Вычислить интеграл по отрезку прямой соединяющей точки. Криволинейный интеграл первого рода. Пусть уравнение кривой интегрирования задано в параметрическом виде

16.3.2.1. Определение криволинейного интеграла первого рода. Пусть в пространстве переменных x,y,z задана кусочно-гладкая кривая , на которой определена функция f (x ,y ,z ).Разобьём кривую точками на частей, на каждой из дуг выберем произвольную точку , найдём и длину дуги , и составим интегральную сумму . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения кривой на дуги , ни от выбора точек , то функция f (x ,y ,z ) называется интегрируемой по кривой , а значение этого предела называется криволинейным интегралом первого рода, или криволинейным интегралом по длине дуги от функции f (x ,y ,z ) по кривой , и обозначается (или ).

Теорема существования. Если функция f (x ,y ,z ) непрерывна на кусочно-гладкой кривой , то она интегрируема по этой кривой.

Случай замкнутой кривой. В этом случае в качестве начальной и конечной точки можно взять произвольную точку кривой. Замкнутую кривую в дальнейшем будем называть контуром и обозначать буквой С . То, что кривая, по которой вычисляется интеграл, замкнута, принято обозначать кружочком на знаке интеграла: .

16.3.2.2. Свойства криволинейного интеграла первого рода. Для этого интеграла имеют место все шесть свойств, справедливых для определённого, двойного, тройного интеграла, от линейности до теоремы о среднем . Сформулировать и доказать их самостоятельно . Однако для этого интеграла справедливо и седьмое, персональное свойство:

Независимость криволинейного интеграла первого рода от направления прохождения кривой: .

Доказательство. Интегральные суммы для интегралов, стоящих в правой и левой частях этого равенства, при любом разбиении кривой и выборе точек совпадают (всегда длина дуги ), поэтому равны их пределы при .

16.3.2.3. Вычисление криволинейного интеграла первого рода. Примеры. Пусть кривая задана параметрическими уравнениями , где - непрерывно дифференцируемые функции, и пусть точкам , которые задают разбиение кривой, соответствуют значения параметра , т.е. . Тогда (см. раздел 13.3. Вычисление длин кривых) . По теореме о среднем, существует точка такая, что . Выберем точки , получающиеся при этом значении параметра: . Тогда интегральная сумма для криволинейного интеграла будет равна интегральной сумме для определенного интеграла . Так как , то, переходя к пределу при в равенстве , получим

Таким образом, вычисление криволинейного интеграла первого рода сводится к вычислению определённого интеграла по параметру. Если кривая задана параметрически, то этот переход не вызывает трудностей; если дано качественное словесное описание кривой, то основной трудностью может быть введение параметра на кривой. Ещё раз подчеркнём, что интегрирование всегда ведётся в сторону возрастания параметра.



Примеры. 1. Вычислить , где - один виток спирали

Здесь переход к определённому интегралу проблем не вызывает: находим , и .

2. Вычислить тот же интеграл по отрезку прямой, соединяющей точки и .

Здесь прямого параметрического задания кривой нет, поэтому на АВ необходимо ввести параметр. Параметрические уравнения прямой имеют вид где - направляющий вектор, - точка прямой. В качестве точки берем точку , в качестве направляющего вектора - вектор : . Легко видеть, что точка соответствует значению , точка - значению , поэтому .

3. Найти, где - часть сечения цилиндра плоскостью z =x +1, лежащая в первом октанте.

Решение: Параметрические уравнения окружности - направляющей цилиндра имеют вид x =2cosj, y =2sinj, и так как z=x +1, то z = 2cosj+1. Итак,

поэтому

16.3.2.3.1. Вычисление криволинейного интеграла первого рода. Плоский случай. Если кривая лежит на какой-либо координатной плоскости, например, плоскости Оху , и задаётся функцией , то, рассматривая х как параметр, получаем следующую формулу для вычисления интеграла: . Аналогично, если кривая задаётся уравнением , то .

Пример. Вычислить , где - четверть окружности , лежащая в четвёртом квадранте.

