§5. Построения с помощью других инструментов. Построения Маскерони с помощью одного циркуля. Построение с помощью циркуля и линейки. Построение геометрии с помощью инструмента Линия

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-1.jpg" alt=">Построение с помощью линейки и циркуля Геометрия ">

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-2.jpg" alt="> Построить отрезок равный данному Ú Задача А В "> Построить отрезок равный данному Ú Задача А В На данном луче от его начала С отложить отрезок, равный данному Ú Решение 1. Изобразим фигуры, данные в D условии задачи: луч ОС и отрезок АВ О 2. Затем циркулем построим окружность радиуса АВ и с центром О. 3. Эта окружность пересечёт луч ОС в некой точке D. Отрезок OD – искомый.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-3.jpg" alt="> Построение угла равного данному Рассмотрим треугольники "> Построение угла равного данному Рассмотрим треугольники Ú АВС и ОDE. Задача В Отрезки АВ и АС являются равный Отложить от данного луча угол, данному Ú радиусами окружности с Решение 1. центром А, савершиной А и луч и ОЕ Построим угол отрезки OD ОМ А С 2. – радиусами окружности с Проведем окружность произвольного центром О. Таквершине А данного радиуса с центром в как по угла. 3. построениюпересекает стороны Эта окружность эти окружности имеют равные радиусы, то угла в точках В и С. 4. АВ=OD, AC=OE. Также же Затем проведём окружность того по Е радиуса с центром в начале данного построению ВС=DE. М луча ОМ. О D Следовательно, треугольники 5. Она пересекает луч в точке D. 6. равны по построим окружность с После этого 3 сторонам. Поэтому центром D, радиус которой равен ВС 7. угол DOEс= углу BAC. Т. е. Окружности центрами О и D построенный угол МОЕ равен пересекаются в двух точках. Одну из углу А. буквой Е них назовём 8. Докажем, что угол МОЕ - искомый

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-4.jpg" alt="> Построение биссектрисы угла Задача Ú"> Построение биссектрисы угла Задача Ú Рассмотрим треугольники Ú АСЕ и АВЕ. биссектрису угла Построить Они равны по Ú трём сторонам. АЕ – общая, Решение Е 1. АС и АВ равны как угол ВАС Изобразим данный радиусы 2. одной и тойокружность Проведём же окружности, В СЕ = ВЕ по построению. произвольного радиуса с С Ú Изцентром А. Она пересечёт равенства треугольников следует, что угол САЕ В и С стороны угла в точках = углу 3. ВАЕ, т. е. луч АЕдве Затем проведём – окружности одинакового биссектриса данного угла. А радиуса ВС с центрами в точках В и С 4. Докажем, что луч АЕ – биссектриса угла ВАС

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-5.jpg" alt="> Построение перпендикулярных прямых Ú Задача Даны прямая"> Построение перпендикулярных прямых Ú Задача Даны прямая и точка на ней. Построить прямую, проходящую через данную точку Р и перпендикулярную данной прямой. Ú Решение 1. Построим прямую а и точку М, принадлежащую этой прямой. 2. На лучах прямой а, исходящих из точки М, отложим равные отрезки МА и МВ. М а Затем построим две окружности с центрами А и В радиуса АВ. Они пересекутся в двух точках: P и Q. А B 3. Проведём прямую через точку М и одну из этих точек, например прямую МР, и докажем, что эта прямая искомая, т. Е. что она перпендикулярна к данной прямой. 4. В самом деле, так как медиана РМ равнобедренного треугольника РАВ Q является также высотой, то РМ перпендикулярна а.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-6.jpg" alt="> Построение середины отрезка Задача Ú Построить середину данного"> Построение середины отрезка Задача Ú Построить середину данного отрезка Ú Решение Р 1. Пусть АВ – данный отрезок. 2. Построим две окружности с 21 центрами А и В радиуса АВ. Они пересекаются в точках Р и Q. О 3. Проведём прямую РQ. Точка О пересечения этой прямой с А B отрезком АВ и есть искомая середина отрезка АВ 4. В самом деле, треугольники АРQ и ВРQ равны по трём сторонам, поэтому угол 1 = Q углу 2 5. Следовательно отрезок РО – биссектриса равнобедренного треугольника АРВ, а значит, и медиана, т. Е. точка О – середина отрезка АВ.

Известная с античных времён.

В задачах на построение возможны следующие операции:

  • Выбрать произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий.
  • С помощью циркуля провести окружность с центром в построенной точке с радиусом, равным расстоянию между двух построенных точек.
  • С помощью линейки провести прямую, проходящую через две построенные точки.

Простой пример

Задача. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружность с центром в точке A радиусом AB .
  • Проводим окружность с центром в точке B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей.
  • Линейкой проводим отрезок, соединяющий точки P и Q .
  • Находим точку пересечения AB и PQ . Это - искомая середина отрезка AB .

Правильные многоугольники

Античным геометрам были известны способы построения правильных для n=2^k\,\! , 3\cdot 2^k , 5\cdot 2^k и 3\cdot5\cdot2^k .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

  • - разбить произвольный угол на три равные части.
  • - построить отрезок, являющийся ребром куба в два раза большего объёма, чем куб с данным ребром.
  • - построить квадрат, равный по площади данному кругу.

