Добыча гелия 3 на луне. Гелий-три — энергия будущего

Нужно понять, что сегодня исследование Солнечной системы, изучение внеземного вещества, химического строения Луны и планет, поиск внеземных форм жизни, понимание физики Вселенной — это передовая линия фундаментальной науки. Современные космические исследования следует рассматривать не как одно из направлений или разделов науки, а как этап развития науки. Без результатов, полученных в космических исследованиях, неполноценны ни физика, ни биология, ни химия, ни геологические науки.

Отступление на задний план страны, имеющей богатый опыт и традиции космических исследований, не может не вызывать тревогу и желание понять причины.

Э. М. Галимов

Гелий 3 - мифическое топливо будущего

Наверное мало чего в области термоядерной энергетики окружено мифами, как Гелий 3. В 80х-90х он был активно популяризирован, как топливо, которое решит все проблемы управляемого термоядерного синтеза, а так же как один из поводов выбраться с Земли (т.к. на земле его буквально считанные сотни килограмм, а на луне миллиард тонн) и заняться, наконец, освоением Солнечной системы. Все это базируется на очень странных представлениях о возможностях, проблемах и потребностях несуществующей сегодня термоядерной энергетики, о чем мы и поговорим

Помните, я писал, что магниты тороидального поля ИТЭР, которые создают противодавление плазме - абсолютно рекордные изделия, единственные по параметрам в мире? Так вот, поклонники He3 предлагают сделать магниты в 500 раз мощнее.

Добыча гелия-3 на Луне обеспечит землян энергией на 5 тыс лет

Имеющиеся на Луне запасы гелия-3 могут обеспечить землян энергией на пять тысяч лет вперед, заявил в среду на мультимедийной лекции в РИА Новости доктор физико-математических наук, заведующий отделом исследований Луны и планет Государственного астрономического института МГУ им. Ломоносова Владислав Шевченко.

Возможности обеспечения жителей Земли энергоносителями небезграничны, их запасы на нашей планете будут исчерпаны в ближайшие столетия. Вместе с тем, в США уже подсчитали, что имеющиеся на Луне запасы гелия-3 могут обеспечить землян энергией, как минимум, на пять тысяч лет вперед, - сказал Шевченко.

Да, стоимость одной тонны гелия-3 составит примерно миллиард долларов при том, что будет создана необходимая инфраструктура добычи и доставки с Луны. Но при этом 25 тонн - а это всего 25 миллиардов долларов, что не так уж много в масштабах государств нашей планеты - хватит для обеспечения энергией землян в течение года. В настоящее время в год только США тратит на энергоносители примерно 40 миллиардов долларов. Выгода очевидна, - отметил Шевченко.

По его словам, в ближайшем будущем партнерам по Международной космической станции (МКС) следует постепенно переходить от ее эксплуатации к созданию Международной лунной станции (МЛС). Наш путь сейчас - от МКС к МЛС. Получим большую практическую пользу, - заключил ученый.

В настоящее время изотоп гелий-3 на Земле добывают в очень небольших количествах, исчисляемых несколькими десятками граммов в год.

На Луне же запасы этого ценного изотопа составляют, по минимальным оценкам, около 500 тысяч тонн. При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию примерно 15 миллионов тонн нефти.

В интервью газете «Труд» академик Роальд Зиннурович Сагдеев назвал, сенсацию, поднятую вокруг добычи гелия-3 на Луне. не стоящей и выеденного яйца.

Академик Сагдеев сказал, что на недавно прошедших 30-х Королёвских чтениях тон задавали сторонники лунных проектов, которые доказывали, что добыча гелия-3 на Луне выгодная и перспективная задача. Считается, что термоядерные реакторы. работающие на гелии-3, обеспечат человечество энергией на тысячелетия.

Планы создания базы на Луне к 2015 году и добыча и транспортировка гелия-3, которые были представлены на чтениях— совершенно нереальны. Да и гелий-3 понадобится не ранее чем через 80— 100 лет.

