Где не нужна сила трения. Какова природа трения. Механические колебания и волны

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняетсятретьему закону Ньютона : если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как иупругие силы , имеютэлектромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел.

Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены покасательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя . Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону (рис. 1.1.6).

Сила трения покоя не может превышать некоторого максимального значения (F тр) max . Если внешняя сила больше (F тр) max , возникает относительное проскальзывание. Силу трения в этом случае называютсилой трения скольжения . Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя. Эта модель силы сухого трения применяется при решении многих простых физических задач (рис. 1.1.7).

Опыт показывает, что сила трения скольжения пропорциональна силе нормального давления тела на опору, а следовательно, и силе реакции опоры

F тр = (F тр) max = μN.

Коэффициент пропорциональности μ называют коэффициентом трения скольжения.

Коэффициент трения μ – величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей. При скольжении сила трения направлена по касательной к соприкасающимся поверхностям в сторону, противоположную относительной скорости (рис. 1.1.8).

При движении твердого тела в жидкости или газе возникает силa вязкого трения . Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела.При вязком трении нет трения покоя .

Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях F тр ~ υ, при больших скоростях F тр ~ υ 2 . При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.

Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.

Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой , направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

где – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления); – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения . Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где – модуль силы трения скольжения; N – сила реакции опоры (нормального давления); – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению. При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя. Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

Главная особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

От размеров тела и его геометрической формы (рис. 14);

Состояния поверхности тела (рис. 15);

Свойства жидкости или газа (рис. 16);

Относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

где – величина относительной скорости; – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

где – величина относительной скорости; – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

«Физика - 10 класс»

Вспомните, что такое трение.
Какими факторами оно обусловлено?
Почему изменяется скорость движения по столу бруска после толчка?

Ещё один вид сил, с которыми имеют дело в механике, - это силы трения. Эти силы действуют вдоль поверхностей тел при их непосредственном соприкосновении.

Силы трения во всех случаях препятствуют относительному движению соприкасающихся тел. При некоторых условиях силы трения делают это движение невозможным. Однако они не только тормозят движение тел. В ряде практически важных случаев движение тела не могло бы возникнуть без действия сил трения.

Трение, возникающее при относительном перемещении соприкасающихся поверхностей твёрдых тел, называется сухим трением .

Различают три вида сухого трения: трение покоя, трение скольжения и трение качения.


Трение покоя.

Попробуйте сдвинуть пальцем лежащую на столе толстую книгу. Вы приложили к ней некоторую силу, направленную вдоль поверхности стола, а книга остаётся в покое. Следовательно, между книгой и поверхностью стола возникает сила, направленная против той силы, с которой вы действуете на книгу, и в точности равная ей по модулю. Это сила трения тp . Вы с большей силой толкаете книгу, но она по-прежнему остаётся на месте. Значит, и сила трения тp настолько же возрастает.

Силу трения, действующую между двумя телами, неподвижными относительно друг друга, называют силой трения покоя .

Если на тело действует сила , параллельная поверхности, на которой оно находится, и тело при этом остаётся неподвижным, то это означает, что на него действует сила трения покоя тp , равная по модулю и направленная в противоположную сторону силе (рис. 3.22). Следовательно, сила трения покоя определяется действующей на него силой:

Если действующая на покоящееся тело сила хотя бы немного превысит максимальную силу трения покоя, то тело начнёт скользить.

Наибольшее значение силы трения, при котором скольжение ещё не наступает, называется максимальной силой трения покоя .

Для определения максимальной силы трения покоя существует весьма простой, но не очень точный количественный закон. Пусть на столе находится брусок с прикреплённым к нему динамометром. Проведём первый опыт. Потянем за кольцо динамометра и определим максимальную силу трения покоя. На брусок действуют сила тяжести m, сила нормальной реакции опоры 1 , сила натяжения 1 , пружины динамометра и максимальная сила трения покоя тр1 (рис. 3.23).

