Математические доказательства. Способы математического доказательства

В брошюре доступным неспециалистам языком рассказывается о некоторых из основополагающих принципов, на которых строится наука математика: чем понятие математического доказательства отличается от понятия доказательства, принятого в других науках и в повседневной жизни, какие простейшие приёмы доказательства используются в математике, как менялось со временем представление о «правильном» доказательстве, что такое аксиоматический метод, в чём разница между истинностью и доказуемостью.
Для очень широкого круга читателей, начиная со школьников старших классов.

МАТЕМАТИКА И ДОКАЗАТЕЛЬСТВА.
Даже незнакомый с математикой человек, взяв в руки книгу по математике, может, как правило, сразу определить, что эта книга действительно по математике, а не по какому-нибудь другому предмету. И дело не только в том, что там обязательно будет много формул: формулы есть и в книгах по физике, по астрономии или по мостостроению. Дело в том, что в любой серьёзной книге по математике непременно присутствуют доказательства. Именно доказуемость математических утверждений, наличие в математических текстах доказательств - вот что нагляднее всего отличает математику от других областей знания.

Первую попытку охватить единым трактатом всю математику предпринял древнегреческий математик Евклид в III веке до нашей эры. В результате появились знаменитые «Начала» Евклида. А вторая попытка состоялась только в XX веке н. э., и принадлежит она французскому математику Никол´я Бурбаки, начавшему в 1939 году издавать многотомный трактат «Начала математики». Вот какой фразой открывает Бурбаки свой трактат: «Со времён греков говорить „математика“ - значит говорить „доказательство“». Таким образом, «математика» и «доказательство» - эти два слова объявляются почти синонимами.

ОГЛАВЛЕНИЕ
Математика и доказательства
О точности и однозначности математических терминов
Доказательства методом перебора
Косвенные доказательства существования. Принцип Дирихле
Доказательства способом «от противного»
Принципы наибольшего и наименьшего числа и метод бесконечного спуска
Индукция
Доказательства методом математической индукции
Полная индукция и неполная индукция
Представление о математических доказательствах меняется со временем
Два аксиоматических метода - неформальный и формальный
Неформальный аксиоматический метод
Формальный аксиоматический метод
Теорема Гёделя.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Простейшие примеры математических доказательств, Успенский В.А., 2009 - fileskachat.com, быстрое и бесплатное скачивание.

Теория математических доказательства разработана в формальной логике и включает три структурных компоненты.

  • 1. Тезис, т.е. то, что предполагается доказать.
  • 2. Аргументы, т.е. совокупность фактов, общепринятых понятий, законов и т.п. соответствующей науки.
  • 3. Демонстрация, т.е. сама процедура развертывания доказательства; последовательная цепь умозаключений, когда /7-е умозаключение становится одной из посылок (я + 1)-го умозаключения. Выделяются правила доказательства, указаны возможные логические ошибки.

Математическое доказательство имеет много общего с теми принципами, которые устанавливаются формальной логикой. Более того, математические правила рассуждений и операций, очевидно, послужили одной из основ в разработке процедуры доказательства в логике.

В математике доказательством называется цепочка логических умозаключений, показывающая, что при каком-то наборе аксиом и правил вывода верно некоторое утверждение. Таким образом, математическое доказательство представляет рассуждение, имеющее задачей обосновать истинность (конечно, в математическом, т.е. как выводимость, смысле) какого-либо утверждения.

Как правило, в математике выделяют следующие понятия:

  • теоремы как доказуемые утверждения;
  • гипотезы, если ни утверждение, ни его отрицание еще не доказаны;
  • леммы как менее сложные утверждения, которые доказываются.

В математике существуют нерешенные проблемы, решение которых ученым очень хотелось бы найти. За доказательства особенно интересных и важных утверждений математические общества назначают премии.

В зависимости от контекста может иметься в виду формальное доказательство (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при желании можно восстановить формальное доказательство. Формальными доказательствами занимается специальная ветвь математики - теория доказательств.