Академик Сагдеев сказал, что всё еще не существуют реакторы, работающие на дейтерии и тритии. Хотя, запасы дейтерия в морской воде практически неограничены. Для создания термоядерного реактора, работающего на гелии-3, понадобится ещё около 100 лет. «Словом, построение гелиевого реактора— задача даже не XXI, а XXII века»— говорит Сагдеев.

Поэтому планы создания базы на Луне и добыча там гелия-3— это иллюзия: «На самом деле вся эта шумиха, связанная с предложением добывать гелий-3 на Луне, не стоит и выеденного яйца».

Слова Сагдеева из интервью: «Когда о добыче гелия-3 на Луне рассказывает, например, руководитель РКК „Энергия“ Николай Севастьянов, я внутренне улыбаюсь и даже где-то сочувствую такому увлеченному человеку, оказавшемуся, как это ни удивительно, в плену иллюзий».

Гелий-3 был открыт австралийским ученым Марком Олифантом, во время работы в Кембриджском университете.

Применение 3 He

Гелий-3 применяется при исследовании термоядерного синтеза. Он является побочным продуктом реакций, протекающих на Солнце. На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год. Причиной тому служит наша атмосфера. способствующая процессам реакции Гелия-3 с другими веществами. При термоядерном синтезе 1 тонны гелия-3 высвобождается энергия, равная 15 млн. т. нефти.

Запасы 3 He на Земле

На Земле его запасы приблизительно оцениваются в 500 -1000 килограмм и крайне распылены в атмосфере и горных породах.

Запасы 3 He на Луне

Лунные ресурсы Гелия-3 весьма велики и их должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся то, что управляемый термоядерный синтез до сих пор неосуществлён, и по самым оптимистическом прогнозам, возможность коммерческого использования наступит не раньше 2050 года.

Источники: znaniya-sila.narod.ru, hodar.ru, ria.ru, ru.wikinews.org, traditio-ru.org

Призрачный замок Глэмис

Тайна Фобоса

Американский космический челнок Dream Chaser

Святая гора Афон

Тайна Стоунхенджа

Таинственные места на земле - факты и предания

Башня Дьявола - столбчатая скала, напоминающая башню, состоящую из сложенных пучком отдельных каменных столбов, расположенная в штате Вайоминг, США. Эта...

Автомобили нового поколения

Не секрет, что в наше время активно развивается машиностроение. Производители предлагают улучшенное качество и экологичность современных авто. Последнее слово автомобильной...

Древний город Фивы

На самом деле Фивы отнюдь не настоящее название древнего города на восточном берегу Нила. Так греки называли столицу Египта, город...

Зависимость прически от формы лица

Если есть что-то вроде идеальной формы лица, к которой подходят большинство причесок, то это овальное лицо. Некоторые укладки особенно хорошо смотрятся...

Мед и пчелы

Медоносная пчела замечательный природный фармацевт. Все вырабатываемые ею продукты находят применение в медицине: мёд. воск. забрус. пчелиный клей, пчелиный...

Вещая Кассандра

Кассандра родилась в городе Троя и являлась дочерью царя Приама и его супруги Гекубы. По свидетельству многочисленных авторов древности, девушка...

Химические катастрофы

Услышав сообщение об аварии, нужно надеть средства защиты органов дыхания, простейшие средства защиты кожи, по возможности быстро покинуть район...

В последнее время, особенно после того, как США усилили темпы работ по своей лунной программе, все сильнее стала муссироваться тема о гелии-3, как основе ядерной энергетики будущего. О данном элементе даже снимают фантастические фильмы. Что же такое гелий-3, где его добыть и какие выгоды он сулит человечеству!

РЕАКТОР БЕЗ РАДИАЦИИ

Гелий-3 (³He) является одним из изотопов гелия, в ядре которого находится один нейтрон, а не два. На Земле запасы гелия-3 составляют 0,000137% от общего количества элементов и оцениваются в 35 тысяч тонн. Практически весь имеющийся в наличии гелий-3 сохранился с момента образования нашей планеты.

