Квантовый демон Максвелла «телепортирует» энтропию из кубита

Физики из Финляндии, России и США впервые автономного электронного демона Максвелла. Результаты своих исследований авторы опубликовали в журнале Physical Review Letters. Что такое демоны Максвелла и как они могут помешать работе компьютеров, рассказывает «Лента.ру».

Интрига вокруг демонов Максвелла сохраняется в науке вот уже 150 лет. Концепцию сверхъестественного существа предложил в 1867 году британский физик Джеймс Клерк Максвелл . Речь идет о некоем устройстве, функционирующем так, что это приводит к нарушению (кажущемуся) второго начала термодинамики - одного из самых фундаментальных законов природы.

В своем мысленном эксперименте Максвелл взял закрытый баллон с газом и разделил его на две части внутренней стенкой с небольшим люком. Открывая и закрывая люк, демон Максвелла разделяет быстрые (горячие) и медленные (холодные) частицы. В результате в баллоне возникает разность температур, а тепло передается от более холодного газа к более горячему, что казалось бы противоречит второму закону термодинамики.

Второй закон термодинамики определяет направление физических процессов. В частности, как показал немецкий физик Рудольф Клаузиус , он делает невозможной самопроизвольную передачу (то есть без совершения работы) тепла от более холодного тела более горячему или, что то же самое, уменьшение энтропии (меры беспорядка) изолированной системы. В формулировке француза Сади Карно этот закон звучит так: тепловая машина с коэффициентом полезного действия в сто процентов невозможна.

Второе начало термодинамики было окончательно сформулировано в XIX веке. Тогда это был закон для ряда частных случаев (его фундаментальный характер прояснился позднее). Физики искали в нем противоречия, и одно из них (наряду с тепловой смертью Вселенной) и представил Максвелл в письме к своему коллеге Питеру Тейту.

Парадокс сразу привлек к себе внимание ученых и любителей науки. В XX веке славу демона Максвелла затмил кот (или кошка) Шредингера . Между тем, подобно домашнему питомцу из квантовой механики, бес британского физика послужил источником многих важных открытий. В частности, благодаря ему возникла термодинамическая теория информации и связанное с ней представление об информационной энтропии.

В 1960-х годах исследователь из американской компании IBM (International Business Machines) Рольф Ландауэр сформулировал принцип, которому присвоили его имя. Он связал потерю бита информации в любой физической системе с выделением соответствующего количества тепла (или, что то же самое, повышением термодинамической энтропии). Работа Ландауэра имела фундаментальное значение для вычислительной техники, сохраняющееся до сих пор. Выражение, названное в честь Ландауэра, а также американцев Клода Шеннона и Джона фон Неймана , позволяет определить предельные физические характеристики устройства (прежде всего, его мощность и размеры), при которых уничтожается информация. Созданные человеком процессоры прошли путь от рассеивания тепла, в миллиарды раз большего предсказываемого принципом Ландауэра, до современных значений, всего в тысячи раз превышающих его.

Пусть имеется ячейка памяти, содержащая закодированную в битах информацию (со значениями ноль и единица). Если уничтожить ее (то есть перевести в состояние, содержащее только нули или единицы), выделится тепло. На языке термодинамики это означает обращение энтропии системы в нуль, поскольку достигнуто максимально упорядоченное состояние (описываемое только нулями или единицами). Ландаэуэр любил повторять, что «информация - это физическая величина», это было его девизом.

Впервые измерили тепло, выделяющееся при уничтожении бита информации, ученые из Франции и Германии. Ячейкой памяти послужила кварцевая бусина диаметром два микрометра, помещенная в воду. Посредством оптического пинцета физики создали пару потенциальных ям, в которых могла оказаться бусина. Эти состояния системы соответствовали логическим значениям нуль и единица. При переводе системы в одно состояние информация стиралась. Машина учитывала множество нюансов, в частности, флуктуации, чья роль росла вместе с уменьшением глубины ям. При помощи рапида физики наблюдали переход системы из одного состояния в другое. Процесс сопровождался тепловыделением, температура воды повышалась, и это фиксировалось. Полученные данные оказались близки к предсказываемым принципом Ландауэра.

Но при чем тут демон Максвелла? Дело в том, что при сортировке горячих и холодных молекул в мысленном эксперименте Максвелла демон накапливает информацию о скоростях частиц. В какой-то момент память переполняется, и демону для продолжения работы необходимо ее стереть. Для этого требуется совершить работу, в точности равную работе, которую теоретически можно было бы извлечь из системы горячих и холодных частиц. То есть второй закон термодинамики не нарушается. Однако возникает метафизический вопрос о сущности, стирающей демону память. Не будет ли ею некий супердемон, влияющий на младшего демона? Ответ на этот вопрос впервые предложил в 1929 году один из участников Манхэттенского проекта американский физик Лео Силард . Устройство, названное его именем, обеспечивает демону Максвелла автономную работу.

Впервые его реализовать удалось японским ученым в 2010 году. Их электромеханическая модель представляет собой полистироловую бусину диаметром около 300 нанометров, помещенную в электролит. Электромагнитное поле не давало бусине перемещаться вниз, в результате чего она набрала механическую (потенциальную) энергию, пропорциональную работе поля. Демоном Максвелла в такой системе выступал наблюдатель и его научные инструменты, для функционирования которых необходима энергия. Последнее обстоятельство снова не позволяет нарушить второе начало термодинамики. В отличие от японских ученых, их коллеги из Финляндии, России (Иван Хаймович из Института физики микроструктур Российской академии наук) и США впервые создали не электромеханическую, а полностью электронную машину Силарда (автономного демона Максвелла).

Система основана на одноэлектронном транзисторе, который образует небольшой медный остров, подключенный к двум сверхпроводящим алюминиевым выводам. Демон Максвелла контролирует движение электронов разных энергий в транзисторе. Когда частица находится на острове, демон притягивает ее положительным зарядом. Если электрон покидает остров, демон отталкивает его при помощи отрицательного заряда, что приводит к понижению температуры транзистора и ее повышению у демона.

Все манипуляции демон выполняет в автономном режиме (его поведение определяется транзистором), а изменения температуры указывают на корреляцию между ним и системой, так что все выглядит так, как будто демон Максвелла знает о состоянии системы и способен ею управлять. Электронный демон позволяет проводить большое количество измерений за небольшой промежуток времени, а низкие температуры в системе дают возможность регистрировать чрезвычайно малые ее изменения. Эта система также не нарушает второе начало термодинамики и согласуется с интуитивно понятным представлением о том, что информацию можно использовать для совершения работы.

Зачем ученым нужны такие исследования? С одной стороны, они представляют явный академический интерес, поскольку позволяют изучать микроскопические явления в термодинамике. С другой стороны, показывают, насколько важно производство энтропии из информации, получаемой демоном. Именно это может быть, как полагают авторы исследования, полезным для проектирования кубитов (квантовых аналогов классических битов) квантовых компьютеров, даже несмотря на намечающийся прогресс в обратимых вычислениях , рассказ о чем выходит за рамки данной статьи.

Что такое "демон Максвелла " и почему уже полтора столетия он волнует умы великих ученых? Все просто. Ученые ищут такие процессы, которые позволяли бы теплу переходить от тел, менее нагретых к телам более нагретым. Но, мы знаем, что тепло может переходить только от горячих тел к холодным. Это называется вторым началом термодинамики, которому бросил вызов "демон Максвелла".

Решить такую задачу, попытался в 1871 г. великий английский ученый Джеймс Максвелл. Некое фантастическое существо – "демон Максвелла" обладало функциями подобного механизма. "Демон Максвелла" обладает столь изощренными способностями, что может следить за каждой отдельной молекулой в ее движениях и знать ее скорость. Если взять сосуд, разделенный перегородкой на две части, и "демон Максвелла" будет сидеть у дверцы в перегородке, мы сможем заставить его открывать дверцу только перед быстрыми или только перед медленными молекулами. "Демон Максвелла" будет пропускать быстрые молекулы в одну часть сосуда, а медленные – в другую, тогда в одной части сосуда и температура, и давление окажутся выше, чем в другой, то есть мы без затраты работы получим неограниченный запас энергии. же для системы, состоящей из правой и левой части сосуда, в начальном состоянии больше, чем в конечном, что противоречит термодинамическому принципу неубывания энтропии в замкнутых системах.

Парадокс разрешается, если рассмотреть замкнутую систему, включающую в себя "демона Максвелла" и сосуд. Для функционирования "демона Максвелла" необходима передача ему энергии от стороннего источника. За счёт этой энергии и производится разделение горячих и холодных молекул в сосуде. За счёт этой энергии и производится разделение горячих и холодных молекул в сосуде, то есть переход в состояние с меньшей энтропией.

С развитием теории было установлено, что процесс измерения может и не приводить к увеличению энтропии при условии, что он является термодинамически обратимым. Однако в этом случае демон должен запоминать результаты измерения скоростей (стирание их из памяти демона делает процесс необратимым). Поскольку конечна, в определённый момент "демон Максвелла" вынужден стирать старые результаты, что и приводит в конечном итоге к увеличению энтропии всей системы в целом.

Много раз ученые убедительно доказывали, что "демон Максвелла" лишь шутка великого физика. Действительно, "демон Максвелла" в сосуде с двумя молекулами не эффективен; они в половине случаев могли бы оказаться в какой-либо одной части сосуда. Если же молекул много, то вероятность подобного случая чрезвычайно мала.

Однако страсти не унимаются, "демон Максвелла" старается найти все новые аргументы в свою защиту. В одном из научных журналов, в статье, посвященной этой проблеме, всерьез говорится, что "демон Максвелла" существует только в виде квантового генератора – , который отделяет возбужденные молекулы с большой энергией от невозбужденных молекул.

Однако, до сих пор нет ни строгих доказательств, что "демон Максвелла" существует, ни строгих опровержений этого. "Демон Максвелла" подогревает интерес к дальнейшим поискам.

Мысленный эксперимент состоит в следующем: предположим, сосуд с газом разделён непроницаемой перегородкой на две части: правую и левую. В перегородке отверстие с устройством (так называемый демон Максвелла), которое позволяет пролетать быстрым (горячим) молекулам газа только из левой части сосуда в правую, а медленным (холодным) молекулам — только из правой части сосуда в левую. Тогда, через большой промежуток времени, «горячие» (быстрые) молекулы окажутся в правом сосуде, а «холодные» — «останутся» в левом.

Таким образом, получается, что демон Максвелла позволяет нагреть правую часть сосуда и охладить левую без дополнительного подвода энергии к системе. Энтропия для системы, состоящей из правой и левой части сосуда, в начальном состоянии больше, чем в конечном, что противоречит термодинамическому принципу неубывания энтропии в замкнутых системах (см. Второе начало термодинамики)

Парадокс разрешается, если рассмотреть замкнутую систему, включающую в себя демона Максвелла и сосуд. Для функционирования демона Максвелла необходима передача ему энергии от стороннего источника. За счёт этой энергии и производится разделение горячих и холодных молекул в сосуде, то есть переход в состояние с меньшей энтропией. Детальный разбор парадокса для механической реализации демона (храповик и собачка) приведён в Фейнмановских лекциях по физике, вып. 4, а также в популярных лекциях Фейнмана «Характер физических законов».

С развитием теории информации было установлено, что процесс измерения может не приводить к увеличению энтропии при условии, что он является термодинамически обратимым. Однако в этом случае демон должен запоминать результаты измерения скоростей (стирание их из памяти демона делает процесс необратимым). Поскольку память конечна, в определенный момент демон вынужден стирать старые результаты, что и приводит в конечном итоге к увеличению энтропии всей системы в целом.

Успех японских физиков

Японские физики впервые смогли в эксперименте добиться увеличения внутренней энергии системы, используя только информацию о ее состоянии и не передавая ей дополнительной энергии.
Получение энергии из информации впервые теоретически описал британский физик Джеймс Максвелл в своем мысленном эксперименте. В нем некое существо, позднее названное "демоном Максвелла", охраняло дверь между двумя комнатами. Демон, зная энергию приближающейся к двери молекулы, открывает проход только для "быстрых" молекул, закрывая дверь перед "медленными". В результате в одной комнате окажутся все "быстрые" молекулы, а в другой медленные, и возникшую разницу температур можно использовать в практических целях.
Воплощение такой "демонической" энергоустановки требует намного больших энергетических затрат, чем можно извлечь из образующейся разницы температур, поэтому реальные двигатели, работающие по такому принципу, никогда всерьез не рассматривались учеными. Однако интерес к подобным системам вновь возник в последнее время с развитием нанотехнологий.
Авторы исследования, японские физики, возглавляемые Масаки Сано (Masaki Sano) из Токийского университета воплотили на практике мысленный эксперимент с участием "демона Максвелла".
Ученые использовали в работе полимерный объект размером около 300 нанометров, напоминающий бусину. Ее форма подобрана так, что вращаться по часовой стрелке ей энергетически более выгодно, так как это сопровождается высвобождением механической энергии. Вращение против часовой стрелки, напротив, приводит к "закручиванию" бусины и увеличению запасенной ей механической энергии.
Бусину поместили в специальный раствор, и она из-за своих малых размеров начинала принимать участие в броуновском движении и вращаться - как по часовой стрелке, так и против.
Исследователи с помощью специального оборудования отслеживали каждый поворот бусины, и, когда она вращалась против часовой стрелки, прилагали электрическое напряжение к емкости, в которой она находилась. Такая операция не передавала системе дополнительную энергию, но при этом не давала бусине "раскручиваться" назад. Таким образом, используя только информацию о том, куда провернулась бусина, ученые смогли увеличить запас ее механической энергии лишь за счет энергии броуновского движения молекул.
Закон сохранения энергии при этом не нарушается. Согласно расчетам Сано, эффективность преобразования информации в энергию в их эксперименте составила 28%, что согласуется с теоретическими расчетами.
Такой механизм может использоваться для работы наномашин или молекулярных механизмов, считает Владко Ведрал (Vlatko Vedral), физик из Оксфордского университета, не принимавший участия в эксперименте Сано, мнение которого приводит интернет-издание Nature News.
"Весьма любопытно было бы обнаружить использование этого принципа передачи энергии в живых системах", - добавил ученый.

