Масляная лампа применялась издревле. В древние времена масляные лампы вылепляли из глины, или изготовляли из меди. В арабской сказке «Аладдин» из сборника «Тысяча и одна ночь» в медной лампе живет Джин.

Керосиновая лампа

Керосиновая лампа - светильник на основе сгорания керосина - продукта перегонки нефти. Принцип действия лампы примерно такой же, что и у масляной лампы: в ёмкость заливается керосин, опускается фитиль. Другой конец фитиля зажат поднимающим механизмом в горелке, сконструированной таким образом, чтобы воздух подтекал снизу. В отличие от масляной лампы, у керосиновой фитиль плетёный. Сверху горелки устанавливается ламповое стекло - для обеспечения тяги, а также для защиты пламени от ветра.

После широкого внедрения электрического освещения по плану ГОЭЛРО керосиновые лампы используются в основном в российской глубинке, где часто отключают электричество, а так же дачниками и туристами.

Лампа накаливания

Лампа накаливания - электрический источник света, светящимся телом которого служит так называемое тело накала. В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX -первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала – углеродного волокна. .

Принцип действия. В лампе накаливания используется эффект нагревания проводника при протекании через него электрического тока. Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн. Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K . Чем меньше температура, тем меньше доля видимого света и тем более красным кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления. Идеальная температура в 5770 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине ТН помещено в колбу, из которой в процессе изготовления ЛН откачиваются атмосферные газы. Наиболее опасными для ЛН являются кислород и водяные пары, в атмосфере которых происходит быстрое окисление ТН. Первые ЛН изготавливали вакуумными; в настоящее время только лампы малой мощности изготавливают в вакуумированной колбе. Колбы более мощных ЛН наполняют газом. Повышенное давление в колбе газополных ламп резко уменьшает скорость разрушения ТН из-за распыления. Колбы газополных ЛН не так быстро покрываются тёмным налётом распылённого материала ТН, а температуру последнего можно увеличить по сравнению с вакуумными ЛН. Последнее позволяет повысить КПД и несколько изменить спектр излучения.

КПД и долговечность. Почти вся подаваемая в лампу энергия превращается в излучение теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K КПД составляет 5%.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95%.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная - более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной. .

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Преимущества и недостатки ламп накаливания.

Преимущества

  • малая стоимость;
  • небольшие размеры;
  • ненужность пускорегулирующей аппаратуры;
  • при включении они зажигаются почти мгновенно;
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;
  • возможность работы как на постоянном, так и на переменном токе;
  • возможность изготовления ламп на самое разное напряжение;
  • отсутствие мерцания и гудения при работе на переменном токе;
  • непрерывный спектр излучения;
  • устойчивость к электромагнитному импульсу;
  • возможность использования регуляторов яркости;
  • нормальная работа при низких температурах окружающей среды.

Недостатки

  • низкая световая отдача;
  • относительно малый срок службы;
  • резкая зависимость световой отдачи и срока службы от напряжения;
  • цветовая температура лежит только в пределах 2300 – 2900 к, что придает свету желтоватый оттенок;
  • лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт - 145 °C, 75 Вт - 250 °C, 100 Вт - 290 °C, 200 Вт - 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Утилизация

Отслужившие лампы накаливания не содержат вредных для окружающей среды веществ и могут утилизироваться как обычные бытовые отходы. Единственным ограничением является запрет на их переработку вместе с изделиями из стекла.

Светодиодное освещение

Светодиодное освещение - одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Использование светодиодных ламп в освещении уже занимает 6 % рынка. Развитие светодиодного освещения непосредственно связано с технологической эволюцией светодиода. Разработаны так называемые сверхъяркие светодиоды, специально предназначенные для искусственного освещения.

Преимущества

В сравнении с обычными лампами накаливания светодиоды обладают многими преимуществами:

  • экономично используют электроэнергию по сравнению с традиционными лампами накаливания. Так, светодиодные системы уличного освещения с резонансным источником питания могут дать 132 люменов на ватт, против 150 люменов на ватт у натриевых газоразрядных ламп. Или против 15 люменов на ватт у обычной лампы накаливания и против 80-100 люменов на ватт у ртутных люминесцентных ламп;
  • срок службы в 30 раз больше по сравнению с ЛН;
  • возможность получать различные спектральные характеристики, без потери в световых фильтрах;
  • безопасность использования;
  • малые размеры;
  • отсутствие ртутных паров;
  • отсутствие ультрафиолетового излучения и малое инфракрасное излучение;
  • незначительное тепловыделение;
  • среди производителей именно светодиодные источники света считаются наиболее функционально-перспективным направлением как с точки зрения энергоэффективности, так и затратности и практического применения.

Недостатки

  • высокая цена. Отношение цена/люмен у сверхярких светодиодов в 50 -100 раз больше, чем у обычной лампы накаливания;
  • напряжение строго нормировано для каждого вида ламп, светодиоду необходим номинальный рабочий ток. Из-за этого появляются дополнительные электронные узлы, называемые источниками тока. Это обстоятельство влияет на себестоимость системы освещения в целом. В самом простом случае, когда ток невелик, возможно, подключение светодиода к источнику постоянного напряжения, но с использование резистора;
  • при питании пульсирующим током промышленной частоты мерцают сильнее, чем люминесцентная лампа, которая в свою очередь мерцает сильнее, чем лампа накаливания;
  • могут излучать кратковременные помехи и электрические шумы, что обнаруживается при экспериментальном сравнении с лампами других типов осциллографом.

Применение

Благодаря эффективному расходу электроэнергии и простоте конструкции применяется в ручных осветительных приборах – фонариках.

Так же применяется в светотехнике для создания дизайнерского освещения в специальных современных дизайн-проектах. Надёжность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах.

Компактная люминесцентная лампа

Компактная люминесцентная лампа - люминесцентная лампа, имеющая меньшие размеры по сравнению с колбчатой лампой и меньшую чувствительность к механическим повреждениям. Зачастую встречаются предназначенными для установки в стандартный патрон для ламп накаливания. Часто компактные люминесцентные лампы называют энергосберегающими лампами, что не совсем точно, поскольку существуют энергосберегающие лампы на других физических принципах, например светодиодные.