Сами формальные доказательства математики почти никогда не используют, поскольку для человеческого восприятия они очень сложны и часто занимают очень много места. Обычно доказательство имеет вид текста, в котором автор, опираясь на аксиомы и доказанные ранее теоремы, с помощью логических средств показывает истинность некоторого утверждения. В отличие от других наук в математике недопустимы эмпирические доказательства: все утверждения доказываются исключительно логическими способами.

В математике важную роль играют математическая интуиция и аналогии между разными объектами и теоремами; тем не менее все эти средства используются учеными только при поиске доказательств, сами доказательства не могут основываться на таких средствах. Доказательства, написанные на естественных языках, могут быть не очень подробными в расчете на то, что подготовленный читатель сам сможет восстановить детали. Строгость доказательства гарантируется тем, что его можно представить в виде записи на формальном языке (это и происходит при компьютерной проверке доказательств).

Ошибочным доказательством называется текст, содержащий логические ошибки, т.е. такой, по которому нельзя восстановить формальное доказательство. Ошибочным может быть только признание «доказательства» на естественном или формальном языке доказательством; формальное доказательство ошибочным не может быть по определению.

При характеристике математического доказательства выделяют две особенности.

  • 1. Математическое доказательство исключает какие-либо ссылки на эмпирию. Вся процедура обоснования истинности вывода осуществляется в рамках принимаемой аксиоматики.
  • 2. Наивысшая абстрактность математического доказательства, которой оно отличается от процедур доказательства в остальных науках.

В этом случае речь идет не просто о степени абстракции, а о ее природе. Дело в том, что высокого уровня абстрагирования доказательство достигает и в ряде других наук, например в физике, космологи и, конечно, в философии, поскольку предметом последней становятся предельные проблемы бытия и мышления.

Математику же отличает то, что здесь функционируют переменные, смысл которых - в отвлечении от любых конкретных свойств. Напомним, что по определению переменные - знаки, которые сами по себе не имеют значений и обретают последние только при подстановке вместо них имен определенных предметов (индивидные переменные), или при указании конкретных свойств и отношений (предикатные переменные), или, наконец, в случаях замены переменной содержательным высказыванием (пропозициональные переменные).

Сама процедура доказательства, определяемая в логике как демонстрация, протекает на основе правил вывода, опираясь на которые осуществляется переход от одних доказанных утверждений к другим, образуя последовательную цепь умозаключений. Таким образом, мы устанавливаем истинность высказывания А -> В.

К наиболее часто используемым приемам относятся два правила (подстановки и вывода заключений) и теорема о дедукции, которые мы рассматривали на примере исчисления высказываний.

Правило подстановки. В математике подстановка определяется как замена каждого из элементов а данного множества каким-либо другим элементом Р(а) из того же множества. В математической логике правило подстановки формулируется следующим образом: «Если истинная формула М в исчислении высказываний содержит букву, скажем А, то, заменив ее повсюду, где она встречается, произвольной буквой /), мы получим формулу, так же истинную, как и исходная».

Это возможно и допустимо именно потому, что в исчислении высказываний отвлекаются от смысла высказываний (формул). Учитываются только значения «истина» или «ложь». Например, в формуле Я:А^(В V А)) на место Л подставляем выражение (В V А), в результате получаем новую формулу Я: (Ач В)^(В V V В)).

Правило вывода заключений (иногда называют правилом отделения) соответствует структуре условно-категорического силлогизма modus ponens (модус утверждающий) в формальной логике. Он имеет следующий вид:

а, а -> b b

Дано высказывание а и еще дано а -> Ь. Из этого следует Ь. Например: «Если идет дождь, то мостовая мокрая , дождь идет (а), следовательно, мостовая мокрая (b )». В математической логике это высказывание записывается таким образом :

((а -> Ь) & а) -> Ь.

