Сравнения по модулю m. Сравнение по модулю натурального числа. Группы и их свойства

Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.

В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.

Метод непосредственного интегрирования

Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.

Пример 1

Вычислите множество первообразных функции f (x) = 2 x + 3 2 · 5 x + 4 3 .

Решение

Для начала изменим вид функции на f (x) = 2 x + 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 .

Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:

∫ f (x) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x

Выводим за знак интеграла числовой коэффициент:

∫ f (x) d x = ∫ 2 x d x + ∫ 3 2 (5 x + 4) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ (5 x + 4) 1 3 d x

Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1

Чтобы найти второй интеграл, потребуется таблица первообразных для степенной функции ∫ x p · d x = x p + 1 p + 1 + C , а также правило ∫ f k · x + b d x = 1 k · F (k · x + b) + C .

Следовательно, ∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

У нас получилось следующее:

∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

причем C = C 1 + 3 2 C 2

Ответ: ∫ f (x) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.

Метод подстановки

Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.

Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.

Пример 2

Вычислите неопределенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Добавим еще одну переменную z = 2 x - 9 . Теперь нам нужно выразить x через z:

z 2 = 2 x - 9 ⇒ x = z 2 + 9 2 ⇒ d x = d z 2 + 9 2 = z 2 + 9 2 " d z = 1 2 · z d z = z d z

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9

Берем таблицу первообразных и узнаем, что 2 ∫ d z z 2 + 9 = 2 3 a r c t g z 3 + C .

Теперь нам нужно вернуться к переменной x и получить ответ:

2 3 a r c t g z 3 + C = 2 3 a r c t g 2 x - 9 3 + C

Ответ: ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Если нам приходится интегрировать функции с иррациональностью вида x m (a + b x n) p , где значения m , n , p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.

Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.

Этот метод объясняет правило интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C .

Добавляем еще одну переменную z = k · x + b . У нас получается следующее:

x = z k - b k ⇒ d x = d z k - b k = z k - b k " d z = d z k

Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:

∫ f (k · x + b) d x = ∫ f (z) · d z k = 1 k · ∫ f (z) d z = = 1 k · F z + C 1 = F (z) k + C 1 k

Если же мы примем C 1 k = C и вернемся к исходной переменной x , то у нас получится:

F (z) k + C 1 k = 1 k · F k x + b + C

Метод подведения под знак дифференциала

Это метод основывается на преобразовании подынтегрального выражения в функцию вида f (g (x)) d (g (x)) . После этого мы выполняем подстановку, вводя новую переменную z = g (x) , находим для нее первообразную и возвращаемся к исходной переменной.

∫ f (g (x)) d (g (x)) = g (x) = z = ∫ f (z) d (z) = = F (z) + C = z = g (x) = F (g (x)) + C

Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.

Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.

Пример 3

Вычислите неопределенный интеграл ∫ c t g x d x .

Решение

Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.

c t g x d x = cos s d x sin x

Смотрим в таблицу производных и видим, что числитель можно подвести под знак дифференциала cos x · d x = d (sin x) , значит:

c t g x d x = cos x d x sin x = d sin x sin x , т.е. ∫ c t g x d x = ∫ d sin x sin x .

Допустим, что sin x = z , в таком случае ∫ d sin x sin x = ∫ d z z . Согласно таблице первообразных, ∫ d z z = ln z + C . Теперь вернемся к исходной переменной ∫ d z z = ln z + C = ln sin x + C .

Все решение в кратком виде можно записать так:

∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C

Ответ: ∫ с t g x d x = ln sin x + C

Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.

Метод интегрирования по частям

Этот метод основывается на преобразовании подынтегрального выражения в произведение вида f (x) d x = u (x) · v " x d x = u (x) · d (v (x)) , после чего применяется формула ∫ u (x) · d (v (x)) = u (x) · v (x) - ∫ v (x) · d u (x) . Это очень удобный и распространенный метод решения. Иногда частичное интегрирование в одной задаче приходится применять несколько раз до получения нужного результата.

Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.

Пример 4

Вычислите неопределенный интеграл ∫ a r c t g (2 x) d x .

Решение

Допустим, что u (x) = a r c t g (2 x) , d (v (x)) = d x , в таком случае:

d (u (x)) = u " (x) d x = a r c t g (2 x) " d x = 2 d x 1 + 4 x 2 v (x) = ∫ d (v (x)) = ∫ d x = x

Когда мы вычисляем значение функции v (x) , прибавлять постоянную произвольную С не следует.

∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2

Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.

Поскольку ∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 , тогда 2 x d x = 1 4 d (1 + 4 x 2) .

∫ a r c t g (2 x) d x = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C 1 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C

Ответ: ∫ a r c t g (2 x) d x = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C .

Главная сложность применения такого метода – это необходимость выбирать, какую часть брать за дифференциал, а какую – за функцию u (x) . В статье, посвященной методу интегрирования по частям, даны некоторые советы по этому вопросу, с которыми следует ознакомиться.

Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.

Если мы интегрируем степенное выражение вида sin 7 x · d x или d x (x 2 + a 2) 8 , то нам будут полезны рекуррентные формулы, которые могут постепенно понижать степень. Они выводятся с помощью последовательного многократного интегрирования по частям. Советуем прочитать статью «Интегрирование с помощью рекуррентных формул.

Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Этот метод основан на следующей формуле: (*)

Пусть и - функции от х, имеющие непрерывные производные и .

Известно, что или ; или .

Интегралы и , так как по условию функции u и v дифференцируемы, а значит и непрерывны.

Формула (*) носит название формулы интегрирования по частям.

Метод, основанный на ее применении, называется методом интегрирования по частям.

Он сводит вычисления к вычислению другого интеграла: .

Применение метода интегрирования по частям состоит в том, что под интегральное выражение заданного интеграла стараются представить в виде произведения , где и - некоторые функции от х, причем эти функции выбирают так, чтобы была для вычисления проще, чем исходный интеграл. При для вычисления предварительно находят и .

(в качестве “v” берут одну какую-либо из исходных первообразных, находимых по dv,поэтому в дальнейшем при вычислении “v” постоянную С в записи будем опускать).

Замечание. Разбивая под интегральное выражение на множители , должны понимать, что должен содержать и .

Общих правил для разложения под интегрального выражения на множители «u» и «dv», к сожалению, дать нельзя. Этому может научить большая и вдумчивая практика.

При всем этом следует иметь в виду, чтобы был проще, чем исходный интеграл.

Пример 6.6.22.

Иногда для получения окончательного результата правило интегрирования по частям применяют последовательно несколько раз.

Метод интегрирования по частям удобно применять, конечно, далеко не всякий раз и умение пользоваться им зависит от наличия опыта.

При вычислении интегралов важно правильно установить, каким методом интегрирования следует пользоваться (так в предыдущем примере тригонометрическая подстановка быстрее приводит к цели).

Рассмотрим наиболее часто встречающиеся интегралы, которые вычисляются интегрированием по частям.

1.Интегралы вида :

где - целый (относительно х) многочлен; а – постоянное число.

Если под знаком интеграла стоит произведение тригонометрической или показательной функции алгебраическую, то за «u» обычно принимают алгебраическую функцию.



Пример6.6.23.

Заметим, что другая разбивка на множители: не приводит к цели.

Доказано,
.

Получим более сложный интеграл.

2.Интегралы вида :

где - многочлен.

Если под знаком интеграла стоит произведение логарифма функции или обратной тригонометрической функции на алгебраическую, то за «u» следует принимать функции .

Пример6.6.23.

3.Интегралы вида:

Здесь можно использовать любую из 2-х возможных разбивок под интегрального выражения на множители: за «u» можно принять как , так и .

