Какова примерно скорость распространения звука в воздухе. Скорость звука. Скорость распространения звука в воздухе. Определение скорости звука в твердом теле

Заболеваний, которые сигнализируют о своем развитии болью в ушах, существует достаточно много. Чтобы определить, какая конкретно болезнь поразила орган слуха, нужно понимать, как устроено ухо человека.

Схема слухового органа

Прежде всего, давайте разберемся, что такое ухо. Это слуховестибулярный парный орган, выполняющий всего 2 функции: восприятие звуковых импульсов и ответственность за позицию человеческого тела в пространстве, а также за удерживание равновесия. Если изнутри посмотреть на ухо человека, строение его предполагает наличие 3 частей:

  • наружного (внешнего);
  • среднего;
  • внутреннего.

Каждая из них обладает собственным не менее замысловатым устройством. Соединяясь, они являют собой длинную трубу, проникающую в глубину головы. Рассмотрим строение и функции уха более подробно (лучше всего их демонстрирует схема уха человека).

Что представляет собой наружное ухо

Строение уха человека (внешней его части) представлено 2 компонентами:

  • раковиной ушной;
  • внешним ушным проходом.

Раковина являет собой упругий хрящ, который целиком покрывает кожа. Он имеет сложную форму. В нижнем его сегменте находится мочка – это маленькая кожная складка, заполненная внутри жировой прослойкой. Кстати, именно внешняя часть обладает самой высокой чувствительностью к разного рода травмам. Например, у бойцов на ринге она зачастую имеет очень далекую от первозданной форму.

Ушная раковина служит своеобразным приемником для волн звука, которые, попадая в нее, проникают вглубь органа слуха. Так как она обладает складчатой структурой, звук поступает в проход с незначительными искажениями. Степень погрешности зависит, в частности, от места, откуда исходит звук. Его локация бывает горизонтальной или же вертикальной.

Получается, что в мозг попадают более точные информационные данные о том, где расположен источник звука. Итак, можно утверждать, что главная функция раковины состоит в том, чтобы ловить звуки, которые должны поступать в человеческое ухо.

Если заглянуть немного глубже, можно увидеть, что раковину продлевает хрящ внешнего ушного прохода. Его протяженность составляет 25-30 мм. Далее зона хряща сменяется костной. Внешнее ухо полностью выстилает кожный покров, в котором содержатся железы 2 типов:

  • серная;
  • сальная.

Внешнее ухо, устройство которого мы уже описали, отделяется от средней части органа слуха посредством мембраны (ее также называют барабанной перепонкой).

Как устроено среднее ухо

Если рассматривать среднее ухо, анатомия его заключается в:

  • полости барабанной;
  • трубе евстахиевой;
  • отростке сосцевидном.

Все они взаимосвязаны. Барабанная полость являет собой очерченное мембраной и областью внутреннего уха пространство. Место его расположения – височная кость. Строение уха здесь выглядит таким образом: в передней части наблюдается объединение полости барабанной с носоглоткой (функцию соединителя выполняет труба евстахиева), а в задней ее части – с отростком сосцевидным посредством входа в его полость. В барабанной полости присутствует воздух, который по евстахиевой трубе попадает туда.

Анатомия уха человека (ребенка) до 3 лет имеет существенное отличие от того, как устроено ухо взрослого. У малышей нет костного прохода, да и не вырос еще отросток сосцевидный. Детское среднее ухо представлено только одним костным кольцом. Его внутренний край имеет форму желобка. В нем как раз и размещается барабанная мембрана. В верхних зонах среднего уха (там, где нет этого кольца) мембрана соединяется с нижним краем чешуи кости височной.

Когда малыш достигает 3-летнего возраста, формирование его ушного прохода завершается – структура уха становится такой же, как и у взрослых.

Анатомические особенности внутреннего отдела

Внутреннее ухо – самый непростой его отдел. Анатомия в этой части очень сложная, поэтому ей дали второе название – «перепончатый лабиринт уха». Размещается он в каменистой зоне височной кости. К среднему уху присовокупляется окошками – круглым и овальным. Состоит из:

  • преддверия;
  • улитки с кортиевым органом;
  • каналов полукружных (наполнены жидкостью).

Помимо этого, внутреннее ухо, строение которого предусматривает наличие вестибулярной системы (аппарата), несет ответственность за постоянное удерживание человеком тела в состоянии равновесия, а также за возможность ускорения в пространстве. Колебания, возникающие в овальном окошке, передаются той жидкости, которая наполняет полукружные каналы. Последняя служит раздражителем для рецепторов, располагающихся в улитке, а это уже становится причиной запуска нервных импульсов.

Нужно отметить, что вестибулярный аппарат располагает рецепторами в виде волосков (стереоцилий и киноцилий), которые находятся на специальных возвышениях – макулах. Располагаются эти волоски одни напротив других. Смещаясь, стереоцилии провоцируют возникновение возбуждения, а киноцилии помогают торможению.

Подведем итоги

Для того чтобы более точно представить себе строение уха человека, схема органа слуха должна быть перед глазами. На ней, как правило, изображено детальное устройство уха человека.

Очевидно, что ухо человека является довольно сложной системой, состоящей из множества различных образований, причем каждое из них выполняет ряд важнейших и действительно незаменимых функций. Схема уха демонстрирует это наглядно.

Касательно устройства внешней части уха, следует отметить, что каждый человек имеет индивидуальные, обусловленные генетикой, особенности, которые никоим образом не сказываются на главной функции органа слуха.

Уши нуждаются в регулярном гигиеническом уходе. Если пренебрегать этой необходимостью, можно частично или полностью утратить слух. Также недостаток гигиены способен привести к развитию заболеваний, затрагивающих все части уха.

Выполняет функцию, которая имеет большое значение для полноценной жизнедеятельности человека. Поэтому есть смысл изучить его строение более детально.

Анатомия ушей

Анатомическое строение ушей, а также их составных частей оказывает значительное влияние на качество слуха. От полноценной работы этой функции напрямую зависит речь человека. Поэтому чем здоровее ухо, тем легче человеку осуществлять процесс жизнедеятельности. Именно эти особенности и обуславливают тот факт, что правильная анатомия уха имеет большое значение.

Изначально рассматривать строение органа слуха стоит начать с ушной раковины, которая первая бросается в глаза тем, кто не искушен в теме анатомии человека. Расположена она между сосцевидным отростком с задней стороны и височным нижнечелюстным суставом спереди. Именно благодаря ушной раковине восприятие звуков человеком является оптимальным. К тому же именно эта часть уха имеет немаловажное косметическое значение.

В качестве основы ушной раковины можно определить пластинку хряща, толщина которого не превышает 1 мм. С обеих сторон она покрыта кожей и надхрящницей. Анатомия уха также указывает и на тот факт, что единственной частью раковины, лишенной хрящевого остова, является мочка. Она состоит из покрытой кожей жировой клетчатки. Ушная раковина имеет выпуклую внутреннюю часть и вогнутую наружную, кожа которой плотно сращена с надхрящницей. Говоря о внутренней части раковины, стоит отметить, что в этой области соединительная ткань развита значительно заметней.