Умозаключение определяется как правило отделения для импликации. Если дана импликация -> Ь) и ее посылка (а), то мы вправе присоединить к рассуждению (доказательству) также и следствие данной импликации (b ). Силлогизм носит принудительный характер, составляя арсенал дедуктивных средств доказательства, т.е. абсолютно отвечая требованиям математических рассуждений.

Большую роль в математическом доказательстве играет теорема дедукции - общее название для ряда теорем, процедура которых обеспечивает возможность установить доказуемость импликации: А -> В, когда налицо логический вывод формулы В из формулы А. В наиболее распространенном варианте исчисления высказываний (в классической, интуиционистской и других видах математики) теорема о дедукции утверждает следующее: «Если дана система посылок G и посылка А, из которых согласно правилам выводимо В (G, Ah В, где I- - знак выводимости), то следует, что только из посылок G можно получить предложение А В».

Выделяется два вида доказательств - прямое и косвенное.

При прямом доказательстве доказывается тезис, а при косвенном используется антитезис.

Наиболее используемые виды прямых доказательств:

  • прямой логический вывод;
  • обратное рассуждение;
  • доказательство по индукции;
  • доказательство с помощью трансфинитной индукции. Рассмотрим несколько примеров прямых доказательств.

Прямой логический вывод. При прямом логическом выводе, устанавливая истинность А В, мы предполагаем, что А - истинно, и показываем истинность В. Такой способ доказательства исключает ситуацию (согласно таблице истинности импликации), когда А - истинно, а В - ложно.

Задача 4.9. Прямой вывод.

Доказать общезначимость формулы VxR(x) -> 3xR(x).

Доказательство.

  • 1. Предположим, что формула общезначима.
  • 2. Тогда, используя равносильности для двойственности исчисления предикатов, получим тождественно истинную формулу

/xR{x) -> 3xR{x) = /xR(x) v 3xR(x) = /xR(x) v 3xR(x) =

  • - 3xR(x) v 3xR(x) = 3x(R(x) v R(x)) = 3x1 = 1.
  • 3. Раз формула тождественно истинна, так она общезначима.

Ч.т.д.

Доказательство через обратное рассуждение. Доказывая истинность Л -> В, мы предполагаем, что В - ложно, и на основе аргументированных предположений доказываем ошибочность Л. То есть фактически прямым способом проверяем истинность импликации

A^B = ?vB = Bv?=B^?.

Задача 4.10. Обратное рассуждение.

Доказать общезначимость формулы R = (/хР(х) -> ЗхР(х)) через обратное рассуждение.

Доказательство.

Давайте определим, какое высказывание А В мы здесь должны доказать: «Из формулы R следует, что она общезначима». Таким образом, высказывание А - «формула R», высказывание В - «общезначимость R».

Отрицанием высказывания, что формула общезначима, является: «Формула R тождественно ложна». Отрицанием от формулы R является формула R.

Таким образом, мы должны доказать следующее высказывание:

«Из того, что формула R тождественно ложна, следует, что R равна нулю».

  • 1. Предположим, что это так.
  • 2. Тогда, используя равносильность для двойственности и равносильность для импликации, получаем

R = (/хР(х) -> ЗхР(х)) = /хР(х) v ЗхР(х) = ЗхР(х) v ЗхР(х).

3. Внесем квантор существования под скобку и получим, что R = 0:

R = Зх(Р(х) V Р(х)) = Id = Т = 0.

4. т.д.

Математическая индукция - один из методов прямого доказательства. Обычно используется, когда нужно доказать некое утверждение для всех элементов множества, равномощного множеству натуральных чисел. Для этого доказывается «первое утверждение» - база индукции, и затем, доказывая, что если любое утверждение в бесконечной последовательности утверждений верно, то верно и следующее, - шаг индукции.

Задача 4.11. Прямое доказательство по индукции.

Пусть Р(п) - предикат, определенный для всех натуральных п. Требуется установить справедливость бесконечной последовательности утверждений, занумерованных натуральными числами : Р(1), Р( 2), ..., Р(п), ... .

Доказательство.