Решение. 1. Рассматривая х как параметр, получаем , поэтому

2. Если за параметр взять переменную у , то и .

3. Естественно, можно взять обычные параметрические уравнения окружности : .

Если кривая задана в полярных координатах , то , и .

Теоретический минимум

Криволинейные и поверхностные интегралы часто встречаются в физике. Они бывают двух видов, первый из которых рассматривается здесь. Этот
тип интегралов строится согласно общей схеме, по которой вводятся определённые, двойные и тройные интегралы. Коротко напомним эту схему.
Имеется некоторый объект, по которому проводится интегрирование (одномерный, двумерный или трёхмерный). Этот объект разбивается на малые части,
в каждой из частей выбирается точка. В каждой из этих точек вычисляется значение подынтегральной функции и умножается на меру той части, которой
принадлежит данная точка (длину отрезка, площадь или объём частичной области). Затем все такие произведения суммируются, и выполняется предельный
переход к разбиению объекта на бесконечно малые части. Получающийся предел и называется интегралом.

1. Определение криволинейного интеграла первого рода

Рассмотрим функцию , определённую на кривой . Кривая предполагается спрямляемой. Напомним, что это означает, грубо говоря,
что в кривую можно вписать ломаную со сколь угодно малыми звеньями, причём в пределе бесконечно большого числа звеньев длина ломаной должна оставаться
конечной. Кривая разбивается на частичные дуги длиной и на каждой из дуг выбирается точка . Составляется произведение ,
проводится суммирование по всем частичным дугам . Затем осуществляется предельный переход с устремлением длины наибольшей
из частичных дуг к нулю. Предел является криволинейным интегралом первого рода
.
Важной особенностью этого интеграла, прямо следующей из его определения, является независимость от направления интегрирования, т.е.
.

2. Определение поверхностного интеграла первого рода

Рассмотрим функцию , определённую на гладкой или кусочно-гладкой поверхности . Поверхность разбивается на частичные области
с площадями , в каждой такой области выбирается точка . Составляется произведение , проводится суммирование
по всем частичным областям . Затем осуществляется предельный переход с устремлением диаметра наибольшей из всех частичных
областей к нулю. Предел является поверхностным интегралом первого рода
.

3. Вычисление криволинейного интеграла первого рода

Методика вычисления криволинейного интеграла первого рода просматривается уже из формальной его записи, а фактически следует непосредственно из
определения. Интеграл сводится к определённому, только нужно записать дифференциал дуги кривой, вдоль которой проводится интегрирование.
Начнём с простого случая интегрирования вдоль плоской кривой, заданной явным уравнением . В этом случае дифференциал дуги
.
Затем в подынтегральной функции выполняется замена переменной , и интеграл принимает вид
,
где отрезок отвечает изменению переменной вдоль той части кривой, по которой проводится интегрирование.

Очень часто кривая задаётся параметрически, т.е. уравнениями вида . Тогда дифференциал дуги
.
Формула эта очень просто обосновывается. По сути, это теорема Пифагора. Дифференциал дуги - фактически длина бесконечно малой части кривой.
Если кривая гладкая, то её бесконечно малую часть можно считать прямолинейной. Для прямой имеет место соотношение
.
Чтобы оно выполнялось для малой дуги кривой, следует от конечных приращений перейти к дифференциалам:
.
Если кривая задана параметрически, то дифференциалы просто вычисляются:
и т.д.
Соответственно, после замены переменных в подынтегральной функции криволинейный интеграл вычисляется следующим образом:
,
где части кривой, по которой проводится интегрирование соответствует отрезок изменения параметра .

Несколько сложнее обстоит дело в случае, когда кривая задаётся в криволинейных координатах. Этот вопрос обычно обсуждается в рамках дифференциальной
геометрии. Приведём формулу для вычисления интеграла вдоль кривой, заданной в полярных координатах уравнением :
.
Приведём обоснование и для дифференциала дуги в полярных координатах. Подробное обсуждение построения координатной сетки полярной системы координат
см. . Выделим малую дугу кривой, расположенную по отношению к координатным линиям так, как показано на рис. 1. В силу малости всех фигурирующих
дуг снова можно применить теорему Пифагора и записать:
.
Отсюда и следует искомое выражение для дифференциала дуги.