Стоит отметить и тот факт, что две трети длины наружного слухового прохода занимает перепончато-хрящевой отдел. Что касается костного отдела, то ему достается лишь третья часть. В качестве основы перепончато-хрящевого отдела выступает продолжение хряща ушной раковины, который имеет вид открытого сзади желоба. Его хрящевой остов прерывают идущие вертикально санториниевые щели. Они закрываются фиброзной тканью. Граница слухового прохода и находится именно в том месте, где расположены данные щели. Именно этот факт объясняет возможность развития заболевания, появившегося в наружном ухе, в области околоушной железы. Стоит понимать, что данное заболевание может распространяться и в обратном порядке.

Тем, для кого актуальна информация в рамках темы «анатомия ушей», стоит обратить внимание и на тот факт, что перепончато-хрящевой отдел соединяется с костной частью наружного слухового прохода посредством фиброзной ткани. Наиболее узкую часть можно обнаружить в средине данного отдела. Называется она перешейком.

В пределах перепончато-хрящевого отдела кожа содержит серные и сальные железы, а также волосы. Именно из секрета этих желез, равно как и чешуек эпидермиса, который был отторгнут, образуется ушная сера.

Стенки наружного слухового прохода

Анатомия ушей включает информацию и о различных стенках, которые расположены в наружном проходе:

  • Верхняя костная стенка. Если в этой части черепа происходит перелом, то его следствием может быть ликворея и кровотечение из слухового прохода.
  • Передняя стенка. Она находится на границе с височно-челюстным суставом. Передача движений самой челюсти идет на перепончато-хрящевую часть наружного прохода. Резкие болезненные ощущения могут сопровождать процесс жевания в том случае, если в области передней стенки присутствуют воспалительные процессы.

  • Анатомия уха человека касается изучения и задней стенки наружного слухового прохода, которая отделяет последний от сосцевидных ячеек. В основании именно этой стенки проходит лицевой нерв.
  • Нижняя стенка. Эта часть наружного прохода отграничивает его от слюнной околоушной железы. По сравнению с верхней она длиннее на 4-5 мм.

Иннервация и кровоснабжение органов слуха

На эти функции необходимо обратить внимание в обязательном порядке тем, кто изучает строение уха человека. Анатомия органа слуха включает подробную информацию о его иннервации, которая осуществляется посредством тройничного нерва, ушной ветви блуждающего нерва, а также При этом именно задний ушной нерв обеспечивает снабжение нервами рудиментарных мышц ушной раковины, хотя их функциональную роль можно определить, как достаточно низкую.

Касаясь темы кровоснабжения стоит отметить, что подача крови обеспечивается из системы наружной сонной артерии.

Снабжение кровью непосредственно самой ушной раковины производится при помощи поверхностной височной и задней ушной артерии. Именно эта группа сосудов совместно с ветвью верхнечелюстной и задней ушной артерии обеспечивают кровоток в глубоких отделах уха и барабанной перепонки в частности.

Хрящ получает питание от сосудов, расположенных в надхрящнице.

В рамках такой темы, как «Анатомия и физиология уха», стоит рассмотреть процесс венозного оттока в этой части тела и движение лимфы. Венозная кровь уходит из уха по задней ушной и задненижней-челюстной вене.

Что касается лимфы, то ее отток из наружного уха осуществляется посредством узлов, которые находятся в сосцевидном отростке спереди от козелка, а также под нижней стенкой слухового наружного прохода.

Барабанная перепонка

Эта часть органа слуха выполняет функцию разделения наружного и среднего уха. По сути, речь идет о полупрозрачной фиброзной пластинке, которая достаточно прочна и напоминает форму овала.

Без этой пластинки не сможет полноценно функционировать ухо. Анатомия строение барабанной перепонки раскрывает достаточно детально: её размер равен приблизительно 10 мм, ширина ее при этом составляет 8-9 мм. Интересным является тот факт, что у детей эта часть органа слуха почти такая же, как и у взрослых. Единственное отличие сводится к ее форме - в раннем возрасте она округлая и ощутимо толще. Если взять за ориентир ось наружного слухового прохода, то по отношению к ней барабанная перепонка расположена косо, под острым углом (приблизительно 30°).

Стоит отметить, что данная пластина находится в желобке волокнисто-хрящевого барабанного кольца. Под воздействием звуковых волн барабанная перепонка начинает дрожать и передает колебания в среднее ухо.

Барабанная полость

Клиническая анатомия среднего уха включает информацию о его строении и функциях. К этой части органа слуха относится равно как и слуховая трубка с системой воздухоносных ячеек. Сама полость - это щелевидное пространство, в котором можно различить 6 стенок.

Более того, в среднем ухе находится три ушные косточки - наковаленка, молоточек и стремечко. Соединяются они при помощи маленьких суставчиков. При этом молоточек находится в непосредственной близости к барабанной перепонке. Именно он отвечает за восприятие звуковых волн, переданных перепонкой, под воздействием которых молоточек начинает дрожать. Впоследствии вибрация передается наковаленке и стремечку, а далее на нее реагирует внутреннее ухо. Такова анатомия ушей человека в средней их части.

Как устроено внутреннее ухо

Эта часть органа слуха находится в области височной кости и внешне напоминает лабиринт. В данной части полученные звуковые колебания превращаются в электрические импульсы, которые направляются в головной мозг. Лишь после полного завершения этого процесса человек способен реагировать на звук.

Важно обратить внимание и на тот факт, что во внутреннем ухе человека содержатся полукружные каналы. Это актуальная информация для тех, кто изучает строение уха человека. Анатомия этой части органа слуха имеет вид трех трубок, которые изогнуты в форме дуги. Они располагаются в трех плоскостях. По причине патологии данного отдела уха возможны нарушения в работе вестибулярного аппарата.

Анатомия звукообразования

Когда энергия звука попадает во внутреннее ухо, она преобразуется в импульсы. При этом по причине особенностей строения уха звуковая волна распространяется очень быстро. Следствием этого процесса является возникновение способствующего сдвигу покровной пластинки. В результате происходит деформация стереоцилий волосковых клеток, которые, придя в состояние возбуждения, при помощи сенсорных нейронов передают информацию.

Заключение

Нетрудно заметить, что строение уха человека является достаточно сложным. По этой причине важно следить за тем, чтобы орган слуха оставался здоровым и не допускать развитие заболеваний, обнаруженных в данной области. В противном случае можно столкнуться с такой проблемой, как нарушение восприятия звука. Для этого при первых же симптомах, даже если они незначительны, рекомендуется нанести визит к врачу с высокой квалификацией.

Поперечный разрез периферического отдела слуховой системы подразделяется на наружное, среднее и внутреннее ухо.

Наружное ухо

Наружное ухо состоит из двух основных компонентов: ушной раковины и наружного слухового прохода. Оно выполняет различные функции. Прежде всего, длинный (2,5 см) и узкий (5-7 мм) наружный слуховой проход выполняет защитную функцию.

Во-вторых, наружное ухо (ушная раковина и наружный слуховой проход) имеют собственную резонансную частоту. Так, наружный слуховой проход у взрослых имеет резонансную частоту, равную приблизительно 2500 Гц, в то время как ушная раковина - равную 5000 Гц. Это обеспечивает усиление поступающих звуков каждой из этих структур на их резонансной частоте до 10-12 дБ. Усиление или увеличение в уровне звукового давления за счет наружного уха может быть продемонстрировано гипотетически экспериментом.

Используя два миниатюрных микрофона, при расположении одного у ушной раковины, а другого - у барабанной перепонки, можно определить этот эффект. При предъявлении чистых тонов различной частоты интенсивностью, равной 70 дБ УЗД (при измерении микрофоном, расположенным у ушной раковины), на уровне барабанной перепонки будут определены уровни.

Так, на частотах ниже 1400 Гц у барабанной перепонки определяется УЗД, равный 73 дБ. Эта величина лишь на 3 дБ выше уровня, измеряемого у ушной раковины. При повышении частоты эффект усиления значительно увеличивается и достигает максимальной величины, равной 17 дБ, на частоте 2500 Гц. Функция отражает роль наружного уха в качестве резонатора или усилителя высокочастотных звуков.

Расчетные изменения звукового давления, создаваемого источником, расположенным в свободном звуковом поле, в месте измерения: ушная раковина, наружный слуховой проход, барабанная перепонка (результирующая кривая) (по Shaw, 1974)


Резонанс наружного уха был определен при расположении источника звука непосредственно перед исследуемым на уровне глаз. При поднимании источника звука над головой завал на частоте 10 кГц смещается в сторону высоких частот, а пик кривой резонанса расширяется и перекрывает больший частотный диапазон. При этом каждая линия отображает различные утлы смещения источника звука. Таким образом, наружное ухо обеспечивает "кодирование" смещения объекта в вертикальной плоскости, выраженное в амплитуде спектра звука и, особенно, на частотах выше 3000 Гц.


Кроме того, четко продемонстрировано, что частотнозависимое повышение УЗД при измерении в свободном звуковом поле и у барабанной перепонки обусловлено в основном эффектами ушной раковины и наружного слухового прохода.

И, наконец, наружное ухо выполняет также локализационную функцию. Расположение ушной раковины обеспечивает наиболее эффективное восприятие звуков от источников, расположенных перед исследуемым. Ослабление же интенсивности звуков, исходящих от источника, расположенного позади испытуемого, и лежит в основе локализации. И, прежде всего, это относится к звукам высоких частот, имеющих короткие длины волн.

Таким образом, к основным функциям наружного уха относятся:
1. защитная;
2. усиление высокочастотных звуков;
3. определение смещения источника звука в вертикальной плоскости;
4. локализация источника звука.

Среднее ухо

Среднее ухо состоит из барабанной полости, клеток сосцевидного отростка, барабанной перепонки, слуховых косточек, слуховой трубы. У человека барабанная перепонка имеет коническую форму с эллиптическими контурами и площадью около 85 мм2 (лишь 55 мм2 из которых подвержены воздействию звуковой волны). Большая часть барабанной перепонки, pars tensa, состоит из радиальных и циркулярных коллагеновых волокон. При этом центральный фиброзный слой является наиболее важным в структурном отношении.

С помощью метода голографии было установлено, что барабанная перепонка колеблется не как единое целое. Ее колебания неравномерно распределены по ее площади. В частности, между частотами 600 и 1500 Гц имеются два выраженных участка максимального смещения (максимальной амплитуды) колебаний. Функциональное значение неравномерного распределения колебаний по поверхности барабанной перепонки продолжает изучаться.

Амплитуда колебаний барабанной перепонки при максимальной интенсивности звука по данным, полученным голографическим методом, равна 2x105 см, в то время как при пороговой интенсивности стимула она равна 104 см (измерения Дж. Бекеши). Колебательные движения барабанной перепонки достаточно сложны и неоднородны. Так, наибольшая амплитуда колебаний при стимуляции тоном частотой 2 кГц имеет место ниже umbo. При стимуляции низкочастотными звуками точка максимального смещения соответствует задневерхнему отделу барабанной перепонки. Характер колебательных движений усложняется при увеличении частоты и интенсивности звука.

Между барабанной перепонкой и внутренним ухом располагаются три косточки: молоточек, наковальня и стремя. Непосредственно с перепонкой соединяется рукоятка молоточка, в то время как головка его находится в контакте с наковальней. Длинный отросток наковальни, а, именно, его лентикулярный отросток, соединяется с головкой стремени. Стремя, самая маленькая косточка у человека, состоит из головки, двух ножек и подножной пластинки, располагающейся в окне преддверия и фиксирующейся в нем при помощи аннулярной связки.

Таким образом, непосредственная связь барабанной перепонки с внутренним ухом осуществляется через цепь трех слуховых косточек. К среднему уху относятся также две мышцы, располагающиеся в барабанной полости: мышца, натягивающая барабанную перепонку (т.tensor tympani) и имеющая длину до 25 мм, и стременная мышца (т.stapedius), длина которой не превышает 6 мм. Сухожилие стременной мышцы прикрепляется к головке стремени.

Отметим, что акустический стимул, достигнувший барабанной перепонки, может передаваться через среднее ухо к внутреннему уху тремя путями: (1) путем костного звукопроведения через кости черепа непосредственно к внутреннему уху, минуя среднее ухо; (2) через воздушное пространство среднего уха и (3) через цепь слуховых косточек. Как будет продемонстрировано ниже, наиболее эффективным является третий путь звукопроведения. Однако, обязательным условием при этом является уравнивание давления в барабанной полости с атмосферным, что и осуществляется при нормальном функционировании среднего уха через слуховую трубу.

У взрослых слуховая труба направлена книзу, что обеспечивает эвакуацию жидкостей из среднего уха в носоглотку. Таким образом, слуховая труба осуществляет две основные функции: во-первых, через нее выравнивается давление воздуха по обе стороны барабанной перепонки, что является обязательным условием для вибрации барабанной перепонки, и, во-вторых, слуховая труба обеспечивает дренажную функцию.

Выше указывалось, что звуковая энергия передается от барабанной перепонки через цепь слуховых косточек (подножную пластинку стремени) к внутреннему уху. Однако, если предположить, что звук передается непосредственно через воздух к жидкостям внутреннего уха, необходимо напомнить о большей величине сопротивления жидкостей внутреннего уха, по сравнению с воздухом. Каково же значение косточек?