Допустим, что:

  • 1. Установлено, что Р( 1) верно. (Это утверждение называется базой индукции.)
  • 2. Для любого п доказано, что если верно Р(п), то верно Р(п + 1), т.е. /k > 1 импликация Р(п) -> Р(п + 1) верна. (Это утверждение называется индукционным переходом.)
  • 3. Тогда все утверждения нашей последовательности верны, т.е. Р(п) = 1 для любого натурального п. Ч.т.д.

Задача 4.12. Доказательство по индукции.

Доказать, что бинарное отношение T(N) = {res(Z> + 1, а) = 1}, заданное на множестве натуральных чисел N > 1, обладает свойством рефлексивности.

Доказательство.

  • 1. База индукции. Пусть а = 2, b = 2. Тогда res(2 + 1, 2) = 1 и пара (2, 2) принадлежит бинарному отношению Т.
  • 2. Индукционный переход. Рассмотрим Ь- а - /". Тогда res(/ + 1, /) = = (/ + 1) - / = 1 и пара (/, /) принадлежит бинарному отношению Т. Возьмем Ь- а - / + 1, res(/ + 1 + 1, / + 1) = (/ + 1 + 1) - (/ + 1) = 1 и пара (/+ 1, /+ 1) принадлежит бинарному отношению Гдля любого /.
  • 3. Тогда наша последовательность верна и все рефлексивные пары на натуральных числах N > 1 принадлежат нашему бинарному отношению Т. Ч.т.д.

Трансфинитная индукция - метод доказательства, обобщающий математическую индукцию на случай несчетного числа значений параметра.

Трансфинитная индукция основана на следующем утверждении.

Пусть М - упорядоченное множество, Р(х ) при х е М - некоторое утверждение. Пусть для любого X Е М из того, что Р(у) истинно для всех у ос, следует, что верно Р(х), и пусть верно утверждение Р(х), если х - минимальный элемент М, тогда утверждение Р(х) верно для любого X.

Косвенные доказательства. Не имея в силу ряда причин (недоступность объекта исследования, утрата реальности его существования и т.п.) возможности провести прямое доказательство истинности какого-либо утверждения, тезиса, строят антитезис. Убеждаются, что антитезис ведет к противоречиям и, стало быть, является ложным. Тогда из факта ложности антитезиса делают - на основании закона исключенного третьего (?v?)- вывод об истинности тезиса.

Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противоположного ему допущения, антитезиса. Оно особенно ценно и незаменимо в принятии фундаментальных понятий и положений математики, например понятия актуальной бесконечности, которое никак иначе ввести невозможно.

Известны следующие схемы косвенных доказательств:

  • доказательство от противного;
  • доказательство через контрпример.

Доказательство от противного в математике - один из самых часто используемых методов доказательства утверждений. Дана последовательность формул G и отрицание А (G, А). Если из этого следует В

и его отрицание (G , А, В , В, не-В), то можно сделать вывод, что из последовательности формул G вытекает истинность А. Иначе говоря, из ложности антитезиса следует истинность тезиса.

То есть, доказывая истинность А -> В, мы предполагаем, что И - истинно, В - ложно, и на основе аргументированных предположений получаем противоречие.

Этот способ доказательства основывается на истинности формулы ((А -> В) & В) -> А в классической логике и законе двойного отрицания А - А.

Доказательство утверждения А проводится следующим образом.

  • 1. Сначала принимают предположение, что утверждение А неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение В, которое заведомо неверно.
  • А = А, которое по закону двойного отрицания равносильно утверждению А

Задача 4.13. Доказательство от противного.

Доказать равносильность формул

/хР(х) & /xQ(x) = /х(Р(х) & Q(x)).

Доказательство.

  • 1. Предположим, что это не так, что формулы неравносильны, т.е. УхР(х) & /xQ(x) Ф /х(Р(х) & Q(x)).
  • 2. Тогда должны найтись Р(х) и Q(x) такие, что равносильность не выполняется. В этом случае возможно три варианта:
    • Р(х) и Q(x) оба тождественно истинные;
    • один предикат тождественно истинен, другой - нет, например Р(х) тождественно истинен, а Q(x) - нет;
    • Р(х) и Q(x) оба не тождественно истинные.
  • 3. Рассмотрим случай, когда Р(х) и Q(x) оба тождественно истинные (табл. 4.6).

