Вещества в состав которых входит азот. Что такое азот и для чего используется? История открытия химического элемента

Рождающий селитру — так переводится с латинского языка слово Nitrogenium. Это название азота — химического элемента с атомным номером 7, возглавляющего 15-ю группу в длинном варианте периодической таблицы. В форме простого вещества распространен в составе воздушной оболочки Земли — атмосферы. Разнообразные соединения азота встречаются в земной коре и живых организмах, находят широкое применение в отраслях промышленности, военном деле, сельском хозяйстве и медицине.

Почему азот называли «удушливым» и «безжизненным»

Как предполагают историки химии, первым получил это простое вещество Генри Кавендиш (1777). Ученый пропускал воздух над раскаленными углями, для поглощения продуктов реакции использовал щелочь. В результате опыта исследователь обнаружил бесцветный газ без запаха, не вступивший в реакцию с углем. Кавендиш назвал его «удушливым воздухом» за неспособность поддерживать дыхание, а также горение.

Современный химик объяснил бы, что кислород прореагировал с углем, образовался углекислый газ. Оставшаяся «удушливая» часть воздуха состояла по большей части из молекул N 2 . Кавендиш и другие ученые в то время об этом веществе еще не знали, хотя соединения азота и селитры тогда широко использовались в хозяйстве. Ученый сообщил о необычном газе своему коллеге, проводившему аналогичные опыты, — Джозефу Пристли.

Одновременно Карл Шееле обратил внимание на неизвестную составную часть воздуха, но не сумел правильно объяснить ее происхождение. Только Даниэль Рутерфорд в 1772 году понял, что присутствующий в экспериментах «удушливый» «испорченный» газ — азот. Какого ученого считать его первооткрывателем — об этом до сих пор ведут спор историки науки.

Через 15 лет после опытов Рутерфорда знаменитый химик Антуан Лавуазье предложил сменить термин «испорченный» воздух, относившийся к азоту, на другой — Nitrogenium. К тому времени было доказано, что это вещество не горит, не поддерживает дыхание. Тогда же появилось русское название «азот», которое трактуется по-разному. Чаще всего говорят, что термин означает «безжизненный». Последующие работы опровергли распространенное мнение о свойствах вещества. Соединения азота — белки — важнейшие макромолекулы в составе живых организмов. Для их построения растения поглощают из почвы необходимые элементы минерального питания — ионы NO 3 2- и NH 4+ .

Азот — химический элемент

Разобраться в строении атома и свойствах помогает (ПС). По положению в таблице Менделеева можно определить заряд ядра, количество протонов и нейтронов (массовое число). Необходимо обратить внимание на значение атомной массы — это одна из главных характеристик элемента. Номер периода соответсвует количеству энергетических уровней. В коротком варианте периодической таблицы номер группы соответствует числу электронов на внешнем энергатическом уровне. Обобщим все данные в общей характеристике азота по его положению в периодической системе:

  • Это неметаллический элемент, находится в правом верхнем углу ПС.
  • Химический знак: N.
  • Порядковый номер: 7.
  • Относительная атомная масса: 14,0067.
  • Формула летучего водородного соединения: NH 3 (аммиак).
  • Образует высший оксид N 2 O 5 , в котором валентность азота равна V.

Строение атома азота:

  • Заряд ядра: +7.
  • Число протонов:7; число нейтронов: 7.
  • Количество энергетических уровней: 2.
  • Общее число электронов: 7; электронная формула: 1s 2 2s 2 2p 3 .

Подробно изучены стабильные изотопы элемента № 7, их массовые числа — 14 и 15. Содержание атомов более легкого из них составляет 99,64 %. В ядрах короткоживущих радиоактивных изотопов находится также 7 протонов, а число нейтронов сильно варьируется: 4, 5, 6, 9, 10.

Азот в природе

В составе воздушной оболочки Земли присутствуют молекулы простого вещества, формула которого — N 2 . Содержание газообразного азота в атмосфере составляет по объему примерно 78,1 %. Неорганические соединения этого химического элемента в земной коре — различные соли аммония и нитраты (селитры). Формулы соединений и названия некоторых из важнейших веществ:

  • NH 3, аммиак.
  • NO 2, диоксид азота.
  • NaNO 3, нитрат натрия.
  • (NH 4) 2 SO 4, сульфат аммония.

Валентность азота в двух последних соединениях — IV. Каменный уголь, почва, живые организмы также содержат атомы N в связанном виде. Азот является составной частью макромолекул аминокислот, нуклеотидов ДНК и РНК, гормонов и гемоглобина. Общее содержание химического элемента в теле человека достигает 2,5 %.