Если представить себе двух людей, пытающихся общаться, когда один находится в воде, а другой на берегу, то следует иметь в виду, что порядка 99,9% звуковой энергии будут потеряны. Это означает, что около 99,9% энергии будут поражены и лишь 0,1% звуковой энергии достигнет жидкой среды. Отмеченная потеря соответствует снижению звуковой энергии приблизительно на 30 дБ. Возможные потери компенсируются средним ухом посредством двух следующих механизмов.

Как было отмечено выше, эффективной в плане передачи звуковой энергии является поверхность барабанной перепонки, площадью в 55 мм2. Площадь же подножной пластинки стремени, находящейся в непосредственном контакте с внутренним ухом, составляет около 3,2 мм2. Давление может быть определено как сила, приложенная к единице площади. И, если сила приложенная к барабанной перепонке, равна силе, достигающей подножной пластинки стремени, то давление у подножной пластинки стремени будет больше звукового давления, измеренного у барабанной перепонки.

Это означает, что различие в площадях барабанной перепонки к подножной пластинки стремени обеспечивает усиление давления, измеренного у подножной пластинки, в 17 раз (55/3,2), что в децибелах соответствует 24,6 дБ. Таким образом, если при непосредственной передаче из воздушной среды в жидкостную теряются около 30 дБ, то благодаря различиям в площадях поверхности барабанной перепонки и подножной пластинки стремени отмеченная потеря компенсируется на 25 дБ.

Передаточная функция среднего уха, демонстрирующая увеличение давления в жидкостях внутреннего уха, по сравнению с давлением на барабанную перепонку, на различных частотах, выраженная в дБ (по von Nedzelnitsky, 1980)


Передача энергии от барабанной перепонки к подножной пластинке стремени зависит от функционирования слуховых косточек. Косточки действуют подобно рычажной системе, что, прежде всего, определяется тем, что длина головки и шейки молоточка больше длины длинного отростка наковальни. Эффект же рычажной системы косточек соответствует 1,3. Дополнительное усиление энергии, поступающей к подножной пластинке стремени, обусловливается конической формой барабанной перепонки, что при ее вибрации сопровождается увеличением усилий, приложенных к молоточку, в 2 раза.

Все изложенное выше свидетельствует о том, что энергия, приложенная к барабанной перепонке, при достижении подножной пластинки стремени усиливается в 17x1,3x2=44,2 раза, что соответствует 33 дБ. Однако, безусловно, усиление, имеющее место между барабанной перепонкой и подножной пластинкой, зависит от частоты стимуляции. Так, следует, что на частоте 2500 Гц увеличение давления соответствует 30 дБ и выше. Выше этой частоты коэффициент усиления уменьшается. Кроме того, следует подчеркнуть, что отмеченные выше резонансный диапазон раковины и наружного слухового прохода обусловливают достоверное усиление в широком частотном диапазоне, что весьма существенно для восприятия звуков, подобных речи.

Неотъемлемой частью рычажной системы среднего уха (цепи слуховых косточек) являются мышцы среднего уха, которые, обычно находятся в состоянии натяжения. Однако при предъявлении звука интенсивностью в 80 дБ по отношению к порогу слуховой чувствительности (ПЧ) происходит рефлекторное сокращение стременной мышцы. При этом звуковая энергия, передаваемая через цепь слуховых косточек, ослабляется. Величина этого ослабления составляет 0,6-0,7 дБ на каждый децибел увеличения интенсивности стимула над порогом акустического рефлекса (около 80 дБ ПЧ).

Ослабление составляет от 10 до 30 дБ для громких звуков и более выражено на частотах ниже 2 кГц, т.е. имеет частотную зависимость. Время рефлекторного сокращения (латентный период рефлекса) колеблется от минимальных значений, равных 10 мс, при предъявлении высокоинтенсивных звуков, до 150 мс - при стимуляции звуками относительно низкой интенсивности.

Другой функцией мышц среднего уха является ограничение искажений (нелинейностей). Это обеспечивается как наличием эластических связок слуховых косточек, так и непосредственным сокращением мышц. С анатомических позиций интересно отметить, что мышцы располагаются в узких костных каналах. Это предотвращает вибрацию мышц при стимуляции. В противном случае имели бы место гармонические искажения, которые передавались бы к внутреннему уху.

Движения слуховых косточек неодинаковы на различных частотах и уровнях интенсивности стимуляции. Благодаря размерам головки молоточка и тела наковальни их масса равномерно распределена вдоль оси, проходящей через две большие связки молоточка и короткого отростка наковальни. На средних уровнях интенсивности цепь слуховых косточек движется таким образом, что подножная пластинка стремени совершает колебания вокруг оси, мысленно проведенной вертикально через заднюю ножку стремени, подобно дверям. Передняя часть подножной пластинки входит и выходит из улитки подобно пистону.

Подобные движения возможны благодаря асимметричной длине аннулярной связки стремени. На очень низких частотах (ниже 150 Гц) и на очень высоких интенсивностях характер вращательных движений резко изменяется. Так новая ось вращения становится перпендикулярной отмеченной выше вертикальной оси.

Движения стремени приобретают качательный характер: оно колеблется подобно детским качелям. Это выражается тем, что когда одна половина подножной пластинки погружается в улитку, другая движется в противоположном направлении. В результате этого гасятся перемещения жидкостей внутреннего уха. На очень высоких уровнях интенсивности стимуляции и частотах, превышающих 150 Гц, подножная пластинка стремени осуществляет одновременно вращения вокруг обеих осей.

Благодаря столь сложным ротационным движениям дальнейшее повышение уровня стимуляции сопровождается лишь незначительными движениями жидкостей внутреннего уха. Именно эти сложные движения стремени и защищают внутреннее ухо от чрезмерной стимуляции. Однако в экспериментах на кошках было продемонстрировано, что стремя совершает пистонообразные движения при стимуляции низкими частотами даже при интенсивности 130 дБ УЗД. При 150 дБ УЗД добавляются вращательные движения. Однако, учитывая то, что мы сегодня имеем дело с тугоухостью, обусловленной воздействием производственного шума, можно заключить, что ухо человека не обладает истинно адекватными защитными механизмами.

При изложении основных свойств акустических сигналов в качестве существенной их характеристики был рассмотрен акустический импеданс. Физические свойства акустического сопротивления или импеданса проявляется в полной мере в функционировании среднего уха. Импеданс или акустическое сопротивление среднего уха складывается из компонентов, обусловленных жидкостями, косточками, мышцами и связками среднего уха. Составными частями его являются резистентность (истинное акустическое сопротивление) и реактивность (или реактивное акустическое сопротивление). Основным резистивным компонентом среднего уха является сопротивление, оказываемое жидкостями внутреннего уха подножной пластинке стремени.

Сопротивление, возникающее при смещении подвижных частей, также следует учитывать, однако величина его значительно меньше. Следует помнить, что резистивный компонент импеданса не зависит от частоты стимуляции, в отличие от реактивного компонента. Реактивность определяется двумя составляющими. Первая - это масса структур среднего уха. Она оказывает влияние, прежде всего на высокие частоты, что выражается в увеличении импеданса, обусловленного реактивностью массы при повышении частоты стимуляции. Вторая составляющая - свойства сокращения и растяжения мышц и связок среднего уха.