Положим на брусок ещё один такой же брусок. Сила давления брусков на стол увеличится в 2 раза. Согласно третьему закону Ньютона сила нормальной реакции опоры 2 также увеличится в 2 раза. Если мы снова измерим максимальную силу трения покоя, то увидим, что она увеличилась во столько раз, во сколько раз увеличилась сила 2 , т. е. в 2 раза.

Продолжая увеличивать число брусков и измеряя каждый раз максимальную силу трения покоя, мы убедимся в том, что

>максимальное значение модуля силы трения покоя пропорционально модулю силы нормальной реакции опоры.

Если обозначить модуль максимальной силы трения покоя через F тр. mах, то можно записать:

F тр. mах = μN (3.11)

где μ - коэффициент пропорциональности, называемый коэффициентом трения. Коэффициент трения характеризует обе трущиеся поверхности и зависит не только от материала этих поверхностей, но и от качества их обработки. Коэффициент трения определяется экспериментально.

Эту зависимость впервые установил французский физик Ш. Кулон.

Если положить брусок на меньшую грань, то F тр. mах не изменится.

Максимальная сила трения покоя не зависит от площади соприкосновения тел.

Сила трения покоя изменяется в пределах от нуля до максимального значения, равного μN. За счёт чего может происходить изменение силы трения?

Дело здесь вот в чём. При действии на тело некоторой силы оно слегка (незаметно для глаза) смещается, и это смещение продолжается до тех пор, пока микроскопические шероховатости поверхностей не расположатся относительно друг друга так, что, зацепляясь одна за другую, они приведут к появлению силы, уравновешивающей силу . При увеличении силы тело опять чуть-чуть сдвинется так, что мельчайшие неровности поверхностей по-иному будут цепляться друг за друга, и сила трения возрастёт.

И лишь при > F тр. mах ни при каком взаимном расположении шероховатостей поверхности сила трения не в состоянии уравновесить силу , и начнётся скольжение.

Зависимость модуля силы трения скольжения от модуля действующей силы показана на рисунке 3.24.

При ходьбе и беге на подошвы ног действует сила трения покоя, если только ноги не скользят. Такая же сила действует на ведущие колёса автомобиля. На ведомые колёса также действует сила трения покоя, но уже тормозящая движение, причём эта сила значительно меньше силы, действующей на ведущие колёса (иначе автомобиль не смог бы тронуться с места).

В давнее время сомневались, что паровоз сможет ехать по гладким рельсам. Думали, что трение, тормозящее ведомые колёса, будет равно силе трения, действующей на ведущие колёса. Предлагали даже делать ведущие колёса зубчатыми и прокладывать для них специальные зубчатые рельсы.


Трение скольжения.


При скольжении сила трения зависит не только от состояния трущихся поверхностей, но и от относительной скорости движения тел, причём эта зависимость от скорости является довольно сложной. Опыт показывает, что часто (хотя и не всегда) в самом начале скольжения, когда относительная скорость ещё мала, сила трения становится несколько меньше максимальной силы трения покоя. Лишь затем, по мере увеличения скорости, она растёт и начинает превосходить F тр. mах.

Вы, вероятно, замечали, что тяжёлый предмет, например ящик, трудно сдвинуть с места, а потом двигать его становится легче. Это как раз и объясняется уменьшением силы трения при появлении скольжения с малой скоростью (см. рис. 3.24).

При не слишком больших относительных скоростях движения сила трения скольжения мало отличается от максимальной силы трения покоя. Поэтому приближённо можно считать её постоянной и равной максимальной силе трения покоя:

F тр ≈ F тр. mах = μN.

Силу трения скольжения можно уменьшить во много раз с помощью смазки - чаще всего тонкого слоя жидкости (обычно того или иного сорта минерального масла) - между трущимися поверхностями.

Ни одна современная машина, например двигатель автомобиля или трактора, не может работать без смазки. Специальная система смазки предусматривается при конструировании всех машин.

Трение между слоями жидкости, прилегающими к твёрдым поверхностям, значительно меньше, чем между сухими поверхностями.


Трение качения.