Причем вычисление таких интегралов с помощью метода интегрирования по частям приводит к исходному интегралу, то есть получается уравнение относительно искомого интеграла.

Пример 6.6.24.Вычислить .

.

При интегрировании часто приходится последовательно применять метод подстановки и метод интегрирования по частям.

Пример 6.6.25.

Интегрирование некоторых функций, содержащих квадратный трехчлен

1)

.

а это - табличные интегралы.

2) коэффициенты действительного числа

в числителе выделяем производную знаменателя.

a,b,c – действительные числа

а) ; то имеем:

б) . В этом случае имеет смысл рассматривать только тогда, когда дискриминант трехчлена положителен:

Теперь имеем:

Замечание. На практике не пользуются обычно готовыми результатами, а предпочитают всякий раз проводить аналогичные вычисления вновь.

Пример.

4)

Преобразуем числитель так, чтобы из него можно было выделить производную квадратного трехчлена:

В связи с тем, что не существует на практике удобного общего метода вычисления неопределенных интегралов, приходится на ряду с частными методами интегрирования (см.предыдущую лекцию) рассматривать также способы интегрирования некоторых частных классов функций, интегралы от которых часто встречаются на практике.

Важнейшим классом среди них является класс рациональных функций.

«Интегрирование дробно-рациональных функций»

Интегрирование правильной рациональной дроби основано на разложении рациональной дроби в сумму элементарных дробей.

Элементарные (простейшие) дроби и их интегрирование.

Определение. Дроби вида: ; (1)

(2), где

(то есть корни трехчлена являются комплексными), называются элементарными.

Рассмотрим интегрирование элементарных дробей

2)

(где пусть ).

Вычислим интеграл

(*)

Последний интеграл вычисляется с помощью рекуррентной формулы.

Иногда интегрирование по частям позволяет получить соотношение между неопределенным интегралом, содержащим степень некоторой функции, и аналогичным интегралом, но с меньшим показателем степени той же функции. Подобные соотношения называют рекуррентными формулами.

Обозначим через .

Имеем:

В последнем интеграле положим:

Поэтому

откуда

Таким образом, мы пришли к рекуррентной формуле: повторное применение которой в конечном счете приводит к «табличному» интегралу:

Затем вместо «t» и «k» подставляем их значения.

Пример6.6.26.

(по рекурр. формуле).=

.

Рациональной дробью называется функция представимая в виде ; где и - многочлены с действительными коэффициентами.

Рациональная дробь называется правильной если степень числителя меньше степени знаменателя.

Всякая правильная рациональная дробь может быть представлена в виде суммы конечного числа элементарных дробей.

Разложение правильной дроби на элементарные определяется следующей теоремой, которую рассмотрим без доказательства.

Теорема . Если дробь - правильная и , (где трехчлен не имеет действительных корней), то справедливо тождество:

(I)

Отметим, что каждому действительному корню, например а, кратности « » многочлена в этом разложении соответствует сумма элементарных дробей вида (1), а каждой паре комплексно сопряженных корней и (таких, что ) кратности « » - сумма элементарных дробей вида (2).

Чтобы осуществлять разложение (I), нужно научиться определять коэффициенты .

Существуют различные способы их нахождения. Мы рассмотрим метод неопределенных коэффициентов и метод частных значений.

Рассмотрим функции $u=u(x)$ и $v=v(x)$, которые имеют непрерывные производные . Согласно свойствам дифференциалов, имеет место следующее равенство:

$d(u v)=u d v+v d u$

Проинтегрировав левую и правую части последнего равенства, получим:

$\int d(u v)=\int(u d v+v d u) \Rightarrow u v=\int u d v+\int v d u$

Полученное равенство перепишем в виде:

$\int u d v=u v-\int v d u$

Эта формула называется формулой интегрирования по частям . С ее помощью интеграл $\int u d v$ можно свести к нахождению интеграла $\int v d u$, который может быть более простым.