Простое вещество

Азот в виде двухатомных молекул — самая большая по объему и массе часть воздуха атмосферы. Вещество, формула которого N 2 , не обладает запахом, цветом и вкусом. Этот газ составляет более 2/3 воздушной оболочки Земли. В жидком виде азот представляет собой бесцветную субстанцию, напоминающую воду. Кипит при температуре -195,8 °C. М (N 2) = 28 г/моль. Простое вещество азот немного легче кислорода, его плотность по воздуху близка к 1.

Атомы в молекуле прочно связывают 3 общие электронные пары. Соединение проявляет высокую химическую устойчивость, что отличает его от кислорода и ряда других газообразных веществ. Для того чтобы молекула азота распалась на составляющие ее атомы, необходимо затратить энергию 942,9 кдж/моль. Связь из трех пар электронов очень прочная, начинает разрушаться при нагревании свыше 2000 °С.

При нормальных условиях диссоциация молекул на атомы практически не происходит. Химическая инертность азота также обусловлена полным отсутствием полярности в его молекулах. Они очень слабо взаимодействуют друг с другом, чем обусловлено газообразное состояние вещества при нормальном давлении и температуре, близкой к комнатной. Низкая химическая активность молекулярного азота находит применение в разных процессах и устройствах, где необходимо создать инертную среду.

Диссоциация молекул N 2 может происходить под влиянием солнечного излучения в верхних слоях атмосферы. Образуется атомарный азот, который при нормальных условиях реагирует с некоторыми металлами и неметаллами (фосфором, серой, мышьяком). В результате идет синтез веществ, которые в земных условиях получают косвенным путем.

Валентность азота

Наружный электронный слой атома образуют 2 s и 3 p электрона. Эти отрицательные частицы азот может отдать при взаимодействии с другими элементами, что соответствует его восстановительным свойствам. Присоединяя недостающие до октета 3 электрона, атом проявляет окислительные способности. Электроотрицательность азота ниже, его неметаллические свойства менее выражены, чем у фтора, кислорода и хлора. При взаимодействии с этими химическими элементами азот отдает электроны (окисляется). Восстановлением до отрицательных ионов сопровождаются реакции с другими неметаллами и металлами.

Типичная валентность азота — III. В этом случае химические связи образуются за счет притяжения внешних р-электронов и создания общих (связывающих) пар. Азот способен к образованию донорно-акцепторной связи за счет своей неподеленной пары электронов, как это происходит в ионе аммония NH 4+ .

Получение в лаборатории и промышленности

Один из лабораторных способов основан на окислительных свойствах Используется соединение азота с водородом — аммиак NH 3 . Этот неприятно пахнущий газ взаимоддействует с порошкообразным оксидом меди черного цвета. В результате реакции выделяется азот и появляется металлическая медь (красный порошок). На стенках трубки оседают капли воды — еще одного продукта реакции.

Другой лабораторный способ, в котором используется соединение азота с металлами — азид, например NaN 3 . Получается газ, который не надо очищать от примесей.

В лаборатории проводят разложение нитрита аммония на азот и воду. Для того чтобы реакция началась, требуется нагревание, затем процесс идет с выделением тепла (экзотермический). Азот загрязнен примесями, поэтому его очищают и осушают.

Получение азота в промышленности:

  • фракционная перегонка жидкого воздуха — способ, в котором используются физические свойства азота и кислорода (разные температуры кипения);
  • химическая реакция воздуха с раскаленным каменным углем;
  • адсорбционное газоразделение.

Взаимодействие с металлами и водородом — окислительные свойства

Инертность прочных молекул не позволяет получать некоторые соединения азота прямым синтезом. Для активации атомов необходимо сильное нагревание или облучение вещества. Азот может прореагировать с литием при комнатной температуре, с магнием, кальцием и натрием реакция идет лишь при нагревании. Образуются нитриды соответствующих металлов.

Взаимодействие азота с водородом происходит при высоких значениях температуры и давления. Также для этого процесса необходим катализатор. Получается аммиак — один из важнейших продуктов химического синтеза. Азот, как окислитель, проявляет в своих соединениях три отрицательные степени окисления:

  • −3 (аммиак и другие водородные соединения азота — нитриды);
  • −2 (гидразин N 2 H 4);
  • −1 (гидроксиламин NH 2 OH).

Важнейший нитрид — аммиак — в больших количествах получают в промышленности. Большой проблемой долгое время оставалась химическая инертность азота. Его сырьевыми источниками были селитры, но запасы минералов стали быстро сокращаться с ростом производства.

Большим достижением химической науки и практики стало создание аммиачного метода связывания азота в промышленных масштабах. В специальных колоннах проводится прямой синтез — обратимый процесс между азотом, полученным из воздуха, и водородом. При создании оптимальных условий, сдвигающих равновесие этой реакции в сторону продукта, применении катализатора выход аммиака достигает 97 %.

Взаимодействие с кислородом — восстановительные свойства

Для того чтобы началась реакция азота и кислорода, необходимо сильное нагревание. Достаточной энергией обладают и грозовой разряд в атмосфере. Важнейшие неорганические соединения, в которых азот находится в своих положительных степенях окисления:

  • +1 (оксид азота (I) N 2 O);
  • +2 (монооксид азота NO);
  • +3 (оксид азота (III) N 2 O 3 ; азотистая кислота HNO 2 , ее соли нитриты);
  • +4 (диоксид азота (IV) NO 2);
  • +5 (пентаоксид азота (V) N 2 O 5 , азотная кислота HNO 3 , нитраты).

Значение в природе

Растения поглощают ионы аммония и нитратные анионы из почвы, используют для химических реакций синтез органических молекул, постоянно идущий в клетках. Атмосферный азот могут усваивать клубеньковые бактерии — микроскопические существа, образующие наросты на корнях бобовых культур. В результате эта группа растений получает необходимый элемент питания, обогащает им почву.

Во время тропических ливней происходят реакции окисления атмосферного азота. Оксиды растворяются с образованием кислот, эти соединения азота в воде поступают в почву. Благодаря круговороту элемента в природе постоянно восполняются его запасы в земной коре, воздухе. Сложные органические молекулы, содержащие в своем составе азот, разлагаются бактериями на неорганические составляющие.

Практическое использование

Важнейшие соединения азота для сельского хозяйства — это хорошо растворимые соли. Усваиваются растениями мочевина, калиевая, кальциевая), аммонийные соединения (водный раствор аммиака, хлорид, сульфат, нитрат аммония).
Инертные свойства азота, неспособность растений усваивать его из воздуха приводят к необходимости ежегодно вносить большие дозы нитратов. Части растительного организма способны запасать макроэлемент питания «впрок», что ухудшает качество продукции. Избыток и фруктах может вызвать у людей отравления, рост злокачественных новообразований. Кроме сельского хозяйства, соединения азота используются в других отраслях:

  • для получения медикаментов;
  • для химического синтеза высокомолекулярных соединений;
  • в производстве взрывчатки из тринитротолуола (тротила);
  • для выпуска красителей.

Оксид NO находит применение в хирургии, вещество обладает обезболивающим эффектом. Потерю ощущений при вдыхании этого газа заметили еще первые исследователи химических свойств азота. Так появилось тривиальное название «веселящий газ».

Проблема нитратов в сельскохозяйственной продукции

В солях азотной кислоты — нитратах — содержится однозарядный анион NO 3- . До сих пор используется старое наименование этой группы веществ — селитры. Применяются нитраты для удобрения полей, в теплицах, садах. Вносят их ранней весной перед посевом, летом — в виде жидких подкормок. Сами по себе вещества не представляют большой опасности для людей, но в организме они превращаются в нитриты, затем в нитрозамины. Нитритные ионы NO 2- — токсичные частицы, они вызывают окисление двухвалентного железа в молекулах гемоглобина в трехвалентные ионы. В таком состоянии главное вещество крови человека и животных не способно переносить кислород и удалять из тканей углекислый газ.

Чем опасно нитратное загрязнение продуктов питания для здоровья человека:

  • злокачественными опухолями, возникающими при превращении нитратов в нитрозамины (канцерогены);
  • развитием язвенного колита,
  • гипотензией или гипертензией;
  • сердечной недостаточностью;
  • нарушением свертываемости крови
  • поражениями печени, поджелудочной железы, развитием диабета;
  • развитием почечной недостаточности;
  • анемией, нарушениями памяти, внимания, интеллекта.

Одновременное употребление разных продуктов с большими дозами нитратов приводит к острому отравлению. Источниками могут быть растения, питьевая вода, готовые мясные блюда. Замачиванием в чистой воде и кулинарной обработкой можно снизить в продуктах питания содержание нитратов. Исследователи выяснили, что более высокие дозы опасных соединений отмечены в незрелой и тепличной растительной продукции.

Фосфор — элемент подгруппы азота

Атомы химических элементов, которые находятся в одном вертикальном столбце периодической системы, проявляют общие свойства. Фосфор расположен в третьем периоде, относится к 15 группе, как и азот. Строение атомов элементов сходное, но существуют различия в свойствах. Азот и фосфор проявляют отрицательную степень окисления и валентность III в своих соединениях с металлами и водородом.

Многие реакции фосфора идут при обычных температурах, это химически активный элемент. Взаимодействует с кислородом с образованием высшего оксида Р 2 О 5 . Водный раствор этого вещества обладает свойствами кислоты (метафосфорной). При ее нагревании получается ортофосфорная кислота. Она образует несколько типов солей, многие из которых служат минеральными удобрениями, например суперфосфаты. Соединения азота и фосфора составляют важную часть круговорота веществ и энергии на нашей планете, используются в промышленной, сельскохозяйственной и других сферах деятельности.

Свойства элементов V-A подгруппы

Элемент

Азот
N

Фосфор
Р

Мышьяк
As

Сурьма
Sb

Висмут
Bi

Свойство

Порядковый номер элемента

7

15

33

51

83

Относительная атомная масса

14,007

30,974

74,922

121,75

208,980

Температура плавления,С 0

-210

44,1
(белый)

817
(4МПа)

631

271

Температура кипения,С 0

-196

280
(белый)

613

1380

1560

Плотность г/см 3

0,96
(твёрдый)

1,82
(белый)

5,72

6,68

9,80

Степени окисления

+5, +3,-3

+5, +3,-3

+5, +3,-3

+5, +3,-3

+5, +3,-3

1. Строение атомов химических элементов

Название

химического

элемента

Схема строения атома

Электронное строение последнего энергоуровня

Формула высшего оксида R 2 O 5

Формула летучего водородного соединения

RH 3

1. Азот

N+7) 2) 5

…2s 2 2p 3

N 2 O 5

NH 3

2. Фосфор

P+15) 2) 8) 5

…3s 2 3p 3

P 2 O 5

PH 3

3. Мышьяк

As+33) 2) 8) 18) 5

…4s 2 4p 3

As 2 O 5

AsH 3

4. Сурьма

Sb+51) 2) 8) 18) 18) 5

…5s 2 5p 3

Sb 2 O 5

SbH 3

5. Висмут

Bi+83) 2) 8) 18) 32) 18) 5

…6s 2 6p 3

Bi 2 O 5

BiH 3


Наличие трех неспаренных электронов на внешнем энергетическом уровне объясняет то, что в нормальном, невозбужденном состоянии валентность элементов подгруппы азота равна трем.

У атомов элементов подгруппы азота (кроме азота - внешний уровень азота состоит только из двух подуровней - 2s и 2p) на внешних энергетических уровнях имеются вакантные ячейки d-подуровня, поэтому они могут распарить один электрон с s-подуровня и перенести его на d-подуровень. Таким образом, валентность фосфора, мышьяка, сурьмы и висмута равна 5.

Элементы группы азота образуют с водородом соединения состава RH 3 , а с кислородом оксиды вида - R 2 O 3 и R 2 O 5 . Оксидам соответствуют кислоты HRO 2 и HRO 3 (и ортокислоты H 3 PO 4 , кроме азота).

Высшая степень окисления этих элементов равна +5, а низшая -3.

Так как заряд ядра атомов увеличивается, число электронов на внешнем уровне постоянно, число энергетических уровней в атомах растёт и радиус атома увеличивается от азота к висмуту, притяжение отрицательных электронов к положительному ядру ослабевает испособность к отдаче электронов увеличивается, и, следовательно, в подгруппе азота с ростом порядкового номера неметаллические свойства убывают, а металлические усиливаются.

Азот - неметалл, висмут - металл. От азота к висмуту прочность соединений RH 3 уменьшается, а прочность кислородных соединений возрастает.

Наибольшее значение среди элементов подгруппы азота имеют азот и фосфор .

Азот, физические и химические свойства, получение и применение

1. Азот – химический элемент

N +7) 2) 5

1 s 2 2 s 2 2 p 3 незавершённый внешний уровень, p -элемент, неметалл

Ar (N )=14

2. Возможные степени окисления

Из-за наличия трёх неспаренных электронов азот очень активен, находится только в виде соединений. Азот проявляет в соединениях степени окисления от «-3» до «+5»


3. Азот – простое вещество, строение молекулы, физические свойства

Азо́т (от греч. ἀ ζωτος - безжизненный, лат. Nitrogenium ), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье . Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках.

N 2 – ковалентная неполярная связь, тройная (σ, 2π), молекулярная кристаллическая решётка

Вывод:

1. Малая реакционная способность при обычной температуре

2. Газ, без цвета, запаха, легче воздуха

Mr ( B оздуха)/ Mr ( N 2 ) = 29/28

4. Химические свойства азота

N – окислитель (0 → -3)

N – восстановитель (0 → +5)

1. С металлами образуются нитриды M x N y

- при нагревании с Mg и щелочно-земельными и щелочными:

3С a + N 2 = Ca 3 N 2 (при t)

- c Li при к t комнатной

Нитриды разлагаются водой

Са 3 N 2 + 6H 2 O = 3Ca(OH) 2 + 2NH 3

2. С водородом

3 H 2 + N 2 ↔ 2 NH 3

(условия - T , p , kat )

N 2 + O 2 ↔ 2 NO – Q

(при t= 2000 C)

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

5. Получение:

В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (–195,8°C), чем другого компонента воздуха - кислорода (–182,9°C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара.

В лаборатории чистый («химический») азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH 4 Cl к твердому нитриту натрия NaNO 2:

NaNO 2 + NH 4 Cl = NaCl + N 2 + 2H 2 O.

Можно также нагревать твердый нитрит аммония:

NH 4 NO 2 = N 2 + 2H 2 O. ОПЫТ

6. Применение:

В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения.

7. Биологическая роль

Азот является элементом, необходимым для существования животных и растений, он входит в состав белков (16-18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла,гемоглобина и др. В составе живых клеток по числу атомов азота около 2%, по массовой доле - около 2,5 % (четвертое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9·10 11 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитраN 2 → Li 3 N → NH 3

№2. Составьте уравнения реакции взаимодействия азота с кислородом, магнием и водородом. Для каждой реакции составьте электронный баланс, укажите окислитель и восстановитель.

№3. В одном цилиндре находится газ азот, в другом - кислород, а в третьем - углекислый газ. Как различить эти газы?

№4. В некоторых горючих газах содержится в виде примеси свободный азот. Может ли при сгорании таких газов в обыкновенных газовых плитах образоваться оксид азота (II). Почему?

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями. Кавендиш получил азот из воздуха (1772), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (лат. - mephitis - удушливое или вредное испарение земли). Официально открытие азота обычно приписывается Резерфорду, опубликовавшему в 1772 г. диссертацию "О фиксируемом воздухе, называемом иначе удушливым", где впервые описаны некоторые химические свойства азота. В эти же годы Шееле получил азот из атмосферного воздуха тем же путем, что и Кавендиш. Он назвал новый газ испорченным воздухом (Verdorbene Luft). Пристли (1775) назвал азот флогистированным воздухом (Air phlogisticated). Лавуазье в 1776-1777 гг. подробно исследовал состав атмосферного воздуха и установил, что 4/5 его объема состоят из удушливого газа (Air mofette).
Лавуазье предложил назвать элемент "азот" от отрицательной греческой приставки "а" и слова жизнь "зоэ", подчеркивая его неспособность поддерживать дыхание. В 1790 году для азота было предложено название "нитроген" (nitrogene - "образующий селитру"), что и стало в дальнейшем основой международного названия элемента (Nitrogenium) и символа азота - N.

Нахождение в природе, получение:

Азот в природе встречается главным образом в свободном состоянии. В воздухе объемная доля его составляет 78,09%, а массовая доля - 75,6%. Соединения азота в небольших количествах содержатся в почвах. Азот входит в состав белковых веществ и многих естественных органических соединений. Общее содержание азота в земной коре 0,01%.
В атмосфере азота содержится примерно 4 квадрильона (4·10 15) тонн, а в океанах - около 20 триллионов (20·10 12) тонн. Незначительная часть этого количества - около 100 миллиардов тонн - ежегодно связывается и включается в состав живых организмов. Из этих 100 миллиардов тонн связанного азота только 4 миллиарда тонн содержится в тканях растений и животных - все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.
В технике азот получают из воздуха. Для получения азота воздух переводят в жидкое состояние, а затем испарением отделяют азот от менее летучего кислорода (t кип N 2 = -195,8°С, t кип O 2 = -183°С)
В лабораторных условиях чистый азот можно получить разлагая нитрит аммония или смешивая при нагревании растворы хлорида аммония и нитрита натрия:
NH 4 NO 2 N 2 + 2H 2 O; NH 4 Cl + NaNO 2 NaCl + N 2 + 2H 2 O.