Интерес к этому изотопу гелия усилился после того, как стало ясно, что человечество вплотную приблизилось к серьезному энергетическому кризису. Запасы углеводородов подходят к концу, и уже через несколько десятилетий мы их полностью исчерпаем. Альтернативные источники энергии, такие как ветер, Солнце, приливы и отливы, геотермальная активность, не могут покрыть всех потребностей человечества. Остаются еще запасы каменного угля, которых хватит примерно на 200-300 лет. Однако по мере того, как доля угля в современной энергетике будет возрастать, этот срок может существенно сократиться. Кроме того, процессы сжигания и добычи угля серьезно ударяют по экосистеме планеты.

Таким образом, единственным источником энергии, которого хватит надолго, - это энергия, основанная на делении ядер урана. Уже сегодня атомная энергетика занимает почти 7% в мировом энергетическом балансе. И с каждым годом доля ее участия возрастает. Но вместе с этим все серьезнее встает вопрос о главной проблеме всех АЭС - утилизации и хранении радиоактивных отходов, которых с каждым годом становится все больше. И тут идеальным выходом было бы использование топлива, основанного на реакциях термоядерного синтеза с гелием-3.

Дело в этом, что ядерные реакции, протекающие с участием гелия-3, в отличие от других ядерных реакций, идут с выделением не нейтронов, а протонов. Нейтроны - крайне активные частицы, они способны глубоко проникнуть в конструкционные материалы ядерного реактора, разрушая их структуру и делая радиоактивными. Это приводит к тому, что отдельные детали и узлы каждые несколько лет приходится менять, чтобы реактор мог работать в штатном режиме. Кроме того, возникает проблема утилизации и захоронения ядерных отходов.

Протоны же, в отличие от нейтронов, не наводят радиоактивности и не способны проникать внутрь конструкций. Поток протонов - это, по сути, поток водорода. И материалы, из которых созданы узлы реактора, работающего на гелии-3, могут служить десятилетиями. В целом реакция с участием ³He в 50 раз менее радиоактивна, чем обычная реакция взаимодействия дейтерия с тритием (D + T).

Таким образом, главное достоинство гелия-3 не столько в его энергетической ценности, сколько в его практически полной экологической безопасности.

ЛУННЫЕ ЗАЛЕЖИ

Где же можно добывать гелий-3 в необходимых масштабах? На Земле этот изотоп содержится в таких ничтожно малых количествах, что о его промышленной добыче и речи быть не может. Ответ на этот вопрос известен давно - на Луне.

То, что Луна обладает огромными запасами гелия-3, стало известно, когда первые образцы лунного грунта были доставлены на Землю советскими автоматическими аппаратами «Луна» и американскими астронавтами во время выполнения программы «Аполлон».

Относительная концентрация изотопа в лунном грунте оказалась в 1000 раз выше, чем в земных недрах. Причина этого явления кроется в регулярном облучении поверхности Луны корпускулярным излучением Солнца. Дело в том, что, не имея защиты в виде сильного магнитного поля, поверхностный пылевидный слой (реголит) Луны регулярно получает огромную дозу облучения. Во время этого процесса в него внедряется большое количество элементов, в первую очередь изотопы водорода и гелия.

По предварительным оценкам, общие запасы гелия-3 на Луне составляют около миллиона тонн. Такого количества изотопа человечеству хватило бы на тысячу лет. Энергетическая эффектность его такова, что 1 тонна гелия-3 может заменить 20 млн тонн нефти, что позволит в течение года обеспечивать выходную мощность АЭС в 10 ГВт. В одной тонне лунного грунта содержится 10 мг гелия-3, что соответствует энерговыделению 1 м³ нефти. Можно сказать, что поверхность Луны представляет собой сплошной океан нефти. Человечеству нужно 200 тонн ³He ежегодно, потребность российской энергетики оценивается в 20-30 тонн гелия-3 в год.

Однако как бы ни были велики общие запасы ³He, содержание изотопа в лунной почве все равно очень невелико (примерно 10 мг на тонну породы). Таким образом, чтобы обеспечить потребности человечества, нужно вскрывать 20 млрд тонн реголита в год. Учитывая среднюю толщину слоя реголита в 3 м, общая площадь добычи будет составлять 30 на 100 км.

Сегодня, когда доставка даже нескольких сот килограммов груза на Луну считается большим достижением, переработка миллиардов тонн лунного грунта воспринимается как совершенно фантастический проект. Поэтому правильным решением было бы не транспортировка лунного грунта на Землю, а организация на самой Луне полного цикла получения готового изотопа гелия-3 - начиная от добычи породы и заканчивая ее обогащением.

ТРУДНОСТИ ДОБЫЧИ

Впрочем, 20 млрд тонн вскрышных работ лунного грунта только кажутся фантастическим мероприятием. На Земле сейчас добывают порядка 5 млрд тонн угля в год. Объем вскрышных работ земного грунта составляет порядка 50 млрд тонн. То есть нынешние темпы разработки земных недр вполне сопоставимы по масштабам с тем, что нас может ожидать на Луне. Б то же время на Луне не будет стоять проблем, связанных с экологическими последствиями проведения вскрышных работ, поэтому общая эффективность разработки лунного грунта может быть в несколько раз выше, чем на Земле. Не стоит забывать и о том, что сила тяжести на Луне в шесть раз меньше, чем на Земле. Это, в свою очередь, позволит серьезно увеличить скорость выработки грунта.

Что же касается технической стороны вопроса, то земная наука и техника достаточно развиты для того, чтобы начать организацию процесса переноса части горно-обогатительной и добывающей промышленности на Луну. Конечно, этот процесс займет не один десяток лет, поэтому чем раньше мы его начнем, тем быстрее получим необходимый результат.

Уже сейчас надо начинать подготовительный этап, содержащий в себе геологоразведочные и испытательные работы, которые должны проводиться в рамках общих исследовательских работ на Луне. Одними из первых должны быть работы по изучению внутреннего строения Луны, запланированные в программе «Луна-Глоб». В ходе выполнения этой программы планируется с помощью химико-минералогической интерпретации сейсмических данных получить данные о химическом строении нижней мантии Луны, а также определить размеры лунного ядра.

Следующим этапом работ будет доставка фунта с Луны на Землю. Основной упор здесь нужно сделать на беспилотные аппараты, которые будут собирать образцы лунного грунта и доставлять их к посадочным модулям. Кроме того, луноходам можно поручить задачу создания долговременной сети сейсмических датчиков, импульсы которых позволят получить исчерпывающее представление о том, что происходит в недрах Луны. Одновременно с этим необходимо будет проводить картирование лунной поверхности на предмет содержания гелия-3.

ГИПОТЕЗЫ, ФАКТЫ, РАССУЖДЕНИЯ

Лунный Гелий-3 - термоядерное горючее будущего.

Комментарий автора сайта: С активацией американской Лунной космической программы всё чаще приходится слышать о том, что наряду с наличием воды, на Луне находятся огромные запасы изотопа гелия-3 - топлива ядерной энергетики будущего. Так ли это, какие перспективы это сулит человечеству, нужно ли вообще нам исследовать Луну и каким образом это можно осуществить - вот только небольшой перечень вопросов, ответы на которые Вы узнаете в данной статье, являющейся главой "Гелий-3" из книги академика РАН Эрика Михайловича Галимова "Замыслы и просчёты: Фундаментальные космические исследования в России последнего двадцатилетия. Двадцать лет бесплодных усилий."

Тот факт, что Луна обогащена гелием-3, известен с тех пор, как на Землю было впервые доставлено лунное вещество. В образцах лунного грунта, привезенных американскими астронавтами в ходе экспедиций «Аполлон» и доставленных советскими автоматическими аппаратами «Луна», относительная концентрация изотопа гелия 3 Не (отношение 3 Не/ 4 Не) оказалась в тысячу раз выше, чем в земном гелии. Это - результат облучения незащищенной атмосферой поверхности Луны корпускулярным излучением Солнца. В течение миллиардов лет в поверхностный пылевидный слой (реголит) Луны внедряются атомы элементов, испускаемых Солнцем, больше всего - водород и гелий в изотопном соотношении, присущем Солнцу. Другой факт - что 3 Не является эффективным термоядерным горючим - известен был физикам ещё раньше. Однако никакого практического вывода из этих фактов в те годы не делалось. Земная энергетика обеспечивалась за счёт быстро развивающейся добычи нефти и газа. Атомная энергетика базировалась на доступном урановом сырье. Управляемый термоядерный синтез не был осуществлен даже на более простой реакции дейтерия с тритием. На Земле гелий-3 в промышленных количествах отсутствует.