Построения одним циркулем и одной линейкой

По теореме Мора-Маскерони (Mohr–Mascheroni theorem) с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.

Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения (см., например, в теории поверхностей ).

В частности, невозможно даже разбить отрезок на две равные части. Но при наличии на плоскости заранее проведённой окружности с отмеченным центром с помощью линейки можно провести те же построения, что и циркулем и линейкой (теорема Понселе-Штейнера (Poncelet-Steiner theorem), .

См.также

  • - программа, позволяющая делать построения с помощью циркуля и линейки.

Литература

Данная статья написана по материалам одного из разделов книги Седжвика, Уэйна и Дондеро "Программирование на языке Python", уже упоминавшейся ранее . Называется этот раздел "Системы итерационных функций", и в нём описано построение различных изображений, таких как треугольник Серпиньского, папоротник Барнсли и некоторых других, с помощью достаточно несложного алгоритма, который, к тому же, ещё и с лёгкостью реализуется.

Начну я с описания данного алгоритма. Я буду использовать математическую терминологию, в том числе, и ту, которую авторы книги, в ходе своего повествования, не задействуют. Сугубо математический взгляд на алгоритмы облегчает мне их понимание, да и излагать их с помощью математического языка мне достаточно удобно.

Так что для понимания теоретической части статьи читателю пригодятся знания некоторых разделов математики, которые обычно читаются в технических вузах. А именно, нелишним будет знакомство с теорией вероятностей и элементами математического анализа.

За теоретической частью статьи будет следовать практическая, описывающая реализацию алгоритма на языке C99. Поскольку результатами работы программы будут являться изображения, мы будем использовать в программе графическую библиотеку pgraph , предполагая, что читатель, хотя бы в общих чертах, с ней знаком.

Итак, переходим к теоретической части нашего повествования.

Итерационные функции и случайные последовательности

Перед тем, как изложить схему, по которой будет вестись построение изображений, поговорим о последовательностях, члены которых вычисляются посредством рекуррентных формул.

Зададим 2 последовательности, x n n = 1 ∞ и y n n = 1 ∞ , с помощью следующих рекуррентных формул:

X n = f x n - 1 , y n - 1 , n ∈ ℕ , y n = g x n - 1 , y n - 1 , n ∈ ℕ .

Поясним, что x 0 и y 0 - это некоторые заранее заданные числа, а f (x , y ) и g (x , y ) - это некоторые функции двух переменных, называемые итерационными . Сам процесс вычисления очередного члена той или иной последовательности через такие функции будем называть итерациями , а приведённый выше набор рекуррентных формул - итерационной схемой.

Рекурсивный способ задания последовательностей, скорее всего, хорошо знаком читателю, если он изучал математику в вузе. Несколько необычным может показаться "перекрёстный" способ вычисления членов последовательностей, при котором для вычисления n -го члена каждой из двух последовательностей нужен не только n − 1-й член той же последовательности, но и n − 1-й член другой.

А теперь рассмотрим схему построения членов двух последовательностей, использующую не одну пару итерационных функций, а m пар. Каждая из этих функций будет линейной по обеим переменным, а также будет содержать аддитивную константу. Более конкретно, функции будут иметь вид:

F k x , y = a k x + b k y + c k g k x , y = d k x + e k y + h k , k = 0 , 1 , … , m - 1 .

Для каждого n , начиная с 1, будет случайным образом выбираться число от 0 до m − 1, и при вычислении x n и y n в рекуррентных формулах будет использоваться пара итерационных функций, индексы которых равны данному случайному числу. Отметим, что случайные числа, "появляющиеся" перед каждой итерацией, не обязаны быть равновероятными. Однако для разных шагов вероятность появления конкретного фиксированного числа одна и та же.

Давайте теперь сформулируем сказанное на строгом математическом языке. Рассмотрим последовательность дискретных независимых в совокупности случайных величин T n = 1 ∞ , распределённых по одному и тому же закону. А именно: каждая случайная величина принимает значения 0, 1, …, m − 1 с соответствующими вероятностями p 0 , p 1 , …, p m -1 .

Теперь последовательности, x n n = 1 ∞ и y n n = 1 ∞ зададим с помощью следующей итерационной схемы:

X n = f T n x n - 1 , y n - 1 , n ∈ ℕ , y n = g T n x n - 1 , y n - 1 , n ∈ ℕ .

Как и ранее, x 0 и y 0 - это некоторые заранее заданные числа.

Таким образом, каждая из последовательностей является случайной, т. е. её члены - это случайные величины. Однако, каждую из этих последовательностей можно "реализовать", т. е. вычислить все её члены (разумеется, таких реализаций будет бесконечно много).

Зададимся главным вопросом данного раздела. А какое же отношение изображения, которые мы собираемся строить, имеют к этой паре случайных последовательностей? Очень простое. Построим реализацию этих двух последовательностей. Для каждого натурального n пару (x n , y n ) можно рассматривать как координаты точки, заданной в декартовой прямоугольной системе координат на плