Электромагнитная волна является. Электромагнитная волна - процесс распространения электромагнитного поля в пространстве. Диапазон электромагнитных волн

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

это процесс распространения электромагнитного взаимодействия в пространстве.
Электромагнитные волны описываются общими для электромагнитных явлений уравнениями Максвелла. Даже в случае отсутствия в пространстве электрических зарядов и токов уравнения Максвелла имеют отличные от нуля решения. Эти решения описывают электромагнитные волны.
В случае отсутствия зарядов и токов уравнения Максвелла набирают следующего вида:

,

Применяя операцию rot к первым двум уравнений можно получить отдельные уравнения для определения напряженности электрического и магнитного полей

Эти уравнения имеют типичную форму волновых уравнений. Их развязками есть суперпозиция выражений следующего типа

Где – Определенный вектор, который называется волновым вектором, ? – число, которое называется циклической частотой, ? – фаза. Величины и есть амплитудами электрической и магнитной компоненты электромагнитной волны. Они взаимно перпендикулярны и равны по абсолютной величине. Физическая интерпретация каждой из введенных величин дается ниже.
В вакууме электромагнитная волна распространяется в скоростью, которая называется скоростью света. Скорость света является фундаментальной физической константой, которая обозначается латинской буквой c. Согласно основным постулатом теории относительности скорость света является максимально возможной скоростью передачи информации или движения тела. Эта скорость составляет 299 792 458 м / с.
Электромагнитная волна характеризуется частотой. Различают линейную частоту? и циклическую частоту? = 2??. В зависимости от частоты электромагнитные волны относятся к одному из спектральных диапазонов.
Другой характетистика электромагнитной волны волновой вектор . Волновой вектор определяет направление распространения электромагнитной волны, а также ее длину. Абсолютное значение хвильoвого вектора называют волновым числом.
Длина электромагнитной волны? = 2? / k, где k – волновое число.
Длина электромагнитной волны связана с частотой через закон дисперсии. В пустоте эта связь прост:

?? = c.

Часто данное соотношение записывают в виде

? = c k.

Электромагнитные волны с одинаковой частотой и волновым вектором могут различаться фазой.
В пустоте векторы напряженности электрического и магнитного полей Електомагнитна волны обязательно перпендикулярны направлению распространения волны. Такие волны называются поперечными волнами. Математически это описывается уравнениями и . Кроме того, напряженности елекричного и магнитного полей перпендикулярны друг к другу и всегда в любой точке пространства равные по абсолютной величине: E = H. Если выбрать систему координат таким образом, чтобы ось z совпадала с направлением распространения электромагнитной волны, существовать две различные возможности для направлений векторов напряженности электрического поля. Если эклектичное поле направлено вдоль оси x, то магнитное поле будет направлено вдоль оси y, и наоборот. Эти две разные возможности не исключают друг друга и соответствуют двум различным поляризация. Подробнее этот вопрос разбирается в статьи Поляризация волн.
Спектральные диапазоны с выделенным видимым светом В зависимости от частоты или длины волны (эти величины связаны между собой), электромагнитные волны относят к разным диапазонам. Волны в различных диапазонах различным образом взаимодействуют с физическими телами.
Электромагнитные волны с наименьшей частотой (или наибольшей длиной волны) относятся к радиодиапазона. Радиодиапазон используется для передачи сигналов на расстояние с помощью радио, телевидения, мобильных телефонов. В радиодиапазоне работает радиолокация. Радиодиапазон разделяется на метровый, дицеметровий, сантиметровый, миллиметровый, в зависимости от длины Електомагнитна волны.
Электромагнитные волны с вероятностью принадлежат к инфракрасного диапазона. В инфракрасном диапазоне лежит тепловое излучение тела. Регистрация этого випромиювання лежит в основе работы приборов ночного видения. Инфракрасные волны применяются для изучения тепловых колебаний в телах и помогают установить атомную структуру твердых тел, газов и жидкостей.
Электромагнитное излучение с длиной волны от 400 нм до 800 нм принадлежат к диапазону видимого света. В зависимости от частоты и длины волны видимый свет различается по цветам.
Волны с длиной менее 400 нм называются ультрафиолетовыми. Человеческий глаз их не различает, хотя их свойства не отличаются от свойств волн видимого диапазона. Большая частота, а, следовательно, и энергия квантов такого света приводит к более разрушительного воздействия ультрафиолетовых волн на биологические объекты. Земная поверхность защищена от вредного воздействия ультрафиолетовых волн озоновым слоем. Для дополнительной защиты природа наделила людей темной кожей. Однако ультрафиолетовые лучи нужны человеку для производства витамина D. Именно поэтому люди в северных широтах, где интенсивность ультрафиолетовых волн меньше, потеряли темную окраску кожи.
Електомагнитна волны более высокой частоты относятся к рентгеновского диапазона. Они называют так потому, что их открыл Рентген, изучая излучения, которое образуется при торможении электронов. В зарубежной литературе такие волны принято называть X-лучами, уважая желание Рентгена, чтобы лучи не называли его именем. Рентгеновские волны слабо взаимодействуют с веществом, сильнее поглощаясь там, где плотность больше. Этот факт используется в медицине для рентгеновской флюорографии. Рентгеновские волны применяются также для элементного анализа и изучения структуры кристаллических тел.
Наивысшую частоту и наименьшую длину имеют ?-лучи. Такие лучи образуются в результате ядерных реакций и реакций между элементарными частицами. ?-лучи обладают большой разрушительное воздействие на биологические объекты. Однако они используются в физике для изучения различных характеристик атомного ядра.
Энергия электромагнитной волны определяется суммой энергий электрического и магнитного поля. Плотность энергии в определенной точке пространства задается выражением:

.

Усредненная по времени плотность энергии равна.

,

Где E 0 = H 0 – амплитуда волны.
Важное значение имеет плотность потока энергии электромагнитной волны. Она в частности определяет световой поток в оптике. Плотность потока энергии электромагнитной волны задается вектором Умова-Пойнтинга.

Распространения электромагнитных волн в среде имеет ряд особенностей по сравнению с распространением в пустоте. Эти особенности связаны со свойствами среды и в целом зависят от частоты электромагнитной волны. Электрическая и магнитная составляющая волны вызывают поляризацию и намагничивания среды. Этот отклик среды неодинаковых в случае малой и большой частоты. При малой частоте электромагнитной волны, электроны и ионы вещества успевают отреагировать на изменение интенсивности электрического и магнитного полей. Отклик среды отслеживает временные колебания в волны. При большой частоте электроны и ионы вещества не успевают сместиться течение периода колебания полей волны, а потому поляризация и намагничивание среды намного меньше.
Электромагнитное поле малой частоты не проникает в металлы, где много свободных электронов, которые смещаются таким образом, полностью гасят электромагнитную волну. Электромагнитная волна начинает проникать в металл при частоте превышающей определенную частоту, которая называется плазменной частотой. При частотах меньших плазменную частоту электромагнитная волна может проникать в поверхностный слой металла. Это явление называется скин-эффектом.
В диэлектриках изменяется закон дисперсии электромагнитной волны. Если в пустоте электромагнитные волны распространяются с постоянной амплитудой, то в среде они затухают, вследствие поглощения. При этом энергия волны передается электронам или ионам среды. Всего закон дисперсии при отсутствии магнитных эффектов принимает вид

Где волновое число k – всего комплексная величина, мнимая часть которой описывает уменьшение амплитуды елетромагнитнои волны, – Зависящая от частоты комплексная диэлектрическая проницаемость среды.
В анизотропных средах направление векторов напряженности электрического и магнитного полей не обязательно перпендикулярен направлению распространения волны. Однако направление векторов электрической и магнитной индукции сохраняет это свойство.
В среде при определенных условиях может распространяться еще один тип электромагнитной волны – продольная электромагнитная волна, для которой направление вектора напряженности электрического поля совпадает с направлением распространения волны.
В начале двадцатого века для того, чтобы объяснить спектр излучения абсолютно черного тела, Макс Планк предположил, что электромагнитные волны излучаются квантами с энергией пропорциональной частоте. Через несколько лет Альберт Эйнштейн, объясняя явление фотоэффекта расширил эту идею, предположив, что электромагнитные волны поглощаются такими же квантами. Таким образом, стало ясно, что электромагнитные волны характеризуются некоторыми свойствами, которые раньше приписывались материальным частицам, корпускул.
Эта идея получила название корпускулярно-волнового дуализма.

Электромагнитными волнами называется процесс распространения в пространстве переменного электромагнитного поля . Теоретически существование электромагнитных волн предсказано английским ученым Максвеллом в 1865 г., а впервые они экспериментально получены немецким ученым Герцем в 1888 г.

Из теории Максвелла вытекают формулы, описывающие колебания векторов и. Плоская монохроматическая электромагнитная волна, распространяющаяся вдоль оси x , описывается уравнениями

Здесь E и H - мгновенные значения, а E m и H m - амплитудные значения напряженности электрического и магнитного полей, ω - круговая частота, k - волновое число. Векторы и колеблются с одинаковой частотой и фазой, взаимно перпендикулярны и, кроме того, перпендикулярны вектору - скорости распространения волны (рис. 3.7). Т. е. электромагнитные волны поперечны.

В вакууме электромагнитные волны распространяются со скоростью. В среде с диэлектрической проницаемостью ε и магнитной проницаемостью µ скорость распространения электромагнитной волны равна:

Частота электромагнитных колебаний, так же, как и длина волны, могут быть в принципе любыми. Классификация волн по частоте (или длине волны) называется шкалой электромагнитных волн. Электромагнитные волны делятся на несколько видов.