В конце 80-х - начале 90-х гг. появились публикации о возможном использовании Луны в качестве источника энергии для Земли. Предлагались, например, проекты передачи на Землю собранной на поверхности Луны солнечной энергии в форме сфокусированного высокочастотного луча. Высказывалась и идея добычи и доставки лунного гелия-3. Энтузиастом этой идеи, в частности, был побывавший на Луне американский астронавт Гарольд Шмидт. Он написал серьезную книгу о возможности использования гелия-3.

Призывая вернуться к исследованиям Луны, я помимо конкретной и актуальной задачи исследования внутреннего строения Луны, постоянно упоминал в качестве задачи, которую нужно иметь в виду в качестве отдаленной перспективы, освоение ресурсов лунного гелия-3.

Я думаю, что сегодня мы не предвидим в полной мере того, что даст нам освоение Луны, и потому приступаем к этому неуверенно, робко и с задержкой. Мне не раз приходилось писать о том, что исследование Луны имеет большое значение для фундаментальной геологии. Реконструкция ранней истории Земли, возникновения на ней атмосферы, океанов и жизни, невозможна без изучения Луны. Хотя бы просто потому, что следы первых 500-600 млн. лет истории Земли полностью стерты в ее геологической летописи, а на Луне они сохранились. И потому что Луна и Земля представляют генетически единую систему.

Не исключено, что в ближайшие годы мы станем свидетелями Лунной гонки-2, победитель (или победители) которой получит в свои руки практически неисчерпаемый источник энергии. Это в свою очередь, позволит человечеству выйти на качественно новый технологический уклад, о параметрах которого мы можем только догадываться.

Что такое гелий-3?

Из школьного курса физики мы помним, что атомная масса гелия равняется четырем и этот элемент является инертным газом. Его проблематично использовать в каких-либо химических реакциях, тем более с выделением энергии. Совсем другое дело - изотоп гелия с атомной массой 3. Он способен входить в термоядерную реакцию с дейтерием (изотопом водорода с атомной массой 2) в результате чего образуется гигантская энергия за счет синтеза обычного гелия-4 с выделением протона (3 Не + D → 4 Не + p + энергия). Подобным образом из всего одного грамма гелия-3 можно получить такую же энергию, как при сжигании 15-ти тонн нефти.

Тонны гелия-3 хватит для энерговыделения на уровне 10 ГВт в течение года. Таким образом, чтобы закрыть все сегодняшние энергопотребности России, ежегодно понадобится 20 тонн гелия-3, а для всего человечества потребуется примерно 200 тонн данного изотопа в год. При этом отпадет необходимость жечь нефть и газ, запасы которых не безграничны, по последним оценкам разведанных запасов углеводородов - человечеству хватит всего на полвека. Не нужно будет эксплуатировать и достаточно опасные АЭС, что после Чернобыля и Фукусимы приобрело особую актуальность.


Где взять гелий-3?

При современном развитии технологий единственным реально доступным источником этого элемента является поверхность Луны. Сам по себе гелий-3 образуется в недрах звезд (например, нашего Солнца) в результате соединения двух атомов водорода. При этом основным продуктом данной реакции является обычный гелий-4, а изотоп-3 образуется в малых количествах. Часть его выносится солнечным ветром и равномерно распределяется по планетной системе.


На Землю гелий-3 практически не выпадает, поскольку его атомы отклоняются магнитным полем нашей планеты. Зато на планетах, у которых такое поле отсутствует, элемент осаждается в верхних слоях грунта и постепенно накапливается. Ближайшим к Земле небесным телом, у которого отсутствует магнитное поле, является Луна, поэтому именно здесь сосредоточены доступные человечеству запасы этого ценного энергоносителя.