Ученые из Московского физико-технического института с коллегами из США и Швейцарии описали пространственно-разнесенного квантового демона Максвелла - устройство, локально нарушающее второй закон термодинамики в системе, которая находится на расстоянии одного-пяти метров от демона.

Устройство может найти применение в квантовых компьютерах и микроскопических холодильниках точечного действия. Исследование опубликовано в журнале Physical Review B.

Второй закон утверждает, что энтропия, то есть неупорядоченность, энергетически изолированной системы не может самопроизвольно уменьшаться.

«Наш демон делает так, что устройство, которое называется кубитом, переходит из менее упорядоченного состояния в более упорядоченное, - поясняет ведущий автор исследования Андрей Лебедев, сотрудник МФТИ и Федеральной высшей технической школы Цюриха. - При этом кубит не изменяет свою энергию и находится от демона на огромном, по меркам квантовой физики, расстоянии».

До сих пор авторы исследования и другие физики описывали и конструировали только квантовых демонов Максвелла с очень малым радиусом действия. Поскольку демона необходимо особым образом подготовить перед каждым взаимодействием с кубитом, а на это уходит энергия, глобально второй закон не нарушается.

Демон-очиститель

Роль кубита в исследовании выполняет сверхпроводящий искусственный атом - микроскопическое устройство, из которого ранее тот же коллектив сделать квантовый магнитометр. Такой кубит состоит из тонких пленок алюминия, нанесенных на кремниевый чип.

Эта система называется искусственным атомом, потому что при температуре, близкой к абсолютному нулю, она ведет себя как атом с двумя энергетическими уровнями - основным и возбужденным.

Для кубита характерны «грязные» (смешанные) и «чистые» состояния. Если он пребывает или в основном, или в возбужденном состоянии, но не известно, в каком именно, то говорят о грязном. В таком состоянии можно говорить о классической вероятности найти искусственный атом на одном из своих уровней.

Но как и настоящий атом, кубит может находиться в квантовой суперпозиции основного и возбужденного состояния. Так в квантовой физике описывают особое состояние, которое не тождественно ни одному из двух базисных.

Такое состояние называют чистым, его нельзя описать только в терминах классической вероятности. Оно считается более упорядоченным, но может существовать лишь доли секунды, прежде чем переходит в грязное.

Роль демона выполняет второй такой же кубит. Он присоединяется к рабочему кубиту коаксиальным кабелем, который проводит микроволновые сигналы. Согласно принципу неопределенности Гейзенберга, оказавшись связанными, кубиты начинают самопроизвольно обмениваться виртуальными фотонами - порциями микроволнового излучения. Посредством фотонов кубиты меняются состояниями.

Демон приводится в чистое состояние, затем он обменивается состояниями с рабочим кубитом, отдавая чистое взамен на грязное с такой же энергией. Перейдя в чистое состояние, рабочий кубит снижает свою энтропию, сохранив прежнюю энергию.

Выходит, что демон Максвелла на расстоянии «съедает» энтропию кубита - энергетически изолированной системы. Если смотреть на кубит локально, возникает впечатление, что второй закон нарушен.

Квантовый нанохолодильник

Возможность на расстоянии очищать состояние рабочего кубита ценна с практической точки зрения. В отличие от грязного, чистое состояние кубита можно относительно легко и предсказуемо перевести в основное или в возбужденное при помощи электромагнитного поля.

Эта операция нужна для работы квантового компьютера: при его запуске требуется перевести все кубиты в основное состояние. При этом присутствие демона вблизи кубитов нежелательно, так как процесс его очистки может губительно повлиять на состояние компьютера.

