Масса ядра дефект массы ядерные силы. Дефект массы ядра. Возникновение дефекта массы, энергии связи, ядерных сил. Солненые нейтрино

Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить большую работу, т. е. сообщить ядру значительную энергию.

Энергия связи атомного ядра Е св характеризует интенсивность взаимодействия нуклонов в ядре и равна той максимальной энергии, которую необходимо затратить, чтобы разделить ядро на отдельные невзаимодействующие нуклоны без сообщения им кинетической энергии. У каждого ядра своя энергия связи. Чем больше эта энергия, тем более устойчиво атомное ядро. Точные измерения масс ядра показывают, что масса покоя ядра m я всегда меньше суммы масс покоя, составляющих его протонов и нейтронов. Эту разность масс называют дефектом массы:

Именно эта часть массы Дт теряется при выделении энергии связи. Применяя закон взаимосвязи массы и энергии, получим:

где m н - масса атома водорода.

Такая замена удобна для проведения расчетов, и расчетная ошибка, возникающая при этом, незначительна. Если в формулу энергии связи подставить Дт в а.е.м. то для Е св можно записать:

Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

Удельная энергия связи Е уд - энергия связи ядра, приходящаяся на 1 нуклон:

На рис. 116 приведен сглаженный график экспериментально установленной зависимости Е уд от А.

Кривая на рисунке имеет слабо выраженный максимум. Наибольшую удельную энергию связи имеют элементы с массовыми числами от 50 до 60 (железо и близкие к нему элементы). Ядра этих элементов наиболее устойчивы.

Из графика видно, что реакция деления тяжелых ядер на ядра элементов средней части таблицы Д. Менделеева, а также реакции синтеза легких ядер (водород, гелий) в более тяжелые - энергетически выгодные реакции, так как они сопровождаются образованием более устойчивых ядер (с большими Е уд) и, следовательно, протекают с выделением энергии (Е > 0).

Ядерные силы. Модели ядра.

ЯДЕРНЫЕ СИЛЫ- силы взаимодействия между нуклонами; обеспечивают большую величину энергии связи ядер по сравнению с др. системами. Я. с. являются наиб. важным и распространённым примером сильного взаимодействия (СВ). Когда-то эти понятия были синонимами и сам термин "сильное взаимодействие" был введён для подчёркивания огромной величины Я. с. по сравнению с др. известными в природе силами: эл.-магн., слабыми, гравитационными. После открытия p-, r- идр. мезонов, гиперо-нов и др. адронов термин "сильное взаимодействие" стали применять в более широком смысле - как взаимодействие адронов. В 1970-х гг. квантовая хромодинамика (КХД) утвердилась как общепризнанная микроскопич. теория СВ. Согласно этой теории, адроны являются составными частицами, состоящими из кварков и глюонов, а под СВ стали понимать взаимодействие этих фундам. частиц.



Капельная модель ядра - одна из самых ранних моделей строения атомного ядра, предложенная Нильсом Бором в 1936 году в рамках теории составного ядра , развитая Яковом Френкелем и, в дальнейшем, Джоном Уилером, на основании которой Карлом Вайцзеккером была впервые получена полуэмпирическая формула для энергии связи ядра атома, названная в его честь формулой Вайцзеккера .

Согласно этой теории, атомное ядро можно представить в виде сферической равномерно заряженной капли из особой ядерной материи, которая обладает некоторыми свойствами, например несжимаемостью, насыщением ядерных сил, «испарением» нуклонов (нейтронов и протонов), напоминает жидкость. В связи с чем на такое ядро-каплю можно распространить некоторые другие свойства капли жидкости, например поверхностное натяжение, дробление капли на более мелкие (деление ядер), слияние мелких капель в одну большую (синтез ядер). Учитывая эти общие для жидкости и ядерной материи свойства, а также специфические свойства последней, вытекающие из принципа Паули и наличия электрического заряда, можно получить полуэмпирическую формулу Вайцзеккера, позволяющую вычислить энергию связи ядра, а значит и его массу, если известен его нуклонный состав (общее число нуклонов (массовое число) и количество протонов в ядре).