Физические свойства:

Природный азот состоит из двух изотопов: 14 N и 15 N. При обычных условиях азот - газ без цвета, запаха и вкуса, немного легче воздуха, плохо растворяется в воде (в 1 л воды растворяется 15,4 мл азота, кислорода - 31 мл). При температуре -195,8°C азот переходит в бесцветную жидкость, а при температуре -210,0°C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже -237,54°C устойчива форма с кубической решеткой, выше - с гексагональной.
Энергия связи атомов в молекуле азота очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Молекула N 2 диамагнитна. Это свидетельствует о том, что связь между атомами азота тройная.
Плотность газообразного азота при 0°C 1,25046 г/дм 3

Химические свойства:

При обычных условиях азот - химически малоактивное вещество из-за прочной ковалентной связи. В обычных условиях реагирует только с литием, образуя нитрид: 6Li + N 2 = 2Li 3 N
С повышением температуры активность молекулярного азота увеличивается, при этом он может быть может быть и окислителем (с водородом, металлами), и восстановителем (с кислородом, фтором). При нагревании, повышенном давлении и в присутствии катализатора азот взаимодействует с водородом образуя аммиак: N 2 + 3H 2 = 2NH 3
С кислородом азот соединяется только в электрической дуге с образованием оксида азотa(II): N 2 + O 2 = 2NO
В электрическом разряде возможна и реакция со фтором: N 2 + 3F 2 = 2NF 3

Важнейшие соединения:

Азот способен образовывать химические соединения, находясь во всех степенях окисления от +5 до -3. Соединения в положительных степенях окисления азот образует с фтором и кислородом, причем в степенях окисления больше +3 азот может находиться только в соединениях с кислородом.
Аммиак , NH 3 - бесцветный газ с резким запахом, хорошо растворяется в воде ("нашатырный спирт"). Аммиак обладает основными свойствами, взаимодействует с водой, галогеноводородами, кислотами:
NH 3 + H 2 O NH 3 *H 2 O NH 4 + + OH - ; NH 3 + HCl = NH 4 Cl
Один из типичных лигандов в комплексных соединениях: Cu(OH) 2 + 4NH 3 = (OH) 2 (фиол., р-рим)
Восстановитель: 2NH 3 + 3CuO 3Cu + N 2 + 3H 2 O.
Гидразин - N 2 H 4 (пернитрид водорода), ...
Гидроксиламин - NH 2 OH, ...
Оксид азота(I) , N 2 O (закись азота, веселящий газ). ...
Оксид азота(II) , NO - бесцветный газ, не имеет запаха, в воде малорастворим, относится к несолеобразующим. В лаборатории получают при взаимодействии меди и разбавленной азотной кислоты:
3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O.
В промышленности получают каталитическим окислением аммиака при получении азотной кислоты:
4NH 3 + 5O 2 4NO + 6 H 2 O
Легко окисляется до оксида азота(IV): 2NO + O 2 = 2NO 2
Оксид азота(III) , ??? ...
...
Азотистая кислота , ??? ...
...
Нитриты , ??? ...
...
Оксид азота(IV) , NO 2 - ядовитый газ бурого цвета, имеет характерный запах, хорошо растворяется в воде, давая при этом две кислоты, азотистую и азотную: H 2 O + NO 2 = HNO 2 + HNO 3
При охлаждении переходит в бесцветный димер: 2NO 2 N 2 O 4
Оксид азота(V) , ??? ...
...
Азотная кислота , HNO 3 - бесцветная жидкость с резким запахом, t кип = 83°С. Сильная кислота, соли - нитраты. Один из сильнейших окислителей, что обусловлено наличием в составе кислотного остатка атома азота в высшей степени окисления N +5 . При взаимодействии азотной кислоты с металлами в качестве основного продукта выделяется не водород, а различные продукты восстановления нитрат-иона:
Cu + 4HNO 3 (конц) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;
4Mg + 10HNO 3 (оч.разб.) = 4Mg(NO 3) 2 + NH 4 NO 3 + 5H 2 O.
Нитраты , ??? ...
...

Применение:

Широко используется для создания инертной среды - наполнения электрических ламп накаливания и свободного пространства в ртутных термометрах, при перекачке жидкостей, в пищевой промышленности как упаковочный газ. Им азотируют поверхность стальных изделий, в поверхностном слое образуются нитриды железа, которые придают стали большую твердость. Жидкий азот часто используется для глубокого охлаждения различных веществ.
Важное значение азот имеет для жизни растений и животных, поскольку он входит в состав белковых веществ. В больших количествах азот применяется для получения аммиака. Соединения азота находят применение в производстве минеральных удобрений, взрывчатых веществ и во многих отраслях промышленности.