Когда мы говорим о том, что пружина легко растягивается, мы имеем в виду, что она податлива. Если же пружина растягивается с трудом, мы говорим о ее жесткости. Эти характеристики вносят наибольший вклад при низких частотах стимуляции (ниже 1 кГц). На средних частотах (1-2 кГц) оба реактивных компонента подавляют друг друга, и в импедансе среднего уха преобладает резистивный компонент.

Одним из способов измерения импеданса среднего уха является использование электроакустического моста. Если система среднего уха достаточно жестка, давление, в полости будет выше, чем при высокой податливости структур (когда звук абсорбируется барабанной перепонкой). Таким образом, звуковое давление, измеренное при помощи микрофона, может быть использовано для изучения свойств среднего уха. Часто импеданс среднего уха, измеренный при помощи электроакустического моста, выражается в единицах податливости. Это объясняется тем, что импеданс, как правило, измеряется на низких частотах (220 Гц), и в большинстве случаев измеряются лишь свойства сокращения и растяжения мышц и связок среднего уха. Итак, чем выше податливость, тем меньше импеданс и тем легче работает система.

При сокращении мышц среднего уха вся система становится менее податливой (т.е. более жесткой). С эволюционных позиций нет ничего странного в том, что при выходе из воды на сушу для нивелирования различий в сопротивлении жидкостей и структур внутреннего уха и воздушных полостей среднего уха эволюция предусмотрела передаточное звено, а именно цепь слуховых косточек. Однако, какими же путями передается звуковая энергия к внутреннему уху при отсутствии слуховых косточек?

Прежде всего, внутреннее ухо стимулируется непосредственно вибрациями воздуха в полости среднего уха. И опять-таки, из-за больших различий в импедансе жидкостей и структур внутреннего уха и воздуха жидкости смещаются лишь незначительно. Кроме того, при непосредственной стимуляции внутреннего уха посредством изменений звукового давления в среднем ухе, имеет место дополнительное ослабление передаваемой энергии за счет того, что одновременно задействуются оба входа к внутреннему уху (окно преддверия и окно улитки), а на некоторых частотах звуковое давление передается также и в фазе.

Учитывая то, что окно улитки и окно преддверия расположены по разные стороны от основной мембраны, положительное давление, приложенное к мембране окна улитки, будет сопровождаться отклонением основной мембраны в одну сторону, а давление, приложенное к подножной пластинке стремени - отклонением основной мембраны в противоположную сторону. При приложении к обоим окнам одновременно одинакового давления основная мембрана не будет перемещаться, что само по себе исключает восприятие звуков.

Снижение слуха, равное 60 дБ, часто определяется у больных, у которых отсутствуют слуховые косточки. Таким образом, следующей функцией среднего уха является обеспечение пути передачи стимула к овальному окну преддверия, что, в свою очередь, обеспечивает смещения мембраны окна улитки, соответствующие колебаниям давления во внутреннем ухе.

Другим путем стимуляции внутреннего уха является костное проведение звука, при котором изменения акустического давления вызывают вибрации костей черепа (прежде всего височной кости), и эти вибрации передаются непосредственно к жидкостям внутреннего уха. Из-за колоссальных различий в импедансе костей и воздуха стимуляция внутреннего уха за счет костного проведения не может рассматриваться как важная составляющая часть нормального слухового восприятия. Однако, если источник вибраций прикладывается непосредственно к черепу, внутренне ухо стимулируется за счет проведения звуков через кости черепа.

Различия в импедансе костей и жидкостей внутреннего уха весьма незначительны, что способствует частичной передаче звука. Измерение слухового восприятия при костном проведении звуков имеет большое практическое значение при патологии среднего уха.

Внутреннее ухо

Прогресс в изучении анатомии внутреннего уха определился развитием методов микроскопии и, в частности, трансмиссионной и сканирующей электронной микроскопии.


Внутреннее ухо млекопитающих состоит из ряда мембранозных мешков и протоков (формирующих мембранозный лабиринт), заключенных в костную капсулу (костный лабиринт), расположенную, в свою очередь, в твердой височной кости. Костный лабиринт подразделяется на три основные части: полукружные каналы, преддверие и улитку. В двух первых образованиях расположена периферическая часть вестибулярного анализатора, в улитке же расположен периферический отдел слухового анализатора.

Улитка у человека имеет 2 3/4 завитка. Самый большой завиток - это основной завиток, самый маленький - верхушечный завиток. К структурам внутреннего уха также относятся овальное окно, в котором расположена подножная пластинка стремени, и круглое окно. Улитка слепо заканчивается в третьем завитке. Центральная ось ее называется модиолюсом.

Поперечный разрез улитки, из которого следует, что улитка подразделена на три отдела: лестницу преддверия, а также барабанную и срединную лестницы. Спиральный канал улитки имеет длину 35 мм и частично разделяется по всему длиннику тонкой костной спиральной пластинкой, отходящей от модиолюса (osseus spiralis lamina). Продолжает ее, основная мембрана (membrana basilaris) соединяющаяся с наружной костной стенкой улитки у спиральной связки, завершая тем самым разделение канала (за исключением небольшого отверстия у верхушки улитки, называемого helicotrema).

Лестница преддверия простирается от овального окна, расположенного в преддверии, до helicotrema. Барабанная лестница простирается от круглого окна и также до helicotrema. Спиральная связка, являясь соединяющим звеном между основной мембраной и костной стенкой улитки, поддерживает в то же время и сосудистую полоску. Большая часть спиральной связки состоит из редких фиброзных соединений, кровеносных сосудов и клеток соединительной ткани (фиброцитов). Зоны же, расположенные вблизи от спиральной связки и спирального выступа, включают больше клеточных структур, а также большие митохондрии. Спиральный выступ отделяется от эндолимфатического пространства слоем эпителиальных клеток.


От костной спиральной пластинки кверху в диагональном направлении отходит тонкая Рейсснерова мембрана, прикрепляемая к наружной стенке улитки несколько выше основной мембраны. Она простирается вдоль всего хтинника улитки и соединяется с основной мембраной у helicotrema. Таким образом, формируется улитковый ход (ductus cochlearis) или, срединная лестница, ограниченный сверху Рейсснеровой мембраной, снизу -основной мембраной, и снаружи - сосудистой полоской.

Сосудистая полоска - это основная сосудистая зона улитки. Она имеет три основных слоя: маргинальный слой темных клеток (хромофилы), средний слой светлых клеток (хромофобы), а также основной слой. В пределах этих слоев проходит сеть артериол. Поверхностный слой полоски формируется исключительно из больших маргинальных клеток, которые содержат множество митохондрий и ядра которых расположены вблизи к эндолимфатической поверхности.