С чисто теоретической точки зрения достаточно просто понять, что криволинейный интеграл первого рода должен сводиться к своему частному случаю -
определённому интегралу. Действительно, выполняя замену, которая диктуется параметризацией кривой, вдоль которой вычисляется интеграл, мы устанавливаем
взаимно-однозначное отображение между частью данной кривой и отрезком изменения параметра . А это и есть сведение к интегралу
вдоль прямой, совпадающей с координатной осью - определённому интегралу.

4. Вычисление поверхностного интеграла первого рода

После предыдущего пункта должно быть ясно, что одна из основных частей вычисления поверхностного интеграла первого рода - запись элемента поверхности ,
по которой выполняется интегрирование. Опять-таки начнём с простого случая поверхности, заданной явным уравнением . Тогда
.
Выполняется замена в подынтегральной функции, и поверхностный интеграл сводится к двойному:
,
где - область плоскости , в которую проектируется часть поверхности, по которой проводится интегрирование.

Однако часто задать поверхность явным уравнением невозможно, и тогда она задаётся параметрически, т.е. уравнениями вида
.
Элемент поверхности в этом случае записывается уже сложнее:
.
Соответствующим образом записывается и поверхностный интеграл:
,
где - область изменения параметров, соответствующая части поверхности , по которой проводится интегрирование.

5. Физический смысл криволинейного и поверхностного интегралов первого рода

Обсуждаемые интегралы обладают очень простым и наглядным физическим смыслом. Пусть имеется некоторая кривая, линейная плотность которой не является
константой, а представляет собой функцию точки . Найдём массу этой кривой. Разобьём кривую на множество малых элементов,
в пределах которых её плотность можно приближённо считать константой. Если длина маленького кусочка кривой равна , то его масса
, где - любая точка выбранного кусочка кривой (любая, так как плотность в пределах
этого кусочка приближённо предполагается постоянной). Соответственно, масса всей кривой получится суммированием масс отдельных её частей:
.
Чтобы равенство стало точным, следует перейти к пределу разбиения кривой на бесконечно малые части, но это и есть криволинейный интеграл первого рода.

Аналогично разрешается вопрос о полном заряде кривой, если известна линейная плотность заряда .

Эти рассуждения легко переносятся на случай неравномерно заряженной поверхности с поверхностной плотностью заряда . Тогда
заряд поверхности есть поверхностный интеграл первого рода
.

Замечание . Громоздкая формула для элемента поверхности, заданной параметрически, неудобна для запоминания. Другое выражение получается в дифференциальной геометрии,
оно использует т.н. первую квадратичную форму поверхности.

Примеры вычисления криволинейных интегралов первого рода

Пример 1. Интеграл вдоль прямой .
Вычислить интеграл

вдоль отрезка прямой, проходящей через точки и .

Сначала запишем уравнение прямой, вдоль которой проводится интегрирование: . Найдём выражение для :
.
Вычисляем интеграл:

Пример 2. Интеграл вдоль кривой на плоскости .
Вычислить интеграл

по дуге параболы от точки до точки .

Заданные точки и позволяют выразить переменную из уравнения параболы: .

Вычисляем интеграл:
.

Однако можно было проводить вычисления и иначе, пользуясь тем, что кривая задана уравнением, разрешённым относительно переменной .
Если принять переменную за параметр, то это приведёт к небольшому изменению выражения для дифференциала дуги:
.
Соответственно, интеграл несколько изменится:
.
Этот интеграл легко вычисляется подведением переменной под дифференциал. Получится такой же интеграл, как и в первом способе вычисления.

Пример 3. Интеграл вдоль кривой на плоскости (использование параметризации) .
Вычислить интеграл

вдоль верхней половины окружности .