Таблица 4.6

Таблица для задачи 4.3 (шаг 3)

Предикат

Значение

Тождественно истинное

Тождественно истинное

Р(Х) & Q(x)

Тождественно истинное

/хР(х)

VxP(x) & VxQ(x)

Vx(P(x) & Q(x))

  • 4. Рассмотрим случай, когда Р(х) тождественно истинен, а Q(x) - нет (табл. 4.7).
  • 5. Рассмотрим случай, когда Р(х) и Q(x) оба не тождественно истинные (табл. 4.8).

Во всех трех случаях обе формулы принимают одинаковые значения при одинаковых условиях, следовательно, наше предположение о неравносильных формулах было неверным.

6. Следовательно, указанные формулы равносильны. Ч.т.д.

Таблица для задачи 4.3 (шаг 4)

Предикат

Значение

Тождественно истинное

Тождественно истинное

РІХ) & Q(x)

VxP(x) & Vx(2(x)

/x(P(x) & Q(x))

Таблица 4.8

Таблица для задачи 4.3 (шаг 5)

Предикат

Значение

Pix) & Qix)

УхРіх)

УхРіх) & VxC(x)

/хіPix) & ?(x))

Задача 4.14. Доказательство от противного. Доказать общезначимость формулы

Vx(/?(x) v Pix)) -> (Зх/?(х) v ЗхР(х)).

Доказательство.

  • 1. Предположим, что это не так, что формула не общезначима, т.е. должны найтись Р(х) и Q(x) такие, на которых формула равна нулю.
  • 2. Тогда

Vx(/?(x) v Pix)) -> (3xR(x) v ЗхР(х)) =

Vx(/?(x) v Р(х)) v 3xR(x) v ЗхР(х) =

= 3x(R(x) & Р(х)) v 3xR(x) v Зх/ > (х) =

3x(R(x) & Р(х) v R(x) v Р(х) = Зх(1) = 1.

Таким образом, мы получили тождественно истинное высказывание для любых R(x) и Q(x).

3. Следовательно, наше предположение об отсутствии общезначимости было неверным и наша формула - общезначима. Ч.т.д.

Доказательство через контрпример строится по другой схеме.

  • 1. Сначала принимается предположение, что утверждение А верно, а затем рассматривается особый случай - контрпример , при котором данное утверждение А неверно.
  • 2. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение А.

Задача 4.15. Использование контрпримера.

Исследовать , является ли формула

УхР(х) v VxQ(x) = Vx(P(x) v Q(x))

общезначимой.

Решение.

  • 1. Предположим, что формула общезначима. Тогда она тождественно истинная для любой области.
  • 2. Приведем контрпример. Положим, 0(х) = Р(х), оба не тождественно истинные. Тогда:

/х(Р(х) v Р(х)) = /х = 1 - тождественно истинное высказывание;

/хР(х) v /хР(х) = 0 v 0 = 0 - тождественно ложное высказывание.

  • 3. Правая и левая части формулы не равны между собой. Это означает, что мы получили противоречие и на данном контрпримере рассматриваемая формула ложна.
  • 4. Следовательно, наше предположение об общезначимости было неверным.
  • 5. Значит, рассматриваемая формула не является общезначимой.

Рассмотрим несколько задач на построение доказательств для

свойства делимости.

Задача 4.16

Доказать методом математической индукции , что число п 3 - п делится на 3 для всех натуральных п.

Доказательство.

  • 1. База индукции. Пусть п = 1, тогда I 3 - 1 =0. Число 0 делится нацело на любое натуральное число, в том числе и на 3.
  • 2. Индукционный переход. Предположим, что п 3 - п делится на 3 при каком-то натуральном к. Тогда
  • + I) 3 ~(к +) = (к + 1 )((к + I) 2 - 1) =

= (к + 1 )(к + 1 + )(к + !-!) = (* + 2 )(к +1 )к.

