Формула остроградского грина примеры решения. Интеграл по замкнутому контуру, формула грина, примеры. Условия независимости криволинейного интеграла II рода от пути интегрирования


Направление полного ускорения определим по тангенсу уг­ла α, который полное ускорение образует с нормальным ускоре­нием (рис. 52). Получим

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О 1 ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

Переносным движением точки называется ее движение в рассматриваемый момент времени вместе с подвижной системой координат относительно неподвижной системы координат .

Переносная скорость и переносное ускорение точки обозначается индексом е : , .

Переносной скоростью (ускорением ) точки М в данный момент времени называют вектор, равный скорости (ускорению ) той точки m подвижной системы координат, с которой совпадает в данный момент движущая точка М (рис. 8.1).

Проведем радиус-вектор начала координат (рис. 8.1). Из рисунка видно, что

Чтобы найти переносную скорость точки в заданный момент времени необходимо продифференцировать радиус-вектор при условии, что координаты точки x, y, z не изменяются в данный момент времени:

Переносное ускорение соответственно равно

Таким образом для определения переносной скорости и переносного ускорения в данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить точку m тела, неизменно связанного с подвижной системой координат, где находится в остановленный момент точка М , и вычислить скорость и ускорение точки m тела, совершающего переносное движение относительно неподвижной системы координат.

Сложным движением точки называется такое ее движение, при кото­ром она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за непод­вижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, со­вершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета ) и дви­жения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета ).

Движение точки по отношению к подвижной системе ко­ординат называется относительным движением точки . Скорость и ускорение этого движения называют относитель­ной скоростью и относительным ускорением и обозначают и .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки .

Переносной скоростью ипереносным ускорением точкина­зывают скорость и ускорение той, жестко связанной с под­вижной системой коор­динат точки, с которой совпадает в дан­ный момент времени движущаяся точка, и обозначают и .

Движение точки по отношению к неподвижной системе координат называ­ется абсолютным или сложным . Скорость и ускорение точки в этом движении называют абсолютнойскоростью и абсолютным ускорением и обозначают и .

В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.

§ 21. Определение скорости точки при сложном

движении

Пусть имеется неподвижная система отсчета по отношению к кото­рой движется подвижная система отсчета . Относительно подвижной системы координат движет­ся точка (рис. 2.26). Уравнение движения точки , находящейся в сложном движении, можно задать векторным способом

где - радиус-вектор точки , определяющий ее положение относительно

не­подвижной системы отсчета ;

Радиус-вектор, определяющий положение начала отсчета подвижной

системы координат ;

Радиус-вектор рассматриваемой точки , определяющий ее

положение относительно подвижной системы координат.

Пустькоординаты точки в подвижных осях. Тогда

, (2.68)

где - единичные векторы, направленные вдоль под­вижных осей . Подставляя (2.68) в равенство (2.67), полу­чим:

При относительном движении координаты изменя­ются с течением времени. Чтобы найти скорость относитель­ного движения, нужно продиффе­ренцировать радиус-вектор по времени, учитывая его изменение только за счет относи­тельного движе­ния, то есть только за счет изменения коор­динат , а подвижную систему координат предполагать при этом неподвижной, то есть вектора считать не зависящими от времени. Дифференцируя равенство (2.68) по времени с учетом сде­ланных оговорок, получим относитель­ную скорость.

Общая постановка задачи об относительном движении такова: движение точки определяется наблюдателями, связанными с двумя различными координатными системами (системами отсчета), причем эти системы движутся заданным образом друг по отношению к другу. Каждый наблюдатель определяет кинематические элементы движе­ния: траекторию, скорость и ускорение в своей системе отсчета. Ставится задача: зная движение одной системы отсчета по отно­шению к другой, найти связь между кинематическими элементами движения точки по отношению к каждой системе в отдельности. Предположим, что движение точки М в пространстве рассма­тривается в двух движущихся друг по отношению к другу системах координат: Oxyz , и (рис.41). В зависимости от содержания стоящей перед нами задачи одну из этих систем Oxyz примем за основную и назовем абсолютной системой и все кине­матические элементы его абсолютными. Другую систему назовем относительной и соответственно движение по отношению к этой системе, а также его кинематические элементы относитель­ными. Термины «абсолютный» и «относительный» имеют здесь ус­ловное значение; при рассмотрении движений может оказаться целе­сообразным то одну, то другую систему принимать за абсолютную. Элементы абсолютного движения будем обозначать подстрочным индексом «а », а относительного - индексом «r ».

Введем понятие переносного движения, элементы которого будем обозначать подстрочным индексом «е ». Переносным движением точки будем называть движение (по отношению к абсолютной системе) того пункта относительной системы, через который в рассматриваемый момент времени проходит движущаяся точка. Понятие переносного движения нуждается в пояснении. Необхо­димо четко различать точку, абсолютное и относительное движение которой рассматривается, от той, неизменно связанной с относи­тельной системой точки, через которую в данный момент проходит движущаяся точка. Обычно та и другая точка обо­значены одной буквой М , так как рисунок не передает движения; на самом деле это две различные точки, движущиеся друг по от­ношению к другу.

Остановимся на двух иллюстрациях понятия переносного дви­жения. Если человек идет по движущейся платформе, то можно рассматривать, во-первых, «абсолютное» движение человека по от­ношению к земле, во-вторых, «относительное» его движение по платформе. Переносным движением при этом будет являться движе­ние по отношению к земле того места платформы, по которому проходит в данный момент человек.