Как уже отмечалось (см § 138), нуклоны прочно связаны в ядре атома ядерными силами. Для разрыва этой связи, т. е. для полного разобщения нуклонов, необходимо затратить некоторое количество энергии (совершить некоторую работу).

Энергия, необходимая для разобщения нуклонов, составляющих ядро, называется энергией связи ядра, Величину энергии связи можно определить на основе закона сохранения энергии (см. § 18) и закона пропорциональности массы и энергии (см. § 20).

Согласно закону сохранения энергии, энергия нуклонов, связанных в ядре, должна быть меньше энергии разобщенных нуклонов на величину энергии связи ядра 8. С другой стороны, согласно закону пропорциональности массы и энергии, изменение энергии системы сопровождается пропорциональным изменением массы системы

где с - скорость света в вакууме. Так как в рассматриваемом случае и есть энергия связи ядра то масса атомного ядра должна быть меньше суммы масс нуклонов, составляющих ядро, на величину которая называется дефектом массы ядра. По формуле (10) можно рассчитать энергию связи ядра если известен дефект массы этого ядра

В настоящее время массы атомных ядер определены с высокой степенью точности посредством масс-спектрографа (см. § 102); массы нуклонов также известны (см. § 138). Это дает возможность определять дефект массы любого ядра и рассчитывать по формуле (10) энергию связи ядра.

В качестве примера рассчитаем энергию связи ядра атома гелия. Оно состоит из двух протонов и двух нейтронов. Масса протона масса нейтрона Следовательно, масса нуклонов, образующих ядро, равна Масса же ядра атома гелия Таким образом, дефект атомного ядра гелия равен

Тогда энергия связи ядра гелия равна

Общая формула для расчета энергии связи любого ядра в джоулях по его дефекту массы будет, очевидно, иметь вид

где атомный номер, А - массовое число. Выражая массу нуклонов и ядра в атомных единицах массы и учитывая, что

можно написать формулу энергии связи ядра в мегаэлектронвольтах:

Энергия связи ядра, приходящаяся на один нуклон, называется удельной энергией связи Следовательно,

У ядра гелия

Удельная энергия связи характеризует устойчивость (прочность) атомных ядер: чем больше в, тем устойчивее ядро. Согласно формулам (11) и (12),

Еще раз подчеркнем, что в формулах и (13) массы нуклонов и ядра выражены в атомных единицах массы (см. § 138).

По формуле (13) можно рассчитывать удельную энергию связи любых ядер. Результаты этих расчетов представлены графически на рис. 386; по оси ординат отложены удельные энергии связи в по оси абсцисс - массовые числа А. Из графика следует, что удельная энергия связи максимальна (8,65 МэВ) у ядер с массовыми числами порядка 100; у тяжелых и у легких ядер она несколько меньше (например, урана, гелия). У атомного ядра водорода удельная энергия связи равна нулю, что вполне понятно, поскольку в этом ядре нечего разобщать: оно состоит только из одного нуклона (протона).

Всякая ядерная реакция сопровождается выделением или же поглощением энергии. График зависимости вот А позволяет определить, при каких превращениях ядра происходит выделение энергии и при каких - ее поглощение. При делении тяжелого ядра на ядра с массовыми числами А порядка 100 (и более) происходит выделение энергии (ядерной энергии). Поясним это следующим рассуждением. Пусть, например, произошло разделение ядра урана на два

атомных ядра («осколка») с массовыми числами Удельная энергия связи ядра урана удельная энергия связи каждого из новых ядер Для разобщения всех нуклонов, составляющих атомное ядро урана, необходимо затратить энергию, равную энергии связи ядра урана:

При объединении этих нуклонов в два новых атомных ядра с массовыми числами 119) выделится энергия, равная сумме энергий связи новых ядер:

Следовательно, в результате реакции деления ядра урана выделится ядерная энергия в количестве равном разности между энергией связи новых ядер и энергией связи ядра урана:

Выделение ядерной энергии происходит и при ядерных реакциях иного типа - при объединении (синтезе) нескольких легких ядер в одно ядро. В самом деле, пусть, например, имеет место синтез двух ядер натрия в ядро с массовым числом Удельная энергия связи ядра натрия удельная энергия связи синтезированного ядра Для разобщения всех нуклонов, образующих два ядра натрия, необходимо затратить энергию, равную удвоенной энергии связи ядра натрия:

При объединении этих нуклонов в новое ядро (с массовым числом 46) выделится энергия, равная энергии связи нового ядра:

Следовательно, реакция синтеза ядер натрия сопровождается выделением ядерной энергии в количестве равном разности энергии связи синтезированного ядра и энергии связи ядер натрия:

Таким образом, мы приходим к выводу, что

выделение ядерной энергии происходит как при реакциях деления тяжелых ядер, так и при реакциях синтеза легких ядер. Количество ядерной энергии выделяемое каждым прореагировавшим ядром, равно разности между энергией связи 8 2 продукта реакции и энергией связи 81 исходного ядерного материала:

Это положение является исключительно важным, поскольку на нем основаны промышленные способы получения ядерной энергии.

Отметим, что наиболее выгодной, в отношении энергетического выхода, является реакция синтеза ядер водорода или дейтерия

Поскольку, как это следует из графика (см. рис. 386), в данном случае разность энергий связи синтезируемого ядра и исходных ядер будет наибольшей.

Для того чтобы разбить ядро на отдельные, не взаимодействующие между собой (свободные) нуклоны, необходимо произвести работу по преодолению ядерных сил, т. е. сообщить ядру определённую энергию. Наоборот, при соединении свободных нуклонов в ядро выделяется такая же энергия (по закону сохранения энергии).

  • Минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны, называется энергией связи ядра

Каким же образом можно определить величину энергии связи ядра?

Наиболее простой путь нахождения этой энергии основан на применении закона о взаимосвязи массы и энергии, открытого немецким учёным Альбертом Эйнштейном в 1905 г.

Альберт Эйнштейн (1879-1955)
Немецкий физик-теоретик, один из создателей современной физики. Открыл закон взаимосвязи массы и энергии, создал специальную и общую теории относительности

Согласно этому закону между массой m системы частиц и энергией покоя, т. е. внутренней энергией Е 0 этой системы, существует прямая пропорциональная зависимость:

где с - скорость света в вакууме.

Если энергия покоя системы частиц в результате каких-либо процессов изменится на величину ΔЕ 0 1 , то это повлечёт за собой соответствующее изменение массы этой системы на величину Δm, причём связь между этими величинами выразится равенством:

ΔЕ 0 = Δmс 2 .

Таким образом, при слиянии свободных нуклонов в ядро в результате выделения энергии (которая уносится излучаемыми при этом фотонами) должна уменьшиться и масса нуклонов. Другими словами, масса ядра всегда меньше суммы масс нуклонов, из которых оно состоит.

Недостаток массы ядра Δm по сравнению с суммарной массой составляющих его нуклонов можно записать так:

Δm = (Zm p + Nm n) - М я,

где М я - масса ядра, Z и N - число протонов и нейтронов в ядре, а m p и m n - массы свободных протона и нейтрона.

Величина Δm называется дефектом массы. Наличие дефекта массы подтверждается многочисленными опытами.

Рассчитаем, например, энергию связи ΔЕ 0 ядра атома дейтерия (тяжёлого водорода), состоящего из одного протона и одного нейтрона. Другими словами, рассчитаем энергию, необходимую для расщепления ядра на протон и нейтрон.