Сила трения качения существенно меньше силы трения скольжения, поэтому гораздо легче перекатывать тяжёлый предмет, чем двигать его.

Сила трения зависит от относительной скорости движения тел. В этом её главное отличие от сил тяготения и упругости, зависящих только от расстояний.


Силы сопротивления при движении твёрдых тел в жидкостях и газах.


При движении твёрдого тела в жидкости или газе на него действует сила сопротивления среды. Эта сила направлена против скорости тела относительно среды и тормозит движение.

Главная особенность силы сопротивления состоит в том, что она появляется только при наличии относительного движения тела и окружающей среды.
Сила трения покоя в жидкостях и газах полностью отсутствует.

Это приводит к тому что усилием рук можно сдвинуть тяжёлое тело, например плавающую лодку, в то время как сдвинуть с места, скажем, поезд усилием рук просто невозможно.

Модуль силы сопротивления F c зависит от размеров, формы и состояния поверхности тела, свойств среды (жидкости или газа), в которой тело движется, и, наконец, от относительной скорости движения тела и среды.

Примерный характер зависимости модуля силы сопротивления от модуля относительной скорости тела показан на рисунке 3.25. При относительной скорости, равной нулю, сила сопротивления не действует на тело (F c = 0). С увеличением относительной скорости сила сопротивления сначала растёт медленно, а затем всё быстрее и быстрее. При малых скоростях движения силу сопротивления можно считать прямо пропорциональной скорости движения тела относительно среды:

F c = k 1 υ, (3.12)

где k 1 - коэффициент сопротивления, зависящий от формы, размеров, состояния поверхности тела и свойств среды - её вязкости. Вычислить коэффициент k 1 теоретически для тел сколько-нибудь сложной формы не представляется возможным, его определяют опытным путём.

При больших скоростях относительного движения сила сопротивления пропорциональна квадрату скорости:

F c = k 2 υ 2 , υ, (3.13)

где k 2 - коэффициент сопротивления, отличный от k 1 .

Какую из формул - (3 12) или (3.13) - можно использовать в конкретном случае, определяется опытным путём. Например, для легкового автомобиля первую формулу желательно применять приблизительно при 60-80 км/ч, при больших скоростях следует использовать вторую формулу.

1. Сила трения возникает при непосредственном соприкосновении тел и всегда направлена вдоль поверхности соприкосновения. Сила трения покоя возникает когда к покоящемуся телу прикладываем некоторую силу F не приводящую тело в движение. По модулю сила трения покоя равна приложенной силе F и направлена противоположно силе, приложенной к покоящемуся телу параллельно поверхности соприкосновения его с другим телом.

2. Действует ли сила трения покоя на стол, стоящий на полу?

2. Нет, пока мы не прикладываем к нему силу F , с помощью которой хотим его сдвинуть.

3. Что такое сила давления? Обязательно ли это сила тяжести?

3. Сила давления это сила реакции опоры, а она не всегда совпадает с силой тяжести.

4. Что такое коэффициент трения?

4. Коэффициент трения - коэффициент пропорциональности между силой трения покоя и силой нормального давления.

5. Человек толкает книжный шкаф, но шкаф остается в покое. Не нарушается ли здесь второй закон Ньютона, согласно которому тело, к которому приложена сила, изменяет свою скорость?

5. Нет, т.к. в законе Ньютона под силой F подразумевается равнодействующая всех сил действующих на тело. В данном случае сила, действующая на шкаф уравновешивается силой трения покоя и равнодействующая равна нулю, следовательно, и ускорение и перемещение шкафа равны нулю.

Еще в школьные годы, в седьмом или восьмом классе, каждый человек знакомится с новым понятием динамической физики, - трением. Однако многие, повзрослев, забывают, и каким образом действует эта сила. Давайте попробуем разобраться в этой теме.

Определение понятия

Трение - это явление, которое заключает в себе следующий смысл: когда два тела соприкасаются друг с другом, на месте их контакта образуется особое взаимодействие, препятствующее телам продолжать движение относительно друг друга. Ясно, что можно подсчитать значение взаимодействия этих тел. как раз таки и характеризует данное взаимодействие количественно. Если трение происходит между твердыми телами (например, взаимодействие книги с книжной полкой или яблока со столом), то такое взаимодействие называется сухим трением.