Из трех последовательных натуральных чисел одно обязательно кратно трем.

3. Следовательно, наше выражение кратно трем для любого натурального п. Р(п) для любого п. Ч.т.д.

Задача 4.17

Доказать методом математической индукции, что число 7" - 1 делится на 6 для всех натуральных п.

Доказательство.

Вспомним несколько утверждений, которые касаются делимости целых чисел друг на друга:

  • целое число а делится на целое число b тогда и только тогда, когда а = kb при каком-то целом числе к;
  • сумма чисел, делящихся на Ь, также делится на Ь.
  • 1. База индукции. Пусть п = 1, тогда 7 1 - 1 = 6. Число нацело делится на 6.
  • 2. Индукционный переход. Предположим, что 7" - 1 делится на 6 при каком-то натуральном к. Тогда
  • 7* +| -1 = 7- 1 к -1 + 6- 6 = 7(7* - 1) + 6.

Число 7* - 1 делится на 6 в соответствии с нашим предположением. Делится на 6 и 7(7* - 1). Сумма чисел, кратных шести, также кратна шести.

3. Следовательно, наше выражение кратно шести для любого натурального п. Индуктивным рассуждением мы доказали истинность предиката Р(п ) для любого п. Ч.т.д.

Формальными доказательствами занимается специальная ветвь математики - теория доказательств . Сами формальные доказательства математики почти никогда не используют, поскольку для человеческого восприятия они очень сложны и часто занимают очень много места. Обычно доказательство имеет вид текста, в котором автор, опираясь на аксиомы и доказанные ранее теоремы, с помощью логических средств показывает истинность некоторого утверждения. В отличие от других наук, в математике недопустимы эмпирические доказательства: все утверждения доказываются исключительно логическими способами. В математике важную роль играют математическая интуиция и аналогии между разными объектами и теоремами; тем не менее, все эти средства используются учёными только при поиске доказательств, сами доказательства не могут основываться на таких средствах. Доказательства, написанные на естественных языках, могут быть не очень подробными в расчёте на то, что подготовленный читатель сам сможет восстановить детали. Строгость доказательства гарантируется тем, что его можно представить в виде записи на формальном языке (это и происходит при компьютерной проверке доказательств).

Ошибочным доказательством называется текст, содержащий логические ошибки, то есть такой, по которому нельзя восстановить формальное доказательство. В истории математики были случаи, когда выдающиеся учёные публиковали неверные «доказательства», однако обычно их коллеги или они сами довольно быстро находили ошибки (одна из наиболее часто неправильно доказывавшихся теорем - Великая теорема Ферма . До сих пор встречаются люди, не знающие о том, что она доказана, и предлагающие новые неверные «доказательства» ). Ошибочным может быть только признание доказательством «доказательства» на естественном или формальном языке; формальное доказательство ошибочным не может быть по определению.

В математике существуют нерешённые проблемы, решение которых учёным очень хотелось бы найти. Некоторые из них можно найти в статье «Гипотеза ». За доказательства особенно интересных и важных утверждений математические общества назначают премии.

Теория называется полной , если для любого утверждения доказуемо оно или его отрицание, и непротиворечивой , если в ней не существует утверждений, которые можно доказать вместе с их отрицаниями (или, эквивалентно, если в ней существует хотя бы одно недоказуемое утверждение). Большинство «достаточно богатых» математических теорий, как показывает первая теорема Гёделя о неполноте , являются неполными либо противоречивыми. Самым распространённым набором аксиом в наше время является аксиоматика Цермело - Френкеля с аксиомой выбора (хотя некоторые математики выступают против использования последней). Теория на основе этой системы аксиом не полна (например, континуум-гипотеза не может быть ни доказана, ни опровергнута в ней - в предположении, что эта теория непротиворечива). Несмотря на повсеместное использование этой теории в математике, её непротиворечивость не может быть доказана методами её самой. Тем не менее, подавляющее большинство математиков верит в её непротиворечивость, считая, что в противном случае противоречия уже давно были бы обнаружены.