Можно, конечно, выразить из уравнения окружности одну из переменных, а затем провести остальные вычисления стандартно. Но можно использовать и
параметрическое задание кривой. Как известно, окружность можно задать уравнениями . Верхней полуокружности
отвечает изменение параметра в пределах . Вычислим дифференциал дуги:
.
Таким образом,

Пример 4. Интеграл вдоль кривой на плоскости, заданной в полярных координатах .
Вычислить интеграл

вдоль правого лепестка лемнискаты .


На чертеже выше изображена лемниската. Вдоль её правого лепестка нужно проводить интегрирование. Найдём дифференциал дуги для кривой :
.
Следующий шаг - определение пределов интегрирования по полярному углу. Ясно, что должно выполняться неравенство , а потому
.
Вычисляем интеграл:

Пример 5. Интеграл вдоль кривой в пространстве .
Вычислить интеграл

вдоль витка винтовой линии , соответствующего пределам изменения параметра

Определение: Пусть в каждой точки гладкой кривой L = AB в плоскости Oxy задана непрерывная функция двух переменных f(x,y) . Произвольно разобьем кривую L на n частей точками A = М 0 , М 1 , М 2 , ... М n = B. Затем на каждой из полученых частей \(\bar{{M}_{i-1}{M}_{i}}\) выберем любую точку \(\bar{{M}_{i}}\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\)и составим сумму $${S}_{n}=\sum_{i=1}^{n}f\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\Delta {l}_{i}$$ где \(\Delta{l}_{i}={M}_{i-1}{M}_{i}\) - дуга дуги \(\bar{{M}_{i-1}{M}_{i}}\). Полученная сумма называется интегральной суммой первого рода для функции f(x,y) , заданой на кривой L.

Обозначим через d наибольшую из длин дуг \(\bar{{M}_{i-1}{M}_{i}}\) (таким образом, d = \(max_{i}\Delta{l}_{i}\)). Если при d ? 0 существует предел интегральных сумм S n (не зависящих от способа разбиения кривой L на части и выбора точек \(\bar{{M}_{i}}\)), то этот предел называется криволинейным интегралом первого порядка от функции f(x,y) по кривой L и обозначается $$\int_{L}f(x,y)dl$$

Можно доказать, что если функция f(x,y) непрерывна, то криволинейный интеграл \(\int_{L}f(x,y)dl\) существует.

Свойства криволинейного интеграла 1 рода

Криволинейный интеграл первого рода обладает свойствами, аналогичными соответствующим свойства определеннного интеграла:

  • аддитивность,
  • линейность,
  • оценка модуля,
  • теорема о среднем.

Однако есть отличие: $$\int_{AB}f(x,y)dl=\int_{BA}f(x,y)dl$$ т.е. криволинейный интеграл первого рода не зависит от направления интегрирования.

Вычисление криволинейных интегралов первого рода

Вычисление криволинейного интеграла первого рода сводится к вычислению определенного интеграла. А именно:

  1. Если кривая L задана непрерывно дифференцируемой функцией y=y(x), x \(\in \) , то $${\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_a^b {f\left({x,y\left(x \right)} \right)\sqrt {1 + {{\left({y"\left(x \right)} \right)}^2}} dx} ;}$$ при этом выражение \(dl=\sqrt{{1 + {{\left({y"\left(x \right)} \right)}^2}}} dx \) называется дифференциалом длины дуги.
  2. Если крива L задана параметрически, т.е. в виде x=x(t), y=y(t), где x(t), y(t) - непрерывно дифференцируемые функции на некотором отрезке \(\left [ \alpha ,\beta \right ]\), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left ({x\left(t \right),y\left(t \right)} \right)\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2}} dt}} $$ Это равенство распространяется на случай пространственной кривой L, заданной параметрически: x=x(t), y=y(t), z=z(t), \(t\in \left [ \alpha ,\beta \right ]\). В этом случае, если f(x,y,z) - непрерывная функция вдоль кривой L, то $$ {\int\limits_L {f\left({x,y,z} \right)dl} } = {\int\limits_\alpha ^\beta {f\left [ {x\left(t \right),y\left(t \right),z\left(t \right)} \right ]\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2} + {{\left({z"\left(t \right)} \right)}^2}} dt}} $$
  3. Если плоская кривая L задана полярным уравнением r=r(\(\varphi \)), \(\varphi \in\left [ \alpha ,\beta \right ] \), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left({r\cos \varphi ,r\sin \varphi } \right)\sqrt {{r^2} + {{{r}"}^2}} d\varphi}} $$