Маркировка и цветовая температура

Трехциферный код на упаковке лампы содержит как правило информацию относительно качества света.

Первая цифра – индекс цветопередачи в 1×10 Ra .

Вторая и третья цифры – указывают на цветовую температуру лампы.

Таким образом, маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 к. .

По сравнению с лампами накаливания, имеют большой срок службы. Однако зависимость срока службы от колебаний напряжения в электросети приводит к тому, что в России он может равняться или даже быть меньше срока службы ламп накаливания. Частично это преодолевается применением стабилизаторов напряжения и сетевых фильтров. Основными причинами, снижающими срок службы лампы, являются нестабильность напряжения в сети, частое включение-выключение лампы.

Новые разработки позволили использовать энергосберегающую лампу совместно с устройствами снижения/увеличения освещения. Для диммирования люминесцентных ламп ни один из разработанных ранее диммеров не подходит - в этом случае следует использовать специальные электронные пускорегулирующие аппараты с возможностью управления.

Благодаря применению электронного балласта имеют улучшенные характеристики по сравнению с традиционными люминесцентными лампами - более быстрое включение, отсутствие мерцания и жужжания. Также существуют лампы с системой плавного запуска. Система плавного запуска планомерно увеличивает интенсивность света при включении в течение 1-2 секунд: это продлевает срок службы лампы, но все же не позволяет избежать эффекта «временной световой слепоты».

В то же время компактные люминесцентные лампы по ряду параметров проигрывают светодиодным лампам.

Достоинства

  • высокая светоотдача, при равной мощности световой поток КЛЛ в 4-6 раз выше, чем у ЛН, что дает экономию электроэнергию 75-85%;
  • длительный срок эксплуатации;
  • возможность создания ламп с различными значениями цветовой температуры;
  • нагрев корпуса и колбы значительно ниже, чем у лампы накаливания.

Недостатки

  • спектр излучения: непрерывный 60-ватной лампы накаливания и линейный 11 ватной компактной люминесцентной лампы, линейчатый спектр излучения может вызвать искажения в цветопередаче;
  • несмотря на то, что использование КЛЛ действительно вносит свою лепту в сбережение электроэнергии, опыт массового применения в быту выявил целый ряд проблем, главная из которых -короткий срок эксплуатации в реальных условиях бытового применения;
  • использование широко распространенных выключателей с подсветкой приводит к периодическому, раз в несколько секунд, кратковременному зажиганию ламп, что приводит к скорому выходу из строя лампы. Об этом недостатке, за редким исключением, производители обычно не сообщают в инструкциях по эксплуатации. Для ликвидации этого эффекта необходимо параллельно светильнику включить в цепь питания конденсатор ёмкостью 0,33-0,68 мкФ на напряжение не ниже 400В;
  • спектр такой лампы линейный. Это приводит не только к неправильной цветопередаче, но и к повышенной усталости глаз. ;
  • утилизация: КЛЛ содержат 3-5 мг ртути, ядовитое вещество 1-го класса опасности. Разрушенная или повреждённая колба лампы высвобождает пары ртути, что может вызвать отравление ртутью. Зачастую на проблему утилизации люминесцентных ламп в России индивидуальные потребители не обращают внимания, а производители стремятся отстранится от проблемы.

С 1 января 2011 года, в соответствии с проектом ФЗ «Об энергосбережении» в России будет введён полный запрет на оборот ламп накаливания мощностью выше 100 Вт. .

КЛЛ со спиралевидной колбой имеет неравномерное нанесение люминофора. Он наносится так, что его слой на стороне трубки, обращённой к цоколю, толще, чем на стороне трубки, направленной на освещаемую область. Этим достигается направленность излучения. .

В некоторых моделях ламп применяется радиоактивный криптон – 85 .

КЛЛ считается тупиковой ветвью развития источников света. На сегодняшний день большинство стран Европы склоняются к мнению использования светодиодных источников света.

В связи с частыми случаями выхода из строя КЛЛ задолго до истечения обещанных производителями сроков, потребители стали призывать ввести специальные условия гарантии для продукции КЛЛ, соизмеримые с заявляемыми производителями в целях маркетинга.

В связи с «негативными» высказываниями в адрес энергосберегающих ламп, мы решили более внимательно присмотреться к ним и попробовать внести хоть какую-нибудь ясность по этому вопросу.

Прежде всего, хотим отметить, что в профессиональной технической литературе такие лампы называются Compact Fluorescent Lamps , в российской – компактные люминесцентные лампы, а уже во вторую очередь их называют Energy saving lamps .

Про возможный вред здоровью CFL, связанный с генерацией ими другого спектра света, мерцанием, «грязным электричеством», электромагнитным излучением, нерешенным вопросом утилизации и т.д., давно уже ведутся дебаты. Однако мы не будем конкретизировать доказательства по этим вопросам, т.к. не можем заниматься профессиональными исследованиями и не являемся специалистами в этой области, мы просто хотим собрать, изучить и сделать анализ на материалах представленных специалистами в сети Интернет.

Искусственные источники света. Шумовое (акустическое) загрязнение

контрольная работа

Искусственные источники света: типы источников света и их основные характеристики, Особенности применения газоразрядных энергосберегающих источников света. Светильники: назначение, типы, особенности применения

Источники искусственного света играют в нашей жизни важную роль. Они выполняют не только практическую, но и эстетическую функцию. Так, существует множество ламп, различающихся по форме, размерам и техническим характеристикам.

Источники искусственного света:

Лампы накаливания

Галогенная лампа

Газоразрядные источники света

Натриевая лампа

Люминесцентные лампы

Светодиоды

Лампы накаливания являются наиболее распространённым видом источников света. Они широко применяются в различных видах помещений, как во внутренних, так и в наружных.

Лампа накаливания

Принцип действия: свет в лампах накаливания создается путем прохождения электрического тока через тонкую проволоку, обычно изготовляемую из вольфрама. Принцип действия основан на тепловом действии электрического тока.

Преимущества лампы: низкие первоначальные затраты, удовлетворительное качество воспроизведения цвета, возможность управления степенью концентрации и направлением распространения света, разнообразие конструкций, удобство применения, отсутствие систем электронного запуска и стабилизации.

Недостатки: срок службы обычно не более 1000 часов; 95% производимой ими энергии преобразуется в тепло и только 5 % - в свет! Лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт -- 145°C, 75 Вт -- 250°C, 100 Вт -- 290°C, 200 Вт -- 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Применение: предназначены для внутреннего и наружного освещения при параллельном включении ламп в электрические сети напряжением 127 и 220 В.

Средняя цена: 15 рублей за 1 штуку.

Галогенная лампа

Галогенные лампы, как и лампы накаливания, излучают тепло.

Принцип действия: спираль, изготовленная из жаропрочного вольфрама, находится в колбе, заполненной инертным газом. При прохождении через спираль электрического тока она накаляется, вырабатывая тепловую и световую энергию. Частички вольфрама при температуре 1400°C еще до достижения поверхности колбы соединяются с частичками галогена. Благодаря термической циркуляции эта галогенно-вольфрамовая смесь приближается к раскаленной спирали и под воздействием более высокой температуры разлагается. Частички вольфрама снова осаждаются на спирали, а частички галогена возвращаются в процесс циркуляции.

Преимущества: Спираль имеет более высокую температуру, что позволяет получить больше света при той же мощности лампы, спираль постоянно обновляется, что увеличивает срок службы лампы, колба не чернеет, и лампа дает постоянный световой поток в течение всего срока эксплуатации.
При одинаковой способности к цветопередаче с лампами накаливания, имеют компактную конструкцию.

Недостатки: низкая светоотдача, маленький срок службы

Газоразрядные источники света

Газоразрядные источники света представляют собой стеклянную, керамическую или металлическую (с прозрачным выходным окном) оболочку, содержащую газ, некоторое количество металла или др. вещества с достаточно высокой упругостью пара. В оболочку герметично вмонтированы электроды, между которыми происходит разряд. Существуют газоразрядные источники света с электродами, работающими в открытой атмосфере или протоке газа.

Различают:

газосветные лампы - излучение создаётся возбуждёнными атомами, молекулами, рекомбинирующими ионами и электронами;

люминесцентные лампы - источником излучения являются люминофоры, возбуждаемые излучением газового разряда;

электродосветные лампы - излучение создаётся электродами, разогретыми разрядом.

Люминесцентные лампы

Принцип действия: свет в этих лампах возникает за счет преобразования ультрафиолeтoвoгo излучения люминофорным покрытием в видимый cвeт пocлe вoзникнoвeния в ниx газoвoгo pазpяда.

Преимущества: этo эффективный cпocoб пpeoбpазoвания энepгии; в cлeдcтвиe бoльшoй излучающей пoвepxнocти создаваемый люминесцентными лампами cвeт не столь яркий, как у "тoчeчныx" итoчникoв cвeта (лампы накаливания, галoгeнныe и газоразpядныe лампы выcoкoгo давления); по энepгeтичecкoй эффeктивнocти люминecцeнтныe лампы являются идеальными для ocвeщeния бoльшиx oткpытыx пoмeщeний (oфиcы, кoммepчecкиe, пpoмышлeнныe и oбщecтвeнныe здания).

Свет ламп может быть белым, тёплых и холодных цветов, а также цвета, близкого к естественному дневному свечению.

Недостатки: все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью.

Срок службы: достигает 15000 часов, что в 10-15 раз больше по сравнению с лампами накаливания.

Лампа дневного света

Одна из разновидностей люминесцентных ламп с голубоватым цветом свечения. Выделяют 2 типа таких ламп -- ЛДЦ (дневного света, с правильной цветопередачей) и ЛД (дневного света).

Лампы ЛД не обеспечивают правильной передачи цвета освещаемых объектов; используются для целей общего освещения, особенно в южных районах.

Лампы ЛДЦ служат для освещения объектов, для которых важно точное воспроизведение цветовых оттенков, преимущественно в синей и голубой областях спектра. Их световая отдача на 10--15% ниже, чем у ламп ЛД. Такие лампы применяют для освещения производственных помещений.

Энергосберегающие лампы

Компактные люминесцентные лампы (КЛЛ), благодаря специальной технологии и дизайну, могут быть сравнимы в размерах или равны лампам накаливания. Эти современные лампы имеют все передовые характеристики люминесцентных ламп.

Преимущества: экономия электроэнергии составляет до 80% в зависимости от производителя и конкретной модели; энергосберегающие лампы слабо нагреваются.

Недостатки: высокая стоимость и содержание в них ядовитых веществ.

Срок службы: приблизительно в 5-6 раз дольше, чем ламп накаливания, но может до 20 раз превышать его при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя.

Натриевая лампа

Газоразрядный источник света, в котором излучение оптического диапазона возникает при электрическом разряде в парах Na. Выделяют лампы низкого давления и лампы высокого давления.

Принцип действия: лампа высокого давления изготовляется из светопропускающего поликристаллического состава Al2O3, устойчивого к воздействию электрического разряда в парах Na до температур выше 1200 °С. Внутрь разрядной трубки после удаления воздуха вводят дозированные количества Na, Hg и инертный газ при давлении 2,6--6,5 кн/м2 (20--50 мм рт. ст.). Существуют натриевые лампы высокого давления «с улучшенными экологическими свойствами» -- безртутные.

Натриевые лампы низкого давления (далее - НТЛД) отличаются рядом особенностей, существенно затрудняющих как их производство, так и эксплуатацию. Во-первых, пары натрия при высокой температуре дуги весьма агрессивно воздействуют на стекло колбы, разрушая его. Из-за этого горелки НЛНД обычно выполняются из боросиликатных стёкол. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима горелки последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».

Преимущества: большой срок службы, применяют для наружного и внутреннего освещения; лампы дают приятный золотисто-белый свет.

Недостатки: включаются в электрическую сеть через пускорегулирующие аппараты; для обеспечения наибольшего выхода резонансного излучения Na разрядные трубки натриевой лампы утепляют, помещая их внутри стеклянного баллона, из которого откачан воздух.