Маргинальные клетки составляют основную часть сосудистой полоски. Они имеют пальцеобразные отростки, обеспечивающие тесную связь с аналогичными отростками клеток срединного слоя. Базальные клетки прикрепляются к спиральной связке имеют плоскую форму и длинные отростки, проникающие в маргинальный и срединный слои. Цитоплазма базальных клеток аналогична цитоплазме фиброцитов спиральной связки.

Кровоснабжение сосудистой полоски осуществляется спиральной модиолярной артерией через сосуды, проходящие через лестницу преддверия к латеральной стенке улитки. Собирающие венулы, расположенные в стенке барабанной лестницы, направляют кровь в спиральную модиолярную вену. Сосудистая полоска осуществляет основной метаболический контроль улитки.

Барабанная лестница и лестница преддверия содержат жидкость, называемую перилимфой, в то время как срединная лестница содержит эндолимфу. Ионный состав эндолимфы соответствует составу, определяемому внутри клетки, и характеризуется высоким содержанием калия и низкой концентрацией натрия. Например, у человека концентрация Na равна 16 мМ; К - 144,2 мМ; Сl -114 мэкв/л. Перилимфа, наоборот, содержит высокие концентрации натрия и низкие концентрации калия (у человека Na - 138 мМ, К- 10,7 мМ, Сl - 118,5 мэкв/л) что по составу соответствует экстрацеллюлярной или спинномозговой жидкостям. Поддержание отмеченных различий в ионном составе эндо- и перилимфы обеспечивается наличием в мембранозном лабиринте эпителиальных пластов, имеющих множество плотных, герметичных соединений.


Большая часть основной мембраны состоит из радиальных волокон диаметром 18-25 мкм, формирующих компактный однородный слой, заключенный в гомогенную основную субстанцию. Структура основной мембраны существенно отличается от основания улитки к верхушке. У основания - волокна и покровный слой (со стороны барабанной лестницы) расположены более часто, по сравнению с верхушкой. Кроме того, в то время как костная капсула улитки уменьшается по направлению к верхушке, основная мембрана при этом расширяется.

Так у основания улитки основная мембрана имеет ширину 0,16 мм, в то время как у helicotrema ширина ее достигает 0,52 мм. Отмеченный структурный фактор лежит в основе градиента жесткости вдоль длинника улитки, определяющий распространение бегущей волны и способствующий пассивной механической настройке основной мембраны.


Поперечные разрезы органа Корти у основания (а) и верхушки (б) свидетельствуют о различиях в ширине и толщине основной мембраны, (в) и (г) - сканирующие электронные микрофотограммы основной мембраны (вид со стороны барабанной лестницы) у основания и верхушки улитки (д). Суммарные физические характеристики основной мембраны человека


Измерение различных характеристик основной мембраны легло в основу модели мембраны, предложенной Бекеши, описавшего в своей гипотезе слухового восприятия сложный паттерн ее движений. Из его гипотезы следует, что основная мембрана человека представляет собой толстый слой плотно расположенных волокон длиной порядка 34 мм, направленных от основания к helicotrema. Основная мембрана у верхушки шире, более мягкая и без какого-либо натяжения. Базальный конец ее уже, более жесткий, чем апикальный, может находиться в состоянии некоторого натяжения. Перечисленные факты представляют определенный интерес при рассмотрении вибраторных характеристик мембраны в ответ на акустическую стимуляцию.



ВВК- внутренние волосковые клетки; НВК - наружные волосковые клетки; НСК, ВСК - наружные и внутренние столбовые клетки; ТК - туннель Корти; ОС - основная мембрана; ТС - тимпанальный слой клеток ниже основной мембраны; Д, Г - опорные клетки Дейтерса и Гензена; ПМ - покровная мембрана; ПГ - полоска Гензена; КВБ - клетки внутренней бороздки; РВТ-радиальное нервное волокно туннеля


Таким образом, градиент жесткости основной мембраны обусловлен различиями в ширине ее, которая увеличивается по направлению к верхушке, толщине, которая уменьшается по направлению к верхушке, и анатомическим строением мембраны. Справа представлена базальная часть мембраны, слева -верхушечная. На сканирующих электронномикрограммах продемонстрирована структура основной мембраны со стороны барабанной лестницы. Четко определяются отличия в толщине и частоте расположения радиальных волокон между основанием и верхушкой.

В срединной лестнице на основной мембране расположен орган Корти. Наружные и внутренние столбовые клетки формируют внутренний туннель Корти, заполненный жидкостью, называемой кортилимфой. Кнутри от внутренних столбов располагается один ряд внутренних волосковых клеток (ВВК), а кнаружи от наружных столбов - три ряда клеток меньшего размера, называемых наружными волосковыми клетками (НВК), и опорные клетки.

,
иллюстрирующая опорную структуру органа Корти, состоящую из клеток Дейтерса (д) и их фалангеальных отростков (ФО) (опорная система наружного третьего ряда НВК (НВКЗ)). Фалангеальные отростки, отходящие от верхушки клеток Дейтерса, формируют часть ретикулярной пластинки у верхушки волосковых клеток. Стереоцилии (Сц) располагаются над ретикулярной пластинкой (по I.Hunter-Duvar)


Клетки Дейтерса и Гензена поддерживают НВК сбоку; аналогичную функцию, но по отношению к ВВК, выполняют пограничные клетки внутренней бороздки. Второй тип фиксации волосковых клеток осуществляется ретикулярной пластинкой, которая удерживает верхние концы волосковых клеток, обеспечивая их ориентацию. Наконец, третий тип осуществляется также клетками Дейтерса, но расположенными ниже волосковых клеток: одна клетка Дейтерса приходится на одну волосковую клетку.

Верхний конец цилиндрической клетки Дейтерса имеет чашеобразную поверхность, на которой и располагается волосковая клетка. От этой же поверхности отходит к поверхности органа Корти тонкий отросток, формирующий фалангеальный отросток и часть ретикулярной пластинки. Эти клетки Дейтерса и фалангеальные отростки и формируют основной вертикальный опорный механизм для волосковых клеток.

А. Трансмиссионная электрономикрофотограмма ВВК. Стереоцилии (Сц) ВВК проецируются в срединную лестницу (СЛ), а их основание погружено в кутикулярную пластинку (КП). Н - ядро ВВК, ВСП - нервные волокна внутреннего спирального узла; ВСК, НСК - внутренние и наружные столбовые клетки туннеля Корти (ТК); НО - нервные окончания; ОМ - основная мембрана
Б. Трансмиссионная электрономикрофотограмма НВК. Определяется четкое различие в форме НВК и ВВК. НВК располагается на углубленной поверхности клетки Дейтерса (Д). У основания НВК определяются эфферентные нервные волокна (Э). Пространство между НВК называется Нуэлевым пространством (НП) В пределах его определяются фалангеальные отростки (ФО)


Форма НВК и ВВК существенно отличается. Верхняя поверхность каждой ВВК покрыта кутикулярной мембраной, в которую погружены стереоцилии. Каждая ВВК имеет около 40 волосков, выстроенных в два или более рядов U-образной формы.