Л.В. Черкашина
ХФ ТюмГУ, гр. 542(I)

Источники:
- Г.П. Хомченко. Пособие по химии для поступающих в вузы. М., Новая волна, 2002.
- А.С. Егоров, Химия. Пособие-репетитор для поступающих в вузы. Ростов-на-Дону, Феникс, 2003.
- Открытие элементов и происхождение их названий/

АЗОТ, N (лат. Nitrogenium * а. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), — химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067. Открыт в 1772 английским исследователем Д. Резерфордом.

Свойства азота

При обычных условиях азот — газ без цвета и запаха. Природный азот состоит из двух стабильных изотопов: 14 N (99,635%) и 15 N (0,365%). Молекула азота двухатомная; атомы связаны ковалентной тройной связью NN. Диаметр молекулы азота, определённый разными способами, 3,15-3,53 А. Молекула азота очень устойчива — энергия диссоциации 942,9 кДж/моль.

Молекулярный азот

Константы молекулярного азота: f плавления — 209,86°С, f кипения — 195,8°С; плотность газообразного азота 1,25 кг/ м 3 , жидкого — 808 кг/м 3 .

Характеристика азота

В твёрдом состоянии азот существует в двух модификациях: кубической а-форме с плотностью 1026,5 кг/м 3 и гексагональной b-форме с плотностью 879,2 кг/м 3 . Теплота плавления 25,5 кДж/кг, теплота испарения 200 кДж/кг. Поверхностное натяжение жидкого азота в контакте с воздухом 8,5.10 -3 Н/м; диэлектрическая проницаемость 1,000538. Растворимость азота в воде (см 3 на 100 мл Н 2 О): 2,33 (0°С), 1,42 (25°С) и 1,32 (60°С). Внешняя электронная оболочка атома азота состоит из 5 электронов. Степени окисления азота меняются от 5 (в N 2 О 5) до -3 (в NH 3).

Соединение азота

Азот при нормальных условиях может реагировать с соединениями переходных металлов (Ti, V, Mo и др.), образуя комплексы либо восстанавливаясь с образованием аммиака и гидразина. С такими активными металлами, как , азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с : N 2 О, NO, N 2 О 5 . С азот соединяется только при высокой температуре и в присутствии катализаторов; при этом образуется аммиак NH 3 . С галогенами азот непосредственно не взаимодействует; поэтому все галогениды азота получают только косвенным путём, например фтористый азот NF 3 — при взаимодействии с аммиаком. С серой также не происходит непосредственного соединения азота. При взаимодействии раскалённого с азотом образуется циан (CN) 2 . При действии на обычный азот электрических разрядов, а также при электрических разрядах в воздухе может образоваться активный азот, представляющий собой смесь молекул и атомов азота, обладающих повышенным запасом энергии. Активный азот весьма энергично взаимодействует с кислородом, водородом, парами , и некоторыми металлами.

Азот — один из самых распространённых элементов на Земле, причём основная его масса (около 4.10 15 т) сосредоточена в свободном состоянии в . Ежегодно при вулканической деятельности в атмосферу выделяется 2.10 6 т азота. Незначительная часть азота концентрируется в (среднее содержание в литосфере 1,9.10 -3 %). Природные соединения азота — хлористый аммоний и различные нитраты (селитры). Нитриды азота могут образовываться только при высоких температурах и давлениях, что, по-видимому, имело место на самых ранних стадиях развития Земли. Крупные скопления селитры встречаются только в условиях сухого пустынного климата ( , и др.). Небольшие количества связанного азота находятся в (1-2,5%) и (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1 %) и живых организмах (0,3%). Азот входит в состав белковых молекул и многих естественных органических соединений.

Круговорот азота в природе

В природе осуществляется круговорот азота, который включает цикл молекулярного атмосферного азота в биосфере, цикл в атмосфере химически связанного азота, круговорот захоронённого с органическим веществом поверхностного азота в литосфере с возвратом его обратно в атмосферу. Азот для промышленности ранее добывался целиком из месторождений природных селитр, число которых в мире весьма ограничено. Особенно крупные залежи азота в виде азотнокислого натрия находятся в Чили; добыча селитры в отдельные годы составляла более 3 млн. т.

Азот

Азот — элемент главной подгруппы пятой группы второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот — достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N2), из которого на три четверти состоит земная атмосфера.