Для этого определим сначала дефект массы Δm этого ядра, взяв приближённые значения масс нуклонов и массы ядра атома дейтерия из соответствующих таблиц. Согласно табличным данным, масса протона приблизительно равна 1,0073 а. е. м., масса нейтрона - 1,0087 а. е. м., масса ядра дейтерия - 2,0141 а. е. м. Значит, Δm = (1,0073 а. е. м. + 1,0087 а. е. м.) - 2,0141 а. е. м. = 0,0019 а. е. м.

Чтобы энергию связи получить в джоулях, дефект массы нужно выразить в килограммах.

Учитывая, что 1 а. е. м. = 1,6605 10 -27 кг, получим:

Δm = 1,6605 10 -27 кг 0,0019 = 0,0032 10 -27 кг.

Подставив это значение дефекта массы в формулу энергии связи, получим:

Энергию, выделяющуюся или поглощающуюся в процессе любых ядерных реакций, можно рассчитать, если известны массы взаимодействующих и образующихся в результате этого взаимодействия ядер и частиц.

Вопросы

  1. Что называется энергией связи ядра?
  2. Запишите формулу для определения дефекта массы любого ядра.
  3. Запишите формулу для расчёта энергии связи ядра.

1 Греческой буквой Δ («дельта») принято обозначать изменение той физической величины, перед символом которой эта буква ставится.

Нуклоны внутри ядра удерживаются ядерными силами. Их удерживает определенная энергия. Измерить эту энергию напрямую довольно сложно, однако можно сделать это косвенно. Логично предположить, что энергия, требующаяся для разрыва связи нуклонов в ядре, будет равна либо больше той энергии, которая удерживает нуклоны вместе.

Энергия связи и энергия ядра

Эту приложенную энергию уже легче измерить. Понятно, что эта величина будет очень точно отражать величину энергии, удерживающей нуклоны внутри ядра. Поэтому минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны, называется энергией связи ядра .

Связь массы и энергии

Мы знаем, что любая энергия связана с массой тела прямо пропорционально. Поэтому естественно, что и энергия связи ядра будет зависеть от массы частиц, составляющих это ядро. Эту зависимость установил Альберт Эйнштейн в 1905 году. Она носит название закона о взаимосвязи массы и энергии. В соответствии с этим законом внутренняя энергия системы частиц или энергия покоя связана прямо пропорционально с массой частиц, составляющих эту систему:

где E – энергия, m – масса,
c – скорость света в вакууме.

Эффект дефекта масс

Теперь предположим, что мы разбили ядро атома на составляющие его нуклоны или же забрали некоторое количество нуклонов из ядра. На преодоление ядерных сил мы затратили некоторую энергию, так как совершали работу. В случае же обратного процесса – синтеза ядра, либо же добавления нуклонов к уже существующему ядру, энергия, по закону сохранения , наоборот, выделится. При изменении энергии покоя системы частиц вследствие каких-либо процессов, соответственно, изменяется их масса. Формулы в данном случае будут следующими:

∆m=(∆E_0)/c^2 или ∆E_0=∆mc^2,

где ∆E_0 – изменение энергии покоя системы частиц,
∆m – изменение массы частиц.

Например, в случае слияния нуклонов и образования ядра у нас происходит выделение энергии и уменьшение общей массы нуклонов. Масса и энергия уносятся выделяющимися фотонами. В этом заключается эффект дефекта масс . Масса ядра всегда меньше суммы масс нуклонов, составляющих это ядро. Численно дефект масс выражается следующим образом:

∆m=(Zm_p+Nm_n)-M_я,

где M_я – масса ядра,
Z – число протонов в ядре,
N – число нейтронов в ядре,
m_p – масса свободного протона,
m_n – масса свободного нейтрона.

Величина ∆m в двух приведенных выше формулах – это величина, на которую меняется суммарная масса частиц ядра при изменении его энергии вследствие разрыва или синтеза. В случае синтеза эта величина будет являться дефектом масс.