Светодиод

Светодиод -- это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Минимальное потребление энергии обеспечивается за счёт свойств специально выращенного кристалла.

Применение светодиодов: в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах, в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях. Так же используются в качестве подсветки небольших жидкокристаллических экранов (на мобильных телефонах, цифровых фотоаппаратах).

Преимущества:

Высокий КПД. Современные светодиоды уступают по этому параметру только люминесцентной лампе с холодным катодом (CCFL).

Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

Длительный срок службы. Но и он не бесконечен -- при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости.

Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это -- достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

Малый угол излучения -- также может быть как достоинством, так и недостатком.

Безопасность -- не требуются высокие напряжения.

Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

Недостаток - высокая цена, но в ближайшие 2-3 года ожидается снижение цен на светодиодную продукцию.

Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания. С учетом того, что в году 8 760 или 8784 часов, светодиодные лампы могут работать несколько лет.

К газоразрядным лампам высокого давления относятся также металлогалогенные лампы (МГ).

Металлогалогенные лампы(HMI-лампы - Hydrargyrum medium Arc-length Iodide) - это большое семейство газоразрядных ламп переменного тока, в которых световое излучение образуется в результате электрического разряда в плотной атмосфере смеси паров ртути и галогенидов редкоземельных элементов.

В отличие от ламп накаливания, являющихся тепловыми излучателями в полном смысле этого слова, свет в этих лампах генерируется горящей между двумя электродами дугой. Это фактически ртутные лампы высокого давления с добавками йодидов металлов или йодидов редкоземельных элементов (диспрозий (Dy), гольмий (Ho) и тулий (Tm), а также комплексных соединений с цезием (Cs) и галогенидов олова (Sn). Эти соединения распадаются в центре разрядной дуги, и пары металла могут стимулировать эмиссию света, чьи интенсивность и спектральное распределение зависят от давления пара металлогалогенов.

Световая отдача и цветопередача дугового разряда ртути и световой спектр значительно улучшаются. Этот тип ламп нельзя путать с галогенными. Они абсолютно разные по характеристикам и принципам работы. Галогенный цикл: в баллоне лампы присутствуют пары йодидов металлов. При инициации электрического разряда с разогретых электродов начинает испаряться вольфрам, и его пары вступают в соединение с йодидами, образуя газообразное соединение - йодид вольфрама. Этот газ не оседает на стенках колбы (баллон остается прозрачным в течение всего срока работы лампы). Непосредственно вблизи разогретых электродов газ разлагается на пары вольфрама и йод, т.е. электроды окутаны облаком паров металла, оберегающим электроды от разрушения, а стенки колбы от потемнения. При выключении лампы вольфрам оседает (возвращается) на электроды. Таким образом, галогенный цикл обеспечивает длительную работу лампы без потускнения колбы.

МГ лампы -- это те же ртутные, но с внесенными в колбу ионами редкоземельных элементов, что значительно увеличивает срок службы, улучшает светоотдачу и спектр. Стандартные мощности (как и у натриевых) 70, 150, 250 и 400 ватт.

В целом, светоотдача МГ ламп равна светоотдаче люминесцентных (на один ватт) с тем исключением, что свет получается не рассеянный, а прямой.

Лампы МГ бывают по форме -- от матовых шаров под стандартную резьбу, до двухцокольных трубок под компактные прожекторы. Все эти лампы дают белый свет. Спектр сбалансирован по составу и имеет, как и синюю, так и красную области.

В связи с этим металлогалогенные лампы широко используются в осветительных установках различных коммерческих помещений, выставок, торговых центров, служебных помещений, гостиниц, ресторанов, в установках для подсветки рекламных щитов и витрин, для освещения спортивных сооружений и стадионов, для архитектурной подсветки зданий и сооружений. Например, чтобы получить освещенность сопоставимую с прожектором мощностью 1 кВт достаточно металлогалогенной лампы мощностью 250 Вт.

Последнее достижение в мeталлoгалогенной технологии - мeталлoгалогенная лампа с керамической оболочкой (КМГ), имеющая улучшенные параметры. Лампы КМГ обеспечивают высокий уровень воспроизведения световых характеристик. Благодаря этому эти лампы подходят для зон, в которых цвет имеет особое значение. Лампы включаются в сеть переменного тока частотой 50 Гц напряжением 220 или 380 В с соответствующей пускорегулирующей аппаратурой (ПРА) и импульсным зажигающим устройством (ИЗУ).

Световым прибором или светильником называют устройство, обеспечивающее нормальное функционирование электрической лампы. Светильник выполняет оптические, механические, электрические и защитные функции.

Осветительные приборы ближнего действия называют светильниками, а дальнего действия -- прожекторами.

Основными составляющими светильника являются арматура для установки и крепления, рассеиватель и собственно источник света. Все светильники имеют свои светотехнические характеристики, такие как светораспределение, оцениваемое посредством кривых силы света, световая направленность (отношение потоков света, направленных в верхнюю и нижнюю полусферы), а также коэффициент полезного действия.

Светильники в зависимости от условий среды, для которой они предназначены, по своей конструкции разделяют на следующие: открытые незащищенные, частично пылезащищенные, полностью пылезащищенные, частично и полностью пыленепроницаемые, брызгозащищенные, повышенной надежности против взрыва и взрывонепроницаемые.

По характеру светораспределения светильники делят на классы: прямого, преимущественно прямого, рассеянного, преимущественно отраженного и отраженного света.

По способу установки светильники подразделяют на группы: потолочные, встраиваемые в потолок, подвесные, настенные и напольные (торшеры).