Следует понимать, что трение - это сила, имеющая электромагнитную природу. Это означает, что причиной возникновения данной силы является взаимодействие между частицами, из которых состоит то или иное тело.

Каким бывает трение?

Благодаря разнообразию существующих в нашем мире предметов можно определить, что каждый из них имеет свою структуру и обладает индивидуальными свойствами. Это означает, что и взаимодействие между различными предметами будет отличаться. Для правильного понимания сути и грамотного решения многих задач в физике принято условно разделять три вида трения. Итак, разберем каждый по отдельности:

  • Первое трение - это трение покоя, которое возникает при отсутствии относительного перемещения двух тел. Мы можем наблюдать его примеры повсюду, ведь сила, возникающая при этом трении, удерживает предметы в равновесии. Например, товары на движущейся ленте транспортера, вбитый в стену гвоздь или человек, стоящий на полу.
  • Трение скольжения - это условно второе трение. Значение скольжения определяется таким образом: когда к телу, находящемуся в равновесии, прикладывают силу, которая больше, чем сила трения покоя, начинает действовать сила трения скольжения, и тело сдвигается с места.
  • И наконец, трение качения , объясняющее взаимодействие двух тел, одно из которых перекатывается по поверхности другого. Разница в и скольжения объясняется тем, что при любом движении площади тела смещаются по длине поверхности соприкосновения, и вместо разорванных межмолекулярных связей образуются новые. А в случае когда колесо катится без проскальзывания, молекулярные связи при подъеме участков колеса разрываются гораздо быстрее, чем при скольжении. Получается, что сила трения качения меньше силы скольжения.

Где и как можно использовать трение?

Трение - это незаменимое явление, без которого мы бы не смогли делать элементарные вещи: ходить, сидеть или же просто держать предметы в руках. Поэтому не стоит недооценивать значение трения. Как говорил французский физик Гильом: "Не будь трения, наша Земля была бы без единой шероховатости, она была бы подобна жидкой капле".

Пожалуй, лучший пример, который наиболее точно характеризует трение, - это работа колеса. Еще в древности было замечено, что силы трения качения гораздо меньше сил трения скольжения. Именно неоспоримая польза трения качения послужила причиной того, что люди стали подкладывать бревна или катки для перемещения тяжелых и габаритных грузов. С течением времени люди совершенствовали знания об удивительных свойствах трения качения, наблюдали за движением предметов под воздействием сил трения и, наконец, изобрели колесо! В современном мире невозможно представить жизни без этих незаменимых деталей, ведь колеса - это вторые "двигатели" любого транспорта!

Как вычислить значение силы трения?

Как и любая другая обладает целочисленными значениями. Для того чтобы точно определить, сколько силы потребуется для перемещения или других видов работ, необходимо подсчитать силу трения покоя. Этим обычно занимаются инженеры, когда, например, строят заводы или же изобретают новые устройства. Однако даже обычные школьники сталкиваются с определенными задачами, где требуется вычислить силу трения. Итак, чтобы подсчитать его значение, нужно просто воспользоваться несложной формулой: F трения = K * N, где k - это коэффициент трения. Значение всех коэффициентов зависит всегда от поверхности предмета, по которому движется или с которым взаимодействует тело. "N" в нашей формуле означает силу на тело. Она зависит в первую очередь от массы тела, которое соприкасается с поверхностью опоры.

Вычисляем значение силы в задаче

Допустим, тело массой m = 3 кг находится на горизонтальной доске. между деревянной доской и телом равен 0,3. Как же найти значение силы трения? Очень просто, всего-то нужно подставить наши значения в формулу. Только нужно учесть, что N в данном случае равен весу тела (по 3-му закону Ньютона). Итак, искомая сила равна (m * g) * k = (3 кг * 10 м/с 2) * 0,3 = 9 H.