Еще одно применение связано с тем, что перевод рабочего кубита в чистое состояние и затем в основное вызывает охлаждение точки пространства, где находится кубит. Это значит, что кубит работает как нанохолодильник, которым можно точечно охлаждать, например, участки молекул.

«Обычный холодильник воздействует на весь свой объем, а такой кубитный нанохолодильник будет охлаждать конкретную точку. В ряде случаев это может быть эффективнее, - объясняет соавтор исследования, заведующий лабораторией физики квантовых информационных технологий МФТИ Гордей Лесовик. - Например, в том же квантовом компьютере можно было использовать так называемое алгоритмическое охлаждение - в коде основной, „квантовой“ программы написать подпрограмму, которая будет прицельно охлаждать самые горячие кубиты».

«А поскольку любую тепловую машину можно запустить в обратную сторону, мы имеем еще и точечный нагреватель. Чтобы его включить, нужно переводить рабочий кубит из суперпозиции не в основное, а в возбужденное состояние. Тогда там, где находится кубит, станет горячее», - добавляет ученый.

Обе операции можно проводить многократно, потому что чистое состояние кубита живет доли секунды, после чего оно снова переходит в грязное, поглощая или излучая энергию в случае с холодильником и нагревателем соответственно. На каждом шаге точка нахождения кубита будет остывать или нагреваться сильнее.

Хотя эта температура крайне низка (считаные градусы выше абсолютного нуля), она все же выше рабочей температуры кубитов примерно в 100 раз, что существенно облегчает реализацию предложенной схемы на практике.

Исследование профинансировано Швейцарским национальным научным фондом, Министерством энергетики США, Российским фондом фундаментальных исследований, Фондом развития теоретической физики и математики «БАЗИС», Министерством образования и науки России и правительством России.

— мысленный эксперимент, покушающийся на второе начало термодинамики , удалось поставить в реальности физикам из университетов Тюо (Chuo University) и Токио (University of Tokyo).

Японцы создали два связанных шарика полистирола диаметром 0,3 микрометра каждый. Один находился на поверхности стекла, второй мог вращаться вокруг первого. Установку при этом заполняла жидкость. Её молекулы хаотично подталкивали шарики (броуновское движение), естественно, с равной вероятностью как по часовой, так и против часовой стрелки.

Системы с обратной связью, говорят японские физики, могут представлять собой машины нового типа, преобразующие информацию в энергию. Теоретически в будущем подобные устройства могли бы питать за счёт броуновского движения микромашины.
На рисунке показана условная схема эксперимента. Положение вращающегося ротора тут заменено шариком, прыгающим по ступенькам случайным образом. Когда шарик прыгает вверх, умный демон Максвелла ставит барьер, не позволяющий шарику скатиться обратно. При этом «демон» сам не подталкивает шарик (иллюстрация Mabuchi Design Office/Yuki Akimoto).

Далее авторы добавили слабое электрическое поле, которое создавало крутящий момент. Это был аналог лестницы, по которой шарик мог «взбираться», увеличивая потенциальную энергию. Иногда молекулы толкали ротор против действия поля (подъём), иногда в сторону поля (прыжок по ступенькам вниз). Но в целом ротор вращался туда, куда его толкало внешнее поле.

Но вот физики добавили «демона» — высокоскоростную камеру, наблюдающую за шариком, и компьютер, управляющий полем. Каждый раз, когда ротор в броуновском движении делал шаг против поля, компьютер сдвигал последнее так, что шарик мог повернуться, но когда ротор пытался вращаться обратно, поле блокировало его.

Так был создан аналог открываемой и закрываемой демоном Максвелла дверцы: ротор увеличивал свою энергию за счёт теплового движения молекул.

Законов природы, впрочем, установка не нарушает, поскольку для работы «демона» (камеры, системы коррекции напряжения) необходима энергия. Но японцы подчёркивают: данный опыт впервые на практике доказал реальность теплового насоса — демона Максвелла, теоретически обоснованного Лео Сцилардом в 1929 году. Такая машина извлекает энергию из изотермической окружающей среды и преобразует её в работу.

Общий принцип теплового насоса – демона Максвелла («двигатель Сциларда»). Макроскопическая система (компьютер) управляет событиями в микроскопической системе (в реальности – ротор и поле, а условно – комната с молекулами и перегородкой) за счёт получения информации о ней. Энергия в микроскопической системе растёт (и может производить полезную работу), но не вполне бесплатно, поскольку «демон» потребляет энергию на получение информации и управляющие действия (иллюстрация Shoichi Toyabe, Eiro Muneyuki, Masaki Sano/Nature Physics).