Классификация светильников по назначению Таблица 1

Разновидности светильников

Назначение

Светильники общего освещения (подвесные, потолочные, настенные, напольные, настольные)

Для общего освещения помещений

Светильники местного освещения (настольные, напольные, настенные, подвесные, пристраиваемые, встраиваемые в мебель)

Для обеспечения освещения рабочей поверхности в соответствии с выполняемой зрительной работой

Светильники комбинированного освещения (подвесные, настенные, напольные, настольные)

Выполняют функции как светильника общего, так и местного освещения или одновременно обе функции

Декоративные светильники (настольные, настенные)

Выполняют функцию элемента убранства интерьера

Светильники для ориентации -- ночники (настольные, настенные)

Для создания освещения, необходимого для ориента-ции в жилых помещениях в темное время суток

Экспозиционные светильники (настольные, настенные, пристраиваемые, встраиваемые, потолочные, подвесные, напольные)

Для освещения отдельных объектов

Область применения различных типов выпускаемых светильников приведена в таблице 2. Буквенные обозначения светильников приняты по каталогам светотехнических изделий и номенклатурам заводов-изготовителей, преимущественно для помещений без особых требований к архитектурному оформлению.
Конструкции наиболее распространенных светильников показаны на рисунке 1.

Таблица 2 - Типы светильников и область их применения

Рисунок 1 - Светильники:

а -- «универсаль»;

б -- глубокоизлучатель эмалированный Гэ;

в -- глубокоизлучатель зеркальвый Гк;

г -- широкоизлучатель СО;

д -- пыленепроницаемые ППР и ППД;

е -- пыленепроницаемые ПСХ-75;

ж-- взрывозащищенный ВЗГ;

з -- повышенной надежности против взрыва НЗБ -- Н4Б;

и -- для химически активной среды СХ;

к -- люминесцентные ОД и ОДР (с решеткой);

л -- люминесцентные ЛД и ЛДР;

м -- люминесцентные ПУ;

н -- люминесцентные ПВЛ;

о -- люминесцентные ВЛО;

п--для наружного освещения СПО-200

Светильники «универсаль» (У) выпускают для ламп 200 и 500 Вт. Это основные светильники для нормальных производственных помещений. При малых высотах их применяют с полуматовым затенителем. Для сырых помещений или помещений с активной средой применяют светильники с диском из теплостойкой резины, уплотняющим контактную полость.
Эмалированные глубокоизлучатели Гэ выпускают двух размеров: для ламп до 500 и до 1000 Вт. Применяют, как и «универсаль», во всех нормальных производственных помещениях, но с большей высотой.

Глубокоизлучатели со средней концентрацией светового потока Гс выпускают для ламп 500, 1000, 1500 Вт. Корпус светильника изготовлен из алюминия с отражателем, близким к зеркальному. Применяют для нормальных и сырых помещений и среды с повышенной химической активностью.

Глубокоизлучатели концентрированного светораспределения Гк по конструкции аналогичны светильникам Гс. Их применяют в помещениях при необходимости высокой концентрации светового потока и отсутствии требований к освещению вертикальных поверхностей. В уплотненном исполнении имеют марку ГкУ.

Люцетту цельного молочного стекла (Лц) выпускают для ламп 100 и 200 Вт и применяют для помещений с нормальной средой. Светильники ПУ и СХ применяют для сырых, пыльных и пожароопасных помещений. Область применения взрывозащищенных светильников определяется исполнением, категорией и группой среды: В4А-50, В4А-100, ВЗГ-200, НОБ.
Светильники для местного света (СМО-1, 50 Вт, СМО-2, 100 Вт) укомплектовывают кронштейнами с выключателями и соответствующими шарнирами для поворота светильника. Им аналогичны светильники К-1, К-2, КС-50 и КС-100 -- миниатюрные кососветы.

Светильники для люминесцентных ламп типов ОДР и ОДОР применяют для освещения производственных помещений, а типа АОД -- для административных, лабораторных и других помещений. Светильники поставляют укомплектованными ПРУ-2, с патронами, колодками для стартеров и коммутацией для включения на одну фазу сети 220 В. Завод может поставлять светильники серии ОД сдвоенными, т. е. фактически четырехламповыми и с лампами 80 Вт.

Основными частями каждого светильника являются: корпус, отражатель, рассеиватель, узел крепления, контактное соединение и патрон для крепления лампы (рисунок 2).

Светильники с лампами ДРЛ и люминесцентными получили широкое распространение, так как имеют более высокий КПД, большую световую отдачу и значительный срок службы по сравнению со светильниками и лампами накаливания.

Для зажигания и устойчивого горения газоразрядные лампы включаются с помощью специальной пускорегулирующей аппаратуры (ПРА), стартеров, конденсаторов, разрядников и выпрямителей.

Рисунок 2 - Светильник УПД:

а -- общий вид; б -- вводный узел: 1 -- накидная гайка, 2 -- корпус, 3 -- фарфоровый патрон, 4 -- замок, 5 -- отражатель, б -- контакт заземления, 7-колодка зажимов.

Безопасность жизнедеятельности в разных сферах

С физической точки зрения любой источник света - это скопление множества возбуждённых или непрерывно возбуждаемых атомов. Каждый отдельный атом вещества является генератором световой волны...

Безопасность жизнедеятельности на производстве

Источники света, применяемые для искусственного освещения, делят на две группы - газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения...

Искусственное освещение рабочего места

Зрение человека позволяет воспринимать форму, цвет, яркость и движение окружающих предметов. До 90 % информации об окружающем мире человек получает с помощью зрительных органов...

Медико-биологическая характеристика искусственного освещения с учетом класса точности зрительных работ

Источники света, применяемые для искусственного освещения, делят на две группы газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения...

Организация охраны труда. Экономическая оценка источников света

Освещенность - важный фактор производственной и окружающей среды. Для нормальной жизнедеятельности человека крайне важны солнечные лучи, свет, освещение. Напротив, недостаточные уровни...

Освещение выставочной экспозиции

Как бы ни были удачны композиции выставочных интерьеров и подбор экспонатов, они не будут производить нужного впечатления, пока свет не станет компонентом оформления...

Освещенность производственных помещений металлургического производства

В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные. Лампы накаливания...

Основные требования к производственному освещению

При сравнении источников света друг с другом и при их выборе пользуются следующими характеристиками: 1) электрические характеристики -- номинальное напряжение, т. е. напряжение...

Охрана труда на предприятиях

Искусственное освещение по своему назначению делится на две системы: общее, предназначенное для освещения всего рабочего помещения, и комбинированное, когда к общему освещению добавляется местное освещение...