Свободным от кутикулярной пластинки остается лишь небольшой участок поверхности клетки, где и располагается базальное тело или измененная киноцилия. Базальное тело расположено у наружного края ВВК, в удалении от модиолюса.

Верхняя поверхность НВК содержит около 150 стереоцилий, расположенных в трех или более рядах V- или W-образной формы на каждой НВК.


Четко определяются один ряд ВВК и три ряда НВК. Между НВК и ВВК видны головки внутренних столбовых клеток (ВСК). Между верхушками рядов НВК определяются верхушки фалангеальных отростков (ФО). Опорные клетки Дейтерса (Д) и Гензена (Г) располагаются у наружного края. W-образная ориентация ресничек НВК наклонена по отношению к ВВК. При этом наклон различен для каждого ряда НВК (по I.Hunter-Duvar)


Верхушки самых длинных волосков НВК (в ряду, удаленном от модиолюса) находятся в контакте с гелеобразной покровной мембраной, которая может быть описана как бесклеточный матрикс, состоящий из золокон, фибрилл и гомогенной субстанции. Она простирается от спирального выступа к наружному краю ретикулярной пластинки. Толщина покровной мембраны увеличивается от основания улитки к верхушке.

Основная часть мембраны состоит из волокон диаметром 10-13 нм, исходящих от внутренней зоны и идущих под углом 30° к верхушечному завитку улитки. По направлению к наружным краям покровной мембраны волокна распространяются в продольном направлении. Средняя длина стереоцилий зависит от положения НВК вдоль длинника улитки. Так, у верхушки их длина достигает 8 мкм, в то время как у основания - не превышает 2 мкм.

Количество же стереоцилий уменьшается по направлению от основания к верхушке. Каждая стереоцилия имеет форму булавы, которая расширяется от основания (у кутикулярной пластинки - 130 нм) к верхушке (320 нм). Между стереоцилиями существует мощная сеть перекрестов, таким образом, большое количество горизонтальных соединений связывают стереоцилии, расположенные как в одном и том же, так и в разных рядах НВК (латерально и ниже верхушки). Кроме того, от верхушки более короткой стереоцилии НВК отходит тонкий отросток, соединяющийся с более длинной стереоцилией следующего ряда НВК.


ПС - перекрестные соединения; КП - кутикулярная пластинка; С - соединение в пределах ряда; К - корень; Сц - стереоцилия; ПМ - покровная мембрана


Каждая стереоцилия покрыта тонкой плазматической мембраной, под которой расположен цилиндрический конус, содержащий длинные волокна, направленные вдоль длинника волоска. Эти волокна состоят из актина и других структурных протеинов, находящихся в кристаллообразном состоянии и придающих ригидность стереоцилиям.

Я.А. Альтман, Г. А. Таварткиладзе

Ухо содержит два сенсорных органа с различными функциями (слуха и равновесия), которые, тем не менее, в анатомическом отношении образуют единое целое.

Ухо располагается в каменистой части височной кости (каменистую часть иногда называют просто каменистой костью) или, так называемой пирамиде, и состоит из улитки и вестибулярного аппарата (лабиринта), в состав которого входят два заполненных жидкостью мешочка и три полукружных канала, также заполненных жидкостью. Орган слуха, в отличие от вестибулярного аппарата, имеет вспомогательные структуры, обеспечивающие проведение звуковых волн: наружное ухо и среднее ухо.

К наружному уху относятся ушная раковина , наружный слуховой проход длиной около 3 см и барабанная перепонка . Ушная раковина состоит преимущественно из эластичного хряща, который заходит во внешнее отверстие наружного слухового прохода. Далее наружный слуховой проход представляет собой костный канал, имеющий незначительный S-образный изгиб. В его хрящевой части располагаются многочисленные церуминозные железы, секретирующие ушной воск. Барабанная перепонка натянута поперек внутреннего конца костного канала и является границей среднего уха.

Среднее ухо

В состав среднего уха входят барабанная полость , выстланная слизистой оболочкой и содержащая слуховые косточки — молоточек , наковальню и стремечко , евстахиеву трубу , являющуюся продолжением барабанной полости вперед в глотку, а также многочисленные полости в сосцевидном отростке височной кости, выстланные слизистой оболочкой.


Барабанная перепонка практически круглая, диаметром 1 см; она образует наружную стенку барабанной полости. Барабанная перепонка состоит из трех слоев. Преимущественно жесткая соединительнотканная основа барабанной перепонки лишена натяжения лишь на небольшой площади около своего верхнего конца. Ее внутренняя поверхность выстлана слизистой оболочкой, а наружная — кожей. Длинная ручка молоточка, прикрепленная к барабанной перепонке, заставляет ее выгибаться внутрь подобно воронке. Слуховые косточки совместно с барабанной перепонкой составляют звукопроводящий аппарат. Молоточек , наковальня и стремечко образуют непрерывную цепочку, соединяющую барабанную перепонку и овальное окно преддверия , в которое внедрено основание стремечка.

Слуховые косточки проводят колебания, возникающие под воздействием звуковых волн в барабанной перепонке, в овальное окно внутреннего уха. Овальное окно вместе с первым витком улитки образует внутреннюю костную границу барабанной полости. Основание стремечка в овальном окне передает колебания в жидкость, заполняющую внутреннее ухо. Молоточек и стремечко дополнительно зафиксированы двумя мышцами, от которых зависит интенсивность передачи звука.

Внутреннее ухо

Внутреннее ухо окружено твердой костной капсулой и состоит из системы протоков и полостей (костного лабиринта) , заполненных перилимфой.

Внутри костного лабиринта располагается перепончатый лабиринт, заполненный эндолимфой. Перилимфа и эндолимфа отличаются преимущественно по содержанию в них натрия и калия. В перепончатом лабиринте располагаются органы слуха и равновесия. Костная спираль (улитка) внутреннего уха длиной около 3 см образует канал, который у человека делает приблизительно 2,5 оборота вокруг костного центрального стержня — колумеллы. На поперечном срезе улитки видны три отдельные полости: в середине располагается улитковый канал. Улитковый канал также часто называют средней лестницей, под ним располагается барабанная и вестибулярная лестницы соединяются на вершине улитки через отверстие - геликотрему.

Эти полости заполнены перилимфой и заканчиваются круглым окном улитки и овальным окном преддверия соответственно. Улитковый проток заполнен эндолимфой и отделен от барабанной лестницы основной (базиллярной) мембраной, а от вестибулярной лестницы — рейсснеровой (вестибулярной) мембраной.

Кортиев орган (спиральный орган) располагается на основной мембране. В нем содержится около 15 000 слуховых сенсорных клеток, расположенных рядами (внутренние и наружные волосковые клетки), а также множество опорных клеток. Волоски сенсорных клеток прикреплены к студенистой покровной (тенториальной) мембране, располагающейся над ними.