Радиоволны имеют длину волны от 10 3 до 10 -4 м.

Световые волны включают:

Рентгеновское излучение - .

Световые волны - это электромагнитные волны, которые включают в себя инфракрасную, видимую и ультрафиолетовую части спектра. Длины световых волн в вакууме, соответствующие основным цветам видимого спектра, указаны в нижеприведенной таблице. Длина волны дана в нанометрах.

Таблица

Для световых волн характерны те же свойства, что и для электромагнитных волн.

1. Световые волны поперечны.

2. В световой волне колеблются вектора и.

Опыт показывает, что все виды воздействий (физиологическое, фотохимическое, фотоэлектрическое и др.) вызываются колебаниями электрического вектора . Его называют световым вектором .

Амплитуду светового вектора E m часто обозначают буквой A и вместо уравнения (3.30) используют уравнение (3.24).

3. Скорость света в вакууме.

Скорость световой волны в среде определяется по формуле (3.29). Но для прозрачных сред (стекло, вода) обычно.


Для световых волн вводится понятие - абсолютный показатель преломления.

Абсолютным показателем преломления называется отношение скорости света в вакууме к скорости света в данной среде

Из (3.29), с учетом того, что для прозрачных сред , можно записать равенство.

Для вакуума ε = 1 и n = 1. Для любой физической среды n > 1. Например, для воды n = 1,33, для стекла . Среда с большим показателем преломления называется оптически более плотной. Отношение абсолютных показателей преломления называется относительным показателем преломления:

4. Частота световых волн очень велика. Например, для красного света с длиной волны.

При переходе света из одной среды в другую частота света не изменяется, но изменяется скорость и длина волны.

Для вакуума - ; для среды - , тогда

.

Отсюда длина волны света в среде равна отношению длины волны света в вакууме к показателю преломления

5. Поскольку частота световых волн очень велика , то глаз наблюдателя не различает отдельных колебаний, а воспринимает усредненные потоки энергии. Таким образом вводится понятие интенсивности.

Интенсивностью называется отношение средней энергии, переносимой волной, к промежутку времени и к площади площадки, перпендикулярной направлению распространения волны:

Поскольку энергия волны пропорциональна квадрату амплитуды (см. формулу (3.25)), то интенсивность пропорциональна среднему значению квадрата амплитуды

Характеристикой интенсивности света, учитывающей его способность вызывать зрительные ощущения, является световой поток - Ф .

6. Волновая природа света проявляется, например, в таких явлениях, как интерференция и дифракция.

Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.

Волна (волновой процесс) - процесс распространения колебаний в сплошной среде . При распростаранении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояния колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества

Электромагнитные волны возникают всегда, когда в пространстве есть изменяющееся электрическое поле. Такое изменяющееся электрическое поле вызвано, чаще всего, перемещением заряженных частиц, и как частный случай такого перемещения, переменным электрическим током.

Электромагнитное поле представляет собой взаимосвязанные колебания электрического (Е) и магнитного (В) полей. Распространение единого электромагнитного поля в пространстве осуществляется посредством электромагнитных волн.

Электромагнитная волна - электромагнитные колебания, распространяющиеся в пространстве и переносящие энергию

Особенности электромагнитных волн, законы их возбуждения и распространения описываются уравнениями Максвелла (которые в данном курсе не рассматриваются). Если в какой-то области пространства существуют электрические заряды и токи, то изменение их со временем приводит к излучению электромагнитных волн. Описание их распространения аналогично описанию механических волн.

Если среда однородна и волна распространяется вдоль оси Х со скоростью v, то электрическая (Е) и магнитная (В) составляющие поля в каждой точке среды изменяются по гармоническому закону с одинаковой круговой частотой (ω) и в одинаковой фазе (уравнение плоской волны):

где х - координата точки, а t - время.

Векторы В и Е взаимно перпендикулярны, и каждый из них перпендикулярен направлению распространения волны (ось Х). Поэтому электромагнитные волны являются поперечными

Синусоидальная (гармоническая) электромагнитная волна. Векторы , и взаимно перпендикулярны

1) Электромагнитные волны распространяются в веществе с конечной скоростью

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия , в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия .

В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: w э = w м.

4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔW эм, равная

Подставляя сюда выражения для w э, w м и υ, можно получить:

где E 0 – амплитуда колебаний напряженности электрического поля.

Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м 2).

5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены П. Н. Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.



Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс . Импульс электромагнитного поля в единичном объеме выражается соотношением

Отсюда следует:

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.

Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Г. Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.

Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А. С. Попов, 1895 г.).

7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами . Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t ) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца . В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).

Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.