Исторический очерк

Первые доказательства использовали простейшие логические построения. В частности Фалес Милетский , доказавший что диаметр делит круг пополам, углы при основании равнобедренного треугольника равны, две пересекающиеся прямые образуют равные углы, видимо, использовал в своих доказательствах методы перегибания и наложения фигур. По словам греческого философа Прокла (V век н. э.) «Иногда он рассматривал вопрос несколько общо, иногда опираясь на наглядность». Уже при Пифагоре доказательство переходит от конкретных представлений к чисто логическим заключениям . Известно, что доказательство несоизмеримости стороны и диагонали квадрата, которое является основой понятия иррациональности , скорее всего принадлежит пифагорейцам , хотя впервые приведено в Началах Евклида (X), происходит от противного и основано на теории делимости чисел на два . Возможно, что расхождение во взглядах на роль математического доказательство явилось одной из причин конфликта между Евдоксом и Платоном .

Что и требовалось доказать

Традиционно окончание доказательства обозначалось сокращением «Q.E.D. », от латинского выражения лат. Quod Erat Demonstrandum («Что и требовалось доказать»).

Сейчас для обозначения окончания доказательства чаще используется знак □ или ■ , ‣ , //, а также русская аббревиатура «ч. т. д. ».

Литература

  • С древнейших времён до начала Нового времени // История математики / Под редакцией Юшкевича А. П. , в трёх томах. - М .: Наука, 1970. - Т. I.

Примечания

См. также

  • Конструктивное доказательство (англ. )

Библиографическое описание: Григорьев К. В., Очирова А. Б., Сарангов А. А., Барлыкова С. С., Мучкаева Г. М. Разновидность способов математического доказательства // Юный ученый. — 2017. — №1. — С. 45-46..03.2019).





Говоря о доказательстве, в повседневной жизни, мы имеем в виду проверку сформулированного утверждения. Непосредственно в математике понятия проверка и доказательство являются разными по сути, хотя и несут в себе взаимосвязь.

Давайте докажем, что если три угла в четырехугольнике равны 90 градусов, то такой четырехугольник является прямоугольником.

Рассмотрим четырехугольник, у которого три угла равны 90 градусов. Произведем измерения четвёртого угла и найдем его градусную меру. Приходим к выводу, что он тоже будет прямым. Такого рода проверка подтверждает данное утверждение, но не является доказательством.

Для доказательства данного утверждения, необходимо рассмотреть произвольный четырехугольник, у которого три угла равны по 90⁰. Так как в любом выпуклом четырехугольнике сумма углов равна 360⁰ , следовательно искомый угол равен 90⁰ (360⁰ - 90⁰*3). Прямоугольником является четырехугольник, у которого все углы прямые. Значит, данный четырехугольник будет прямоугольником. Что и требовалось доказать.

Смысл выполненного доказательства заключается в следующей последовательности истинных утверждений: теорем, аксиом, определений, из которых логически вытекает утверждение, которое необходимо доказать. Доказать утверждение - это значит показать, что данное утверждение логически следует из ряда истинных и связанных с ним утверждений.

В случае, если рассматриваемое утверждение логически вытекает из уже доказанных утверждений, то оно является обоснованным и истинным. Основой математического доказательства служит дедуктивный метод. А само доказательство выступает как цепочка умозаключений, причем заключение каждого из них, кроме последнего, является посылкой в одном из последующих умозаключений.

В рассмотренном доказательстве можно выделить следующие умозаключения:

– в любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура является выпуклым четырехугольником, следовательно, сумма углов в нём 360⁰;

– если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360⁰, сумма трех 270⁰(90⁰·3 = 270⁰), то определив их разность, найдем искомый угол, равный 90⁰;

– если в четырехугольнике все углы прямые, то этот четырехугольник - прямоугольник; в нашем случае в четырехугольнике все углы прямые, следовательно он прямоугольник.