Проблема обеспечения безопасности человека при использовании световых и звуковых эффектов

Фотосенситивная (светочувствительная) эпилепсия - это такое состояние, при котором мерцающий свет большой интенсивности вызывает эпилептические приступы. Ее иногда называют рефлекторной эпилепсией...

Прогнозирование и разработка мероприятий по предупреждению и ликвидации чрезвычайной ситуации на АГЗС №2 ООО "АКОЙЛ"

АГЗС предназначены для приема и хранения сжиженного углеводородного газа, а также заправки газобаллонного оборудования автомобиля сжиженным углеводородным газом . Принципиальная технологическая схема АГЗС представлена на рисунке 1.1...

Производственная санитария и гигиена труда

Основные типы радиоактивных излучений: альфа, бета, нейтронные (группа корпускулярных излучений), рентгеновские и гамма-излучения (группа волновых). Корпускулярные излучения представляют собой потоки невидимых элементарных частиц...

Производственное освещение

При выборе источника света искусственного освещения принимают во внимание следующие характеристики: 1. электрические (номинальное напряжение, В; мощность лампы, ВТ) 2. светотехнические (световой поток лампы, лм; максимальная сила света Imax, КД). 3...

Рациональное оформление помещений и рабочих мест

Согласно теории Максвелла, предложенной им еще в 1876 году, свет представляет собой разновидность электромагнитных волн. Эта теория основывалась на том, что скорость света совпадала со скоростью...

Технологии спасения пострадавших в ДТП

Для ведения АСР в ходе ликвидации последствий ДТП для разборки ТС, деблокирования и извлечения пострадавших и других работ применяют гидравлические инструменты, приспособления и оборудование, а также ручные лебедки...

Лампа накаливания источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 5003 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы , являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 35 тыс. ч. Двухцокольные линейные галогенные лампы (рис. 5, г ) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов );

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью ≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) :

– номинальное значение напряжения;

– номинальное значение мощности;

– номинальное значение светового потока (иногда силы света);

– срок службы;

L , диаметр D ).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 .

В настоящее время все большее применение находят газоразрядные лампы , в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

– с газом;

– с парами металлов и различных соединений.

По давлению :

– газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

– газоразрядные лампы высокого давления (от 25 до 1000 кПа);

– газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда :

– дуговые;

– тлеющие;

– импульсные.

По источнику излучения :

– газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

– фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

– электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению :

– газоразрядные лампы с естественным охлаждением;

– газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампынизкого давления люминесцентные (рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (3080 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

– широкий диапазон цветности;

– благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

– по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 45 раз меньше энергии;

– имеют низкую температуру колбы;

– повышенный срок службы (до 615 тыс. ч.).

Недостатки люминесцентных ламп:

– относительная сложность схемы включения, шум дросселей;

– ограниченная единичная мощность и большие размеры при данной мощности;

– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

– зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

– значительное снижение потока к концу срока службы;

– относительная дороговизна;

– вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

– срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта , который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп :

– номинальная мощность;

– номинальное напряжение;

– номинальный ток лампы;

– световой поток;

– габаритные размеры (полная длина L , диаметр D );

– пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 .

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 1015 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 1015 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 2530 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ ртутные лампы высокого давления с добавкой иодидов металла , их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки :

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 .

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode ) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки :

– высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников .

Электрический светильник это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания . Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Ф ф к световому потоку помещенной в него лампы Ф л, т. е.
.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.

Существуют природные, или естественные, источники света. Это Солнце, звезды, атмосферные электрические разряды (например, молния). Луну также причисляют к источникам света, хотя правильнее было бы отнести её к отражателям света, так как она сама свет не излучает, а лишь отражает падающие на нее солнечные лучи. Естественные источники света существуют в природе независимо от человека.

Источники света. Люминесцентная пампа: 1 - контакты; 2 - стеклянная трубка, изнутри покрытая люминофором и наполненная инертным газом. Лампа накаливания: 1 - баллон; 2 - нить накала; 3 - держатель; 4 - цоколь. Ртутная газоразрядная лампа.

Электрическая дуга тоже может быть источником света.

Но есть множество источников света, создаваемых человеком. Это тела, вещества и устройства, в которых энергия любого вида при определенных, зависящих от человека условиях преобразуется в свет. Простейшие и древнейшие из них - костер, факел, лучина. В древнем мире (Египте, Риме, Греции) в качестве светильников использовали сосуды, наполненные животным жиром. В сосуд опускали фитиль (кусок веревки или скрученную в жгут тряпицу), который пропитывался жиром и горел довольно ярко.

В дальнейшем, вплоть до конца XIX в., основными источниками света служили свечи, масляные и керосиновые лампы, газовые фонари. Многие из них (например, свечи и керосиновые лампы) дожили до наших дней. Все эти источники света основаны на сжигании горючих веществ, поэтому их еще называют тепловыми. В таких источниках свет излучают мельчайшие раскаленные твердые частицы углерода. Их световая отдача очень мала - всего около 1 лм/Вт (теоретический предел для источника белого света около 250 лм/Вт).

Величайшим изобретением в области освещения было создание в 1872 г. русским ученым А. Н. Лодыгиным электрической лампы накаливания. Лампа Лодыгина представляла собой стеклянный сосуд с помещенным внутрь его угольным стержнем; воздух из сосуда откачивался. При пропускании по стержню электрического тока стержень разогревался и начинал светиться. В 1873 - 1874 гг. А. Н. Лодыгин проводил опыты по электрическому освещению кораблей, предприятий, улиц, домов. В 1879 г. американский изобретатель Т. А. Эдисон создал удобную для промышленного изготовления лампу накаливания с угольной нитью. С 1909 г. стали применять лампы накаливания с зигзагообразно расположенной вольфрамовой проволочкой (нить накаливания), а спустя 3–4 года вольфрамовую нить начали изготовлять в виде спирали. Тогда же появились первые лампы накаливания, наполненные инертным газом (аргоном, криптоном), что заметно повысило срок их службы. С начала XX в. электрические лампы накаливания благодаря экономичности и удобству в эксплуатации начинают быстро и повсеместно вытеснять другие источники света, основанные на сжигании горючих веществ. В настоящее время лампы накаливания стали наиболее массовыми источниками света.

Все многочисленные разновидности ламп накаливания (более 2000) состоят из одинаковых частей, различающихся размерами и формой. Устройство типичной лампы накаливания показано на рисунке. Внутри стеклянной колбы, из которой откачан воздух, на стеклянном или керамическом штенгеле при помощи держателей из молибденовой проволоки закреплена спираль из вольфрамовой проволоки (тело накала). Концы спирали прикреплены к вводам. В процессе сборки из колбы лампы через штенгель откачивают воздух, после чего её наполняют инертным газом и штенгель заваривают. Для крепления в патроне и подключения к электрической сети лампу снабжают цоколем, к которому подводят вводы.

Лампы накаливания различают по областям применения (осветительные общего назначения, для фар автомобилей, проекционные, прожекторные и т. д.); по форме тела накала (с плоской спиралью, биспиральные и др.); по размерам колбы (миниатюрные, малогабаритные, нормальные, крупногабаритные). Например, у сверхминиатюрных ламп длина колбы меньше 10 мм и диаметр меньше 6 мм, у крупногабаритных ламп длина колбы достигает 175 мм и более, а диаметр больше 80 мм. Лампы накаливания изготовляют на напряжения от долей до сотен вольт, мощностью до десятков киловатт. Срок службы ламп накаливания от 5 до 1000 ч. Световая отдача зависит от конструкции лампы, напряжения, мощности и продолжительности горения и составляет 10–35 лм/Вт.

В 1876 г. русский инженер П. Н. Яблочков изобрел дуговую угольную лампу переменного тока. Это изобретение положило начало практическому использованию электрического заряда для целей освещения. Созданная П. Н. Яблочковым система электрического освещения на переменном токе с применением дуговых ламп - «русский свет» - демонстрировалась на Всемирной выставке в Париже в 1878 г. и пользовалась исключительным успехом; вскоре во Франции, Великобритании, США были основаны компании по её использованию.

Начиная с 30‑х гг. XX в. получают распространение газоразрядные источники света, в которых используется излучение, возникающее при электрическом разряде в инертных газах или парах различных металлов, особенно ртути и натрия. Первые образцы ртутных ламп в СССР были изготовлены в 1927 г., а натриевых ламп - в 1935 г.

Газоразрядные источники света представляют собой стеклянную, керамическую или металлическую (с прозрачным окном) оболочку цилиндрической, сферической или иной формы, содержащую газ, а иногда и некоторое количество паров металлов или других веществ. В оболочку впаяны электроды, между которыми и возникает электрический разряд.

Наиболее широко для освещения зданий и сооружений применяются люминесцентные лампы, в которых ультрафиолетовое излучение электрического разряда в парах ртути преобразуется при помощи особого вещества - люминофора - в видимое, т. е. в световое, излучение. Световая отдача в срок службы люминесцентных ламп в несколько раз больше, чем ламп накаливания того же назначения. Среди подобных источников света наибольшее распространение получили ртутные люминесцентные лампы. Выполняется такая лампа в виде трубки из стекла (см. рис.) с нанесенным на её внутреннюю поверхность слоем люминофора. С двух концов в трубку впаяны вольфрамовые спиральные электроды для возбуждения электрического разряда. В трубку же вводят каплю ртути и немного инертного газа (аргона, неона и др.), который увеличивает срок службы и улучшает условия возникновения электрического разряда. При подключении лампы к источнику переменного тока между электродами лампы возникает электрический ток, возбуждающий ультрафиолетовое свечение паров ртути, которое в свою очередь вызывает свечение люминофорного слоя лампы. Световая отдача люминесцентных ламп достигает 75–80 лм/Вт. Мощность их колеблется в пределах от 4 до 200 Вт. Срок службы превышает 10 тыс. ч. Длина люминесцентных ламп составляет от 130 до 2440 мм. По форме трубки различают лампы прямые, V‑образные, W‑образные, кольцевые, свечеобразные. Такие лампы широко применяются для освещения помещений, в копировальных аппаратах, в световой рекламе и т. д. Для освещения автострад применяют натриевые лампы со световой отдачей до 140 лм/Вт. Улицы освещаются обычно ртутными лампами со световой отдачей 80–95 лм/Вт. Для газоразрядных источников света кроме высокой световой отдачи характерны простота и надежность в эксплуатации.

Совершенно новый тип источника света представляют собой лазеры, которые дают световые пучки с острой направленностью, исключительно яркие и однородные по цвету. А будущее осветительных приборов лежит за светодиодами.

Для искусственного освещения применяют электрические лампы двух типов -- лампы накаливания (ЛН) и газоразрядные лампы (ГЛ).

Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение (свет) в них получается в результате нагрева электрическим током вольфрамовой нити.

В газоразрядных лампах видимое излучение возникает в результате электрического разряда в атмосфере инертных газов или паров металлов, которыми заполняется колба лампы. Газоразрядные лампы называют люминесцентными, т. к. изнутри колбы покрыты люминофором, который под действием ультрафиолетового излучения, излучаемого электрическим разрядом, светится, преобразуя тем самым невидимое ультрафиолетовое излучение в свет.

Лампы накаливания наиболее широко распространены в быту из-за своей простоты, надежности и удобства эксплуатации. Находят они применение и на производстве, организациях и учреждениях, но в значительно меньшей степени. Это связано с их существенными недостатками: низкой светоотдачей -- от 7 до 20 лм/Вт (светоотдача лампы -- это отношение светового потока лампы к ее электрической мощности); небольшим сроком службы -- до 2500 часов; преобладанием в спектре желтых и красных лучей, что сильно отличает спектральный состав искусственного света от солнечного. В маркировке ламп накаливания буква В обозначает вакуумные лампы, Г -- газонаполненные, К -- лампы с криптоновым наполнением, Б -- биспиральные лампы.