Криволинейные интегралы 1 рода - примеры

Пример 1

Вычислить криволинейный интеграл первого рода

$$ \int_{L}\frac{x}{y}dl $$ где L дуга параболы y 2 =2x, заключенная между точками (2,2) и (8,4).

Решение: Найдем дифференциал дуги dl для кривой \(y=\sqrt{2x}\). Имеем:

\({y}"=\frac{1}{\sqrt{2x}} \) $$ dl=\sqrt{1+\left ({y}" \right)^{2}} dx= \sqrt{1+\left (\frac{1}{\sqrt{2x}} \right)^{2}} dx = \sqrt{1+ \frac{1}{2x}} dx $$ Следовательно данный интеграл равен: $$\int_{L}\frac{x}{y}dl=\int_{2}^{8}\frac{x}{\sqrt{2x}}\sqrt{1+\frac{1}{2x}}dx= \int_{2}^{8}\frac{x\sqrt{1+2x}}{2x}dx= $$ $$ \frac{1}{2}\int_{2}^{8}\sqrt{1+2x}dx = \frac{1}{2}.\frac{1}{3}\left (1+2x \right)^{\frac{3}{2}}|_{2}^{8}= \frac{1}{6}(17\sqrt{17}-5\sqrt{5}) $$

Пример 2

Вычислить криволинейный интеграл первого рода \(\int_{L}\sqrt{x^2+y^2}dl \), где L - окружность x 2 +y 2 =ax (a>0).

Решение: Введем полярные координаты: \(x = r\cos \varphi \), \(y=r\sin \varphi \). Тогда поскольку x 2 +y 2 =r 2 , уравнение окружности имеет вид: \(r^{2}=arcos\varphi \), то есть \(r=acos\varphi \), а дифференциал дуги $$ dl = \sqrt{r^2+{2}"^2}d\varphi = $$ $$ =\sqrt{a^2cos^2\varphi=a^2sin^2\varphi }d\varphi=ad\varphi $$.

При этом \(\varphi\in \left [- \frac{\pi }{2} ,\frac{\pi }{2} \right ] \). Следовательно, $$ \int_{L}\sqrt{x^2+y^2}dl=a\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}}acos\varphi d\varphi =2a^2 $$

1 рода.

1.1.1. Определение криволинейного интеграла 1 рода

Пусть на плоскости Оxy задана кривая (L). Пусть для любой точки кривой (L) определена непрерывная функция f(x;y). Разобьем дугу АВ линии (L) точками А=P 0 , P 1 , P n = В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.27)

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму

Пусть , где .

λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L )на элементарные части, ни от выбора точек M i криволинейным интегралом 1 рода от функции f(x;y) (криволинейным интегралом по длине дуги) и обозначают:

Замечание . Аналогично вводиться определение криволинейного интеграла от функции f(x;y;z) по пространственной кривой (L).

Физический смысл криволинейного интеграла 1 рода:

Если (L)- плоская кривая с линейной плоскостью , то массу кривой находят по формуле:

1.1.2. Основные свойства криволинейного интеграла 1 рода:

3. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то .

4. Криволинейный интеграл 1 рода не зависит от направления интегрирования:

5. , где - длина кривой.

1.1.3. Вычисление криволинейного интеграла 1 рода.

Вычисление криволинейного интеграла сводят к вычислению определенного интеграла.

1. Пусть кривая (L) задана уравнением . Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Вычислить массу отрезка прямой от точки А(1;1) до точки В(2;4), если .