Слуховой путь

Волосковые клетки образуют синапсы с нейронами, клеточные тела которых лежат в спиральном ганглии улитки в центральном стержне. Отсюда центральные ветви их аксонов идут в составе улиткового и вестибулярного нервов черепно-мозгового нерва VIII (преддверно-улитковый нерв) в мозговой ствол. Там аксоны улиткового нерва заканчиваются в кохлеарных ядрах, а аксоны вестибулярного нерва — в вестибулярных ядрах.

На своем пути в слуховую область в передней поперечной извилине височной доли слуховой путь проходит через несколько синаптических переключений, в том числе в медиальном коленчатом теле промежуточного мозга.

Орган слуха человека предназначен для принятия извне звуковых сигналов, преобразования их в нервные импульсы и передачу в головной мозг. Строение уха и его функции достаточно сложны, несмотря на кажущуюся простоту основного принципа работы всех структур. Все знают, что уши — парный орган, их внутренняя часть находится в височных костях по обе стороны черепа. Невооруженным взглядом можно увидеть только внешние части уха — всем известные ушные раковины, расположенные снаружи и закрывающие собой обзор на сложное внутреннее строение уха человека.

Строение ушных раковин

Анатомия уха человека изучается на уроках биологии, поэтому каждому школьнику известно, что слуховой орган способен различать разные колебания и шумы. Это обеспечивается особенностью строения органа:

  • (раковина и начало слухового канала);
  • среднее ухо человека (барабанная перепонка, полость, евстахиева труба);
  • внутреннее (улитка, преобразующая механические звуки в понятные головному мозгу импульсы, служащий для удержания равновесия человеческого организма в пространстве).

Внешняя, видимая часть слухового органа представляет собой ушную раковину. Она состоит из эластичной хрящевой ткани, которая закрывается небольшой складкой из жира и кожи.

Легко деформируется и повреждается, часто из-за этого нарушается первоначальное строение органа слуха.

Наружная часть слухового органа предназначена для приема и передачи звуковых волн, поступающих из окружающего пространства, в головной мозг. В отличие от аналогичных органов у животных, эти отделы органа слуха у людей практически неподвижны и не играют никаких дополнительных ролей. Для выполнения передачи звуков и создания в слуховом канале объемного звучания раковина изнутри полностью покрыта складками, помогающими обрабатывать любые по силе внешние звуковые частоты и шумы, следом передаваемые головному мозгу. Человеческое ухо наглядно изображает ниже.

Максимально возможное измеренное расстояние в метрах (м), откуда органы слуха человека различают и улавливают шумы, звуки и колебания составляет в среднем 25-30 м. Помогает это делать ушной раковине прямое соединение с ушным проходом, хрящ которого на конце превращается в костную ткань и уходит в толщу черепа. Ушной канал содержит еще и серные железы: производимая ими сера защищает ушное пространство от болезнетворных бактерий и их разрушительного влияния. Периодически железы самоочищаются, но иногда происходит сбой в этом процессе. В этом случае образуются серные пробки. Для их удаления требуется квалифицированная помощь.

«Пойманные» в полость ушной раковины звуковые колебания перемещаются внутрь по складкам и поступают в слуховой канал, затем сталкиваются с барабанной перепонкой. Именно поэтому при полетах на авиатранспорте или поездках в глубоком метро, а также любых звуковых перегрузках лучше приоткрывать рот. Это поможет уберечь нежные ткани перепонки от разрыва, отталкивая с силой поступающий внутрь органа слуха звук обратно.

Строение среднего и внутреннего уха

Средняя часть уха (схема ниже отражает строение органа слуха), располагающаяся внутри костей черепа, служит для преобразования и дальнейшего отправления звукового сигнала или колебания во внутреннее ухо. Если смотреть в разрезе, то наглядно будет видно, что его основные части — небольшая полость и слуховые косточки. Каждая такая косточка носит свое особое название, сопряженное с выполняемыми функциями: стремечко, молоточек и наковальня.

Строение и в этой части особенное: слуховые косточки образуют единый механизм, настроенный на тонкую и последовательную передачу звуков. Молоточек соединен своей нижней частью с барабанной перепонкой, а верхней — с наковальней, связанной непосредственно со стремечком. Такое последовательное устройство человеческого уха чревато нарушением работы всего органа слуха в том случае, если даже только один какой-либо элемент цепочки выходит из строя.

Средняя часть уха связана с органами носа и горла через евстахиевы трубы, контролирующие поступающий извне воздух и оказываемое им давление. Именно эти части органа слуха чутко улавливают любые перепады давления. Повышение или понижение давления ощущается человеком в виде закладывания ушей . Из-за особенностей анатомии колебания внешнего атмосферного давления могут провоцировать рефлекторную зевоту. Помочь быстро избавиться от этой реакции сможет периодическое глотание.

Эта часть расположена глубже всех, она считается самой сложной по своей анатомии. Внутреннее ухо включает в себя лабиринт, и улитку. Сам лабиринт по своему устройству очень сложен: в его состав входят улитка, рецепторные поля, маточка и мешочек, скрепленные между собой в один проток. За ними располагаются полукружные каналы 3-х видов: латеральные, передние, а также задние. Каждый такой канал включает в себя ампулярный конец и небольшую ножку. Улитка — это комплекс разнообразных структур. Здесь орган слуха имеет лестницу преддверия и барабанную лестницу, и спиральный орган, внутри которого располагаются так называемые столбовые клетки.

Связь элементов слухового органа

Зная, как устроено ухо, можно понять всю суть его предназначения. Слуховой орган должен выполнять свои функции постоянно и бесперебойно, обеспечивая адекватную ретрансляцию внешних шумов в понятные головному мозгу звуковые нервные импульсы и позволяя телу человека оставаться в равновесии независимо от общего положения в пространстве. Для поддержания этой функции вестибулярный аппарат никогда не прекращает свою работу, оставаясь активным и днем, и ночью. Возможность поддерживать прямохождение обеспечивается анатомическим строением внутренней части каждого уха, где располагающиеся изнутри составные части воплощают в себе сообщающиеся сосуды, действующие по одноименному принципу.

Давление жидкости поддерживается полукружными канальцами, которые подстраиваются под любую перемену положения тела в окружающем мире — будь то движение или, наоборот, покой. При любых перемещениях в пространстве ими регулируется внутричерепное давление.

Покой тела обеспечивают маточка и мешочек, в которых постоянно перемещается жидкость, благодаря которой нервные импульсы поступают напрямую в мозг.

Эти же импульсы поддерживают общие рефлексы человеческого тела и концентрацию внимания на конкретном объекте, т. е. они не только выполняют непосредственные функции органа слуха, но и поддерживают зрительные механизмы.

Уши — одни из важнейших органов тела человека. Любые расстройства его функциональности влекут за собой тяжелые последствия, влияющие на качество жизни человека. Важно не забывать отслеживать состояние этого органа и в случае любых неприятных или непривычных ощущений консультироваться у медицинских работников, специализирующихся в данном направлении медицины. Люди всегда должны ответственно относиться к своему здоровью.