Газоразрядные лампы получили наибольшее распространение на производстве, в организациях и учреждениях прежде всего из-за значительно большей светоотдачи (40...ПО лм/Вт) и срока службы (8000...12000 часов). Из-за этого газоразрядные лампы в основном применяются для освещения улиц, иллюминации, световой рекламы. Подбирая сочетание инертных газов, паров металлов, заполняющих колбы ламп, и люминоформа, можно получить свет практически любого спектрального диапазона -- красный, зеленый, желтый и т. д. Для освещения в помещениях наибольшее распространение получили люминесцентные лампы дневного света, колба которых заполнена парами ртути. Свет, излучаемый такими лампами, близок по своему спектру к солнечному свету.

К газоразрядным относятся различные типы люминесцентных ламп низкого давления с разным распределением светового потока по спектру: лампы белого света (ЛБ); лампы холодно-белого света

(ЛХБ); лампы с улучшенной цветопередачей (ЛДЦ); лампы тепло-белого света (ЛТБ); лампы, близкие по спектру к солнечному свету (ЛЕ); лампы холодно-белого света улучшенной цветопередачи (ЛХБЦ).

К газоразрядным лампам высокого давления относятся: дуговые ртутные лампы высокого давления с исправленной цветностью (ДРЛ); ксеноновые (ДКсТ), основанные на излучении дугового разряда в тяжелых инертных газах; натриевые высокого давления (ДНаТ); металлогалогенные (ДРИ) с добавкой йодидов металлов.

Лампы ЛЕ, ЛДЦ применяются в случаях, когда предъявляются высокие требования к определению цвета, в остальных случаях -- лампы ЛБ, как наиболее экономичные. Лампы ДРЛ рекомендуются для производственных помещений, если работа не связана с различением цветов (в высоких цехах машиностроительных предприятий и т. п.), и наружного освещения. Лампы ДРИ имеют высокую световую отдачу и улучшенную цветность, применяются для освещения помещений большой высоты и площади.

Источники света обладают различной яркостью. Максимальная переносимая человеком яркость при прямом наблюдении составляет 7500 кд/м2.

Однако газоразрядные лампы наряду с преимуществами перед лампами накаливания обладают и существенными недостатками, которые пока ограничивают их распространение в быту.

Это пульсация светового потока, которая искажает зрительное восприятие и отрицательно воздействует на зрение.

При освещении газоразрядными лампами может возникнуть стробоскопический эффект, заключающийся в неправильном восприятии скорости движения предметов. Опасность стробоскопического эффекта при использовании газоразрядных ламп состоит в том, что вращающиеся части механизмов могут показаться неподвижными и стать причиной травматизма. Пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая быстрое утомление зрения и головную боль.

Ограничение пульсаций до безвредных значений достигается равномерным чередованием питания ламп от различных фаз трехфазной сети, специальными схемами подключения. Однако это усложняет систему освещения. Поэтому люминесцентные лампы не нашли широкого применения в быту. К недостаткам газоразрядных ламп относится: длительность их разгорания, зависимость их работоспособности от температуры окружающей среды, создание радиопомех.

Другой причиной, по-видимому, является следующее обстоятельство. Психологическое и отчасти физиологическое воздействие на человека цветности излучения источников света несомненно в значительной степени связано с теми световыми условиями, к которым человечество приспособилось за время своего существования. Далекое и холодное голубое небо, создающее в течение большей части светового дня высокие освещенности, вечером -- близкий и горячий желто-красный костер, а затем пришедшие ему на смену, но аналогичные по цветности «лампы сгорания», создающие, однако, низкие освещенности, -- таковы световые режимы, приспособлением к которым, вероятно, объясняются следующие факты. У человека наблюдается более работоспособное состояние днем при свете преимущественно холодных оттенков, а вечером при теплом красноватом свете лучше отдыхать. Лампы накаливания дают теплый красновато-желтый цвет и способствуют успокоению и отдыху, лю-минесцентные лампы, наоборот, создают холодный белый цвет, который возбуждает и настраивает на работу.

От применяемого типа источников света зависит правильность цветопередачи. Например, темно-синяя ткань при свете ламп накаливания кажется черной, желтый цветок -- грязно-белым. Т. е. лампы накаливания искажают правильную цветопередачу. Однако есть предметы, которые люди привыкли видеть преимущественно вечером при искусственном освещении, например, золотые украшения «естественнее» выглядят при свете ламп накаливания, чем при свете люминесцентных ламп. Если при выполнении работы важна правильность цветопередачи -- например, на уроках рисования, в полиграфической промышленности, картинных галереях и т. д. -- лучше применять естественное освещение, а при его недостаточности -- искусственное освещение люминесцентных ламп.

Таким образом, правильный выбор цвета для рабочего места значительно способствует повышению производительности труда, безопасности и общему самочувствию работников. Отделка поверхностей и оборудования, находящегося в рабочей зоне, точно также способствует созданию приятных зрительных ощущений и приятной рабочей обстановки.

Обычный свет состоит из электромагнитных излучений с различными длинами волн, каждое из которых соответствует определенному диапазону видимого спектра. Смешивая красный, желтый и голубой свет, мы можем получить большинство видимых цветов, включая белый. Наше восприятие цвета предмета зависит от цвета света, которым он освещен и от того, каким образом сам предмет отражает цвет.

Источники света подразделяются на следующие три категории в зависимости от цвета света, который они излучают:

  • *«теплого» цвета (белый красноватый свет) -- рекомендуются для освещения жилых помещений;
  • *промежуточного цвета (белый свет) -- рекомендуются для освещения рабочих мест;
  • *«холодного» цвета (белый голубоватый свет) -- рекомендуются при выполнении работ, требующих высокого уровня освещенности или для жаркого климата.

Таким образом, важной характеристикой источников света является цвет светового излучения. Для характеристики цвета излучения введено понятие цветовой температуры.

Цветовая температура- такая температура черного тела, при которой его излучение имеет такую же цветность, как и рассматриваемое излучение. Действительно при нагреве черного тела его цвет изменяется от теплых оранжево-красных до холодных белых тонов. Цветовая температура измеряется в градусах Кельвина (°К). Связь между градусами по шкале Цельсия и по шкале Кельвина следующая: °К = °С + 273. Например, О °С соответствует 273 °К.