Решение

Уравнение прямой проходящей через две точки: .

Тогда уравнение прямой (АВ ): , .

Найдём производную .

Тогда . = .

2. Пусть кривая (L) задана параметрически : .

Тогда , то есть дифференциал дуги вычисляют по формуле .

Для пространственного случая задания кривой: .Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Найти длину дуги кривой , .

Решение

Длину дуги найдём по формуле : .

Для этого найдём дифференциал дуги .

Найдём производные , , .Тогда и длина дуги: .

3. Пусть кривая (L) задана в полярной системе координат: . Тогда

То есть дифференциал дуги вычислют по формуле .

Пример

Вычислить массу дуги линии , 0≤ ≤ , если .

Решение

Массу дуги найдём по формуле:

Для этого найдёмдифференциал дуги .

Найдём производную .

1.2. Криволинейный интеграл 2 рода

1.2.1. Определение криволинейного интеграла 2 рода


Пусть на плоскости Оxy задана кривая (L) . Пусть на (L) задана непрерывная функция f (x;y). Разобьем дугу АВ линии (L) точками А = P 0 ,P 1 , P n = В в направлении от точки А к точке В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.28).

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму , где - длина проекции дуги P i -1 P i на ось Оx . Если направление движения вдоль проекции совпадает с положительным направлением оси Оx , то проекцию дуг считают положительной , иначе - отрицательной .

Пусть , где .

Если существует предел интегральной суммы при λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L) на элементарные части, ни от выбора точек M i в каждой элементарной части, то этот предел называют криволинейным интегралом 2 рода от функции f(x;y) (криволинейным интегралом по координате х ) и обозначают:

Замечание. Аналогично вводится криволинейный интеграл по координате у:

Замечание. Если (L) - замкнутая кривая, то интеграл по ней обозначают

Замечание. Если на (L ) задано сразу три функции и от этих функций существуют интегралы , , ,

то выражение: + + называют общим криволинейным интегралом 2 рода и записывают:

1.2.2. Основные свойства криволинейного интеграла 2 рода:

3. При изменении направления интегрирования криволинейный интеграл 2 рода изменяет свой знак .

4. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то

5. Если кривая (L ) лежит в плоскости:

Перпендикулярной оси Ох , то =0 ;

Перпендикулярной оси Oy , то ;

Перпендикулярной оси Oz , то =0.

6. Криволинейный интеграл 2 рода по замкнутой кривой не зависит от выбора начальной точки (зависит только от направления обхода кривой).

1.2.3. Физический смысл криволинейного интеграла 2 рода.

Работа А силы при перемещении материальной точки единичной массы из точки М в точку N вдоль (MN ) равна:

1.2.4. Вычисление криволинейного интеграла 2 рода.

Вычисление криволинейного интеграла 2 рода сводят к вычислению определенного интеграла.

1. Пусть кривая (L ) задана уравнением .

Пример

Вычислить, где (L )- ломаная OAB : O(0;0), A(0;2), B(2;4).

Решение

Так как (рис.29), то

1)Уравнение (OA) : , ,

2) Уравнение прямой (AB ): .

2. Пусть кривая (L) задана параметрически: .

Замечание. В пространственном случае:

Пример

Вычислить

Где (АВ)- отрезок от А(0;0;1) до B(2;-2;3).

Решение

Найдём уравнение прямой (АВ ):

Перейдём к параметрической записи уравнения прямой (АВ) . Тогда .

Точке A(0;0;1) соответствует параметр t равный: следовательно, t=0.

Точке B(2;-2;3) соответствует параметр t , равный: следовательно, t=1.

При перемещении от А к В ,параметр t меняется от 0 до 1 .

1.3. Формула Грина . L ) в т. М(х;у;z) с осями Оx, Оy, Oz

Назначение . Онлайн калькулятор предназначен для нахождения работы силы F при перемещении вдоль дуги линии L .

Криволинейные и поверхностные интегралы второго рода

Рассмотрим многообразие σ . Пусть τ(x,y,z) - единичный вектор касательной к σ , если σ - кривая, а n(x,y,z) - единичный вектор нормали к σ , если σ - поверхность в R 3 . Введём векторы dl = τ · dl и dS = n · dS , где dl и dS - длина и площадь соответствующего участка кривой или поверхности. Будем считать, что dσ =dl , если σ - кривая, и dσ =dS , если σ - поверхность. Назовём dσ ориентированной мерой соответствующего участка кривой или поверхности.

Определение . Пусть заданы ориентированное непрерывное кусочно-гладкое многообразие σ и на σ – вектор-функция F(x,y,z)=P(x,y,z)i+Q(x,y,z)+R(x,y,z). Разобьем многообразие на части многообразиями меньшей размерности (кривую – точками, поверхность –кривыми), внутри каждого полученного элементарного многообразия выберем по точке M 0 (x 0 ,y 0 ,z 0), M 1 (x 1 ,y 1 ,z 1), ... ,M n (x n ,y n ,z n). Посчитаем значения F(x i ,y i ,z i), i=1,2,...,n вектор-функции в этих точках,умножим скалярно эти значения на ориентированную меру dσ i данного элементарного многообразия (ориентированные длину или площадь соответствующего участка многообразия) и просуммируем. Предел полученных сумм если онсуществует, не зависит от способа разбиения многообразия на части и выбора точек внутри каждого элементарного многообразия, при условии, что диаметр элементарного участка стремится к нулю, называется интегралом по многообразию (криволинейным интегралом, если σ -кривая и поверхностным, если σ - поверхность) второго рода, интеграломвдоль ориентированного многообразия, или интегралом от вектора F вдоль σ, и обозначается в общем случае, в случаях криволинейного и поверхностного интегралов соответственно.
Заметим, что если F(x,y,z) - сила, то - работа этой силы по перемещению материальной точки вдоль кривой, если F(x,y,z) - стационарное (не зависящее от времени) поле скоростей текущей жидкости, то - количество жидкости, протекающей через поверхность S в единицу времени (поток вектора через поверхность).
Если кривая задана параметрически или, что то же самое, в векторной форме,


то

и для криволинейного интеграла второго рода имеем


Так как dS = n · dS =(cosα , cosβ , cosγ), где cosα , cosβ , cosγ - направляющие косинусы единичного вектора нормали n и cosαdS=dydz , cosβdS=dxdz , cosγdS=dxdy , то для поверхностного интеграла второго рода получаем

Если поверхность задана параметрически или, что тоже самое, в векторной форме
r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k, (u,v)∈D
то

где - якобианы (определители матриц Якоби, или, что то же самое, матриц производных) вектор-функций соответственно.

Если поверхность S может быть задана одновременно уравнениями то поверхностный интеграл второго рода вычисляется по формуле

где D 1 , D 2 , D 3 - проекции поверхности S на координатные плоскости Y0Z , X0Z , X0Y соответственно и знак “+” берётся, если угол между вектором нормали и осью, вдоль которой ведётся проектирование, острый, а знак “–“, если этот угол тупой.

Свойства криволинейного и поверхностного интегралов второго рода

Отметим некоторые свойства криволинейного и поверхностного интегралов второго рода.
Теорема 1 . Криволинейный и поверхностный интегралы 2-го рода зависят от ориентации кривой и поверхности, точнее
.

Теорема 2 . Пусть σ=σ 1 ∪σ 2 и размерность пересечения dlim(σ 1 ∩σ 2)=n-1 . Тогда


Доказательство. Включив в число многообразий разбиения в определении интеграла по многообразию второго рода общую границу σ 1 с σ 2 получаем требуемое.

Пример №1 . Найти работу силы F при перемещении вдоль дуги линии L от точки M 0 до точки M 1 .
F=x 2 yi+yj; , L: отрезок M 0 M 1
M 0 (-1;3), M 0 (0;1)
Решение .
Находим уравнение прямой вдоль отрезка M 0 M 1 .
или y=-2x+1
dy=-2dx

Пределы изменения x: [-1; 0]