Его «открывали» несколько раз и разные люди. Его называли по-разному, приписывая едва ли не мистические свойства — и «флогистированный воздух», и «мефитический воздух», и «атмосферный мофетт», да и просто «удушливое вещество». До сих пор у него несколько названий: английский Nitrogen, французский Azote, немецкий Stickstoff, русский «азот»…

История «испорченного воздуха»

Азот (от греческого слова azoos - безжизненный, по-латыни Nitrogenium) - четвертый по распространенности элемент Солнечной системы (после водорода , гелия и кислорода ). Соединения азота - селитра, азотная кислота, аммиак — были известны задолго до получения азота в свободном состоянии.

В 1777 году Генри Кавендиш многократно пропускал воздух над раскалённым углём, а затем обрабатывал его щёлочью. В результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем реагировал со щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент).

В том же году Кавендиш сообщил об этом опыте Джозефу Пристли. Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным).

Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота. Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.

Еще до того времени, в 1772 г., Даниэль Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, увидел, что остающийся после сгорания газ, названный им «удушливым воздухом», не поддерживает дыхания и горения. Лишь в 1787 г. Антуан Лавуазье установил, что «жизненный» и «удушливый» газы, входящие в состав воздуха, это простые вещества, и предложил название «азот».

Ранее, в 1784 г. Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота (от позднелатинского nitrum — селитра и греческого genna — рождаю, произвожу). К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

«Не поддерживающий жизни» жизненно необходим

Хотя название «азот » означает «не поддерживающий жизни», на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16-17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота. В результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными.

Дефицит азота характерен для земледелия почти всех стран. Наблюдается дефицит азота и в животноводстве («белковое голодание»). На почвах, бедных доступным азотом, растения плохо развиваются. В прошлом веке довольно богатый источник связанного азота был обнаружен в природе. Это - чилийская селитра, натриевая соль азотной кислоты. Долгое время селитры были главным поставщиком азота для промышленности. Ее месторождение в Южной Америке уникально, практически оно единственное в мире. И не удивительно, что в 1879 году за обладание богатой селитрой пограничной провинцией Тарапака вспыхнула война между Перу, Боливией и Чили. Победителем оказалась Чили. Однако удовлетворить мировую потребность в азотных удобрениях чилийское месторождение, конечно, не могло.

«Азотное голодание» планеты

В атмосфере Земли содержится почти 80% азота, в земной коре - всего 0,04%. Проблема «как связать азот» старая, она — ровесник агрохимии. Возможность связывания азота воздуха кислородом в электрическом разряде первым увидел англичанин Генри Кавендиш. Это было еще в XVIII веке. Но осуществить процесс управляемого синтеза окислов азота удалось лишь в 1904 году. В 1913 году немцы Фриц Габер и Карл Бош предложили аммиачный метод связывания азота. Сейчас, пользуясь этим принципом, сотни заводов всех континентов вырабатывают из воздуха более 20 миллионов тонн связанного азота в год. Три четверти его идет на производство азотных удобрений. Однако дефицит азота на посевных площадях земного шара составляет более 80 миллионов тонн в год. Азота Земле явно не хватает. Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д.

Применение азота

Свободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д.

Жидкий азот применяется как хладагент и для криотерапии. Промышленные применения газообразного азота обусловлены его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению.

В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы.

В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот , таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

Заблуждения: азот — не Дед Мороз

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент. Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённая ошибка. Даже для замораживания цветка необходимо достаточно продолжительное время, что связано отчасти с весьма низкой теплоёмкостью азота .

По этой же причине весьма затруднительно охлаждать, скажем, замки до −180 °C и раскалывать их одним ударом. Литр жидкого азота , испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине не стоит хранить азот в закрытых сосудах, не приспособленных для больших давлений. На этом же факте основан принцип тушения пожаров жидким азотом . Испаряясь, азот вытесняет воздух, необходимый для горения, и пожар прекращается.

Так как азот , в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров. Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом , в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота .

Как уже было сказано выше, азот жидкий и газообразный получают из атмосферного воздуха способом глубокого охлаждения.

Показатели качества азота газообразного ГОСТ 9293-74

Наименование показателя Особая Повышенная Повышенная
2 сорт 1 сорт
2 сорт
Объёмная доля азота, не менее 99,996
99,99
99,95
Кислород, не более 0,001
0,001
0,05
Водяной пар в газообразном азоте, не более 0,0007
0,0015
0,004
Водород, не более 0,001 Не нормируется
Не нормируется
Сумма углеродосодержащихся соединений в пересчете на СН 4 , не более 0,001 Не нормируется