Подтверждением тому служат не только теоретические выкладки, но и результаты эмпирических исследований. Во всех пробах лунного грунта, доставленных на Землю, был обнаружен гелий-3 в относительно высоких концентрациях. В среднем - на 100 тонн реголита приходится 1 гр. данного энергоизотопа.

Таким образом, чтобы извлечь вышеупомянутые 20 тонн гелия-3 для полного удовлетворения годовых энергопотребностей РФ, понадобится «перелопатить» 2 000 млн. тонн лунного грунта.

Физически это соответствует участку на Луне размерами 20х20 км с глубиной карьера 3 м. Задача по организации столь масштабной добычи - достаточно сложная, но вполне решаемая, уверены современные инженеры. Судя по всему, более трудной и дорогостоящей проблемой станет доставка десятков тонн топлива для теромоядерных печей на Землю.


Чего не хватает человечеству для гелиевой энергореволюции?

Для развития на Земле полноценной термоядерной энергетики на базе гелия-3 людям предстоит решить три основных задачи.

1. Создание надежных и мощных средств доставки грузов по маршруту Земля-Луна и обратно.

2. Возведение лунных баз и комплексов по добыче гелия-3, которое сопряжено с множеством технологических проблем.

3. Строительство собственно термоядерных электростанций на Земле, для чего также предстоит преодолеть определенные технологические барьеры.

К решению первой задачи человечество придвинулось практически вплотную. Все четыре страны, участвующие в Лунной гонке-2 плюс Европейский Союз, уже разработали или разрабатывают ракеты тяжелого класса, способны забрасывать тонны груза на лунную орбиту. Например, к 2027 г. в России запланирована реализация «в железе» ракеты-носителя «Ангара-А5В», которая будет способна доставить к Луне не менее 10 тонн полезного груза. С обратной транспортировкой будет попроще, поскольку сила притяжения Луны в 6 раз меньше земной, но здесь проблемой будет топливо. Его придется либо завозить с Земли, либо вырабатывать на поверхности нашего спутника.



Гораздо более серьезной является вторая задача, поскольку помимо организации собственно добычи гелия-3 из реголита инженерам придется создать надежные лунные базы с системами жизнеобеспечения для шахтеров будущего. В этом сильно помогут технологии, наработанные благодаря многолетней эксплуатации орбитальных станций, прежде всего МКС и «Мир». Как в России, так и в других странах сегодня активно проектируются лунные базы и, пожалуй, наша страна на сегодня имеет максимум технологий для реального воплощения подобных проектов.


Что касается третьей проблемы, то работы по созданию термоядерных реакторов идут на Земле последние три десятилетия. Основной технологической трудностью здесь является проблема удержания высокотемпературной плазмы (необходимой для «розжига» термоядерного синтеза) в т.н. «магнитных ловушках».

Этот вопрос уже решен для реакторов, работающих на принципе соединения дейтерия и трития (D + T = 4 He + n + энергия). Для поддержания такой реакции достаточно температуры в 100 млн. градусов.

Однако подобные реакторы никогда не станут массовыми, поскольку они чрезвычайно радиоактивны. Для запуска реакции с участием гелия-3 и дейтерия понадобятся температуры в 300-700 млн. градусов. Пока такую плазму не удается длительно удерживать в магнитных ловушках, но возможно к прорыву в этой области приведет запуск Международного экспериментального термоядерного реактора (ITER), который сейчас строится во Франции и будет введен в эксплуатацию к 2025 г.


Таким образом, десятилетие между 2030-2040 гг. имеет все шансы оказаться стартовым в деле развития энергетики на базе гелия-3, поскольку к этому времени, судя по всему, будут преодолены технологические препятствия, указанные выше. Соответственно, останется найти деньги на реализацию энергопроекта, который способен перевести человечество в эру чрезвычайно дешевой (почти дармовой) энергии со всеми вытекающими последствиями, как для экономики, так и качества жизни каждого человека.