Замечание

В некоторых случаях формулу интегрирования частями нужно применять неоднократно.

Формулу интегрирования по частям целесообразно применять к интегралам следующего вида:

1) $\int P_{n}(x) e^{k x} d x$ ; $\int P_{n}(x) \sin (k x) d x$ ; $\int P_{n}(x) \cos (k x) d x$

Здесь $P_{n}(x)$ - многочлен степени $n$, $k$ - некоторая константа. В данном случае в качестве функции $u$ берется многочлен, а в качестве $d v$ - оставшиеся сомножители. Для интегралов такого типа формула интегрирования по частям применяется $n$ раз.

Примеры решения интегралов данным методом

Пример

Задание. Найти интеграл $\int(x+1) e^{2 x} d x$

Решение.

$=\frac{(x+1) e^{2 x}}{2}-\frac{1}{2} \int e^{2 x} d x=\frac{(x+1) e^{2 x}}{2}-\frac{1}{2} \cdot \frac{1}{2} e^{2 x}+C=$

$=\frac{(x+1) e^{2 x}}{2}-\frac{e^{2 x}}{4}+C$

Ответ. $\int(x+1) e^{2 x} d x=\frac{(x+1) e^{2 x}}{2}-\frac{e^{2 x}}{4}+C$

Пример

Задание. Найти интеграл $\int x^{2} \cos x d x$

Решение.

$=x^{2} \sin x-2\left(x \cdot(-\cos) x-\int(-\cos x) d x\right)=$

$=x^{2} \sin x+2 x \cos x-2 \int \cos x d x=$

$=x^{2} \sin x+2 x \cos x-2 \sin x+C=\left(x^{2}-1\right) \sin x+2 x \cos x+C$

Ответ. $\int x^{2} \cos x d x=\left(x^{2}-1\right) \sin x+2 x \cos x+C$

2) $\int P_{n}(x) \arcsin x d x$ ; $\int P_{n}(x) \arccos x d x$ ; $\int P_{n}(x) \ln x d x$

Здесь принимают, что $d v=P_{n}(x) d x$, а в качестве $u$ оставшиеся сомножители.

Пример

Задание. Найти интеграл $\int \ln x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям.

$=x \ln x-\int d x=x \ln x-x+C=x(\ln x-1)+C$

Ответ. $\int \ln x d x=x(\ln x-1)+C$

Пример

Задание. Найти интеграл $\int \arcsin x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям. Для решения данного интеграла эту операцию надо повторить 2 раза.

$=x \arcsin x-\int \frac{-t d t}{\sqrt{t^{2}}}=x \arcsin x+\int \frac{t d t}{t}=x \arcsin x+\int d t=$

$=x \arcsin x+t+C=x \arcsin x+\sqrt{1-x^{2}}+C$

Ответ. $\int \arcsin x d x=x \arcsin x+\sqrt{1-x^{2}}+C$

3) $\int e^{k x+b} \sin (c x+f) d x$ ; $\int e^{k x+b} \cos (c x+f) d x$

В данном случае в качество $u$ берется либо экспонента, либо тригонометрическая функция . Единственным условием есть то, что при дальнейшем применении формулы интегрирования по частям в качестве функции $u$ берется та же функция, то есть либо экспонента, либо тригонометрическая функция соответственно.

Пример

Задание. Найти интеграл $\int e^{2 x+1} \sin x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям.

$=-e^{2 x+1} \cos x-\int(-\cos x) \cdot \frac{e^{2 x+1}}{2} d x=$

Сравнение с одним неизвестным x имеет вид

Где . Еслиa n не делится на m , то и называется степенью сравнения.

Решением сравнения называется всякое целое число x 0 , для которого

Если х 0 удовлетворяет сравнению, то, согласно свойству 9 сравнений, этому сравнению будут удовлетворять все целые числа, сравнимые с x 0 по модулю m . Поэтому все решения сравнения, принадлежащие одному классу вычетов по модулю т , будем рассматривать как одно решение. Таким образом, сравнение имеет столько решений, сколько элементов полной системы вычетов ему удовлетворяет.