Все рассмотренные умозаключения выполнены по правилу заключения и, соответственно, являются дедуктивными.

Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 5

Рассматривая структуру математического доказательства, мы понимаем, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, посредством которых ведут доказательство.

Также важно заметить, что математическое доказательство - это не просто набор умозаключений, а умозаключения, расположенные в определенном порядке.

По способу ведения различают прямые и косвенные доказательства. Рассмотренное ранее доказательство относится к прямым - в нем, основываясь на отдельном истинном предложении и учитывая условия теоремы, соединялась цепочка дедуктивных умозаключений, которая непосредственно приводила к истинному заключению.

В качестве примера косвенного доказательства служит доказательство методом от противного. Сущность его состоит в следующем: пусть требуется доказать теорему А ⇒ В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание будет истинным. Присоединив предложение «не В» к совокупности истинных посылок, применяемых в процессе доказательства (среди которых находится и условие А), выполняем цепочку дедуктивных умозаключений до тех пор, пока не получим утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие установится, процесс доказательства заканчивают и приходят к мнению, что полученное противоречие доказывает истинность теоремы А ⇒ В .

Задача 1. Доказать, что если х + 2 > 10, то х ≠ 8. Метод от противного.

Задача 2. Доказать, что если у² - четное число, то у - четно. Метод от противного.

Задача 3. Даны четыре последовательных натуральных числа. Справедливо ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.

Полная индукция является таким методом доказательства, при котором истинность утверждения вытекает из истинности его во всех частных случаях.

Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.

Таким образом, математическое доказательство является рассуждением с целью обоснования истинности какого-либо утверждения (теоремы), цепочкой логических умозаключений, показывающей, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно.

Литература:

  1. Геометрия/ 7–9 классы: учеб. Для общеобразоват. Учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев]. - 21 изд. - М.: Просвещение, 2011.

Лекция 10. Способы математического доказательства

1. Способы математического доказательства

2. Прямые и косвенные доказательства. Доказательство методом от противного.

3. Основные выводы

В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.

Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.

Чтобы доказать данное утверждение, рассмотрим произвольный четырехугольник, в котором три угла прямые. Так как в любом выпуклом четырехугольнике сумма углов 360⁰, то и в данном она составляет 360⁰. Сумма трех прямых углов равна 270⁰ (90⁰ 3 = 270⁰), и, значит, четвертый имеет величину 90⁰ (360⁰ - 270⁰). Если все углы четырехугольника прямые, то он – прямоугольник Следовательно, данный четырехугольник будет прямоугольником. Что и требовалось доказать.

Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.

Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений .

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Например, в приведенном выше доказательстве можно выделить следующие умозаключения:

1. В любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360⁰.

2. Если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360⁰, сумма трех 270⁰ (90⁰ 3 = 270⁰), то величина четвертого 360⁰ - 270⁰ = 90⁰.

3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.



Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.

Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6 < 8.

Итак, говоря о структуре математического доказательства, мы должны понимать, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, с помощью которых ведут доказательство.

Следует еще заметить, что математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

По способу ведения (по форме) различают прямые и косвенные доказательства. Рассмотренное ранее доказательство было прямым – в нем, основываясь на некотором истинном предложении и с учетом условия теоремы, строилась цепочка дедуктивных умозаключений, которая приводила к истинному заключению.

Примером косвенного доказательства является доказательство методом от противного . Сущность его состоит в следующем. Пусть требуется доказать теорему

А ⇒ В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение «не В» к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие устанавливают, процесс доказательства заканчивают и говорят, что полученное противоречие доказывает истинность теоремы

Задача 1. Доказать, что если а + 3 > 10, то а ≠ 7. Метод от противного.

Задача 2. Доказать, что если х² - четное число, то х – четно. Метод от противного.

Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.

Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.

Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.

Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения n² + 2 кратно 3? Метод полной индукции.