Сравнения, множества решений которых совпадают, называются равносильными.

2.2.1 Сравнения первой степени

Сравнение первой степени с одним неизвестным х имеет вид

(2.2)

Теорема2.4. Для того чтобы сравнение имело хотя бы одно решение, необходимо и достаточно, чтобы число b делилось на НОД(a , m ).

Доказательство. Сначала докажем необходимость. Пусть d = НОД(a , m ) и х 0 - решение сравнения. Тогда, то есть разностьах 0 b делится на т. Значит, существует такое целое число q , что ах 0 b = qm . Отсюда b = ах 0 qm . А поскольку d , как общий делитель, делит числа а и т, то уменьшаемое и вычитаемое делятся на d , а значит и b делится на d .

Теперь докажем достаточность. Пусть d - наибольший общий делитель чисел а и т, и b делится на d . Тогда по определению делимости существуют такие целые числа a 1 , b 1 1 , что.

Расширенным алгоритмом Евклида найдем линейное представление числа 1 = НОД(a 1 , m 1 ):

для некоторых x 0 , y 0 . Домножим обе части последнего равенства на b 1 d :

или, что то же самое,

,

то есть , и- решение сравнения. □

Пример2.10. Сравнение 9х = 6 (mod 12) имеет решение, так как НОД(9, 12) = 3 и 6 делится на 3. □

Пример2.11. Сравнение = 9 (mod 12) не имеет решений, так как НОД(6, 12) = 6, а 9 не делится на 6. □

Теорема 2.5. Пусть сравнение (2.2) разрешимо и d = НОД(a , m ). Тогда множество решений сравнения (2.2) состоит из d классов вычетов по модулю т, а именно, если х 0 - одно из решений, то все другие решения - это

Доказательство. Пусть х 0 - решение сравнения (2.2), то есть и, . Значит, существует такое q , что ах 0 b = qm . Подставляя теперь в последнее равенство вместо х 0 произвольное решение вида, где, получаем выражение

, делящееся на m . □

Пример 2.12. Сравнение 9х =6 (mod 12) имеет ровно три решения, так как НОД(9, 12)=3. Эти решения: х 0 = 2, х 0 + 4 = 6, х 0 + 2∙4=10.□

Пример2.13. Сравнение 11х =2 (mod 15) имеет единственное решение х 0 = 7,таккакНОД(11,15)=1.□

Покажем, как решать сравнение первой степени. Не умаляя общности, будем считать, что НОД(a , т) = 1. Тогда решение сравнения (2.2) можно искать, например, по алгоритму Евклида. Действительно, используя расширенный алгоритм Евклида, представим число 1 в виде линейной комбинации чисел a и т :

Умножим обе части этого равенства на b , получим: b = abq + mrb , откуда abq - b = - mrb , то есть a ∙ (bq ) = b (mod m ) и bq - решение срав­нения (2.2).

Еще один путь решения - использовать теорему Эйлера. Опять считаем, что НОД(а, т) = 1. Применяем теорему Эйлера: . Умножим обе части сравнения наb : . Переписывая последнее выражение в виде , получаем, что- решение сравнения (2.2).

Пусть теперь НОД(a , m ) = d >1. Тогда a = a t d , m = m t d , где НОД(а 1 , m 1) = 1. Кроме того, необходимо b = b 1 d , для того чтобы сравнение было разрешимо. Если х 0 - решение сравнения а 1 x = b 1 (mod m 1), причем единственное, поскольку НОД(а 1 , m 1) = 1, то х 0 будет решением и сравнения а 1 xd = db 1 (mod m 1), то есть исходного сравнения (2.2). Остальные d - 1 решений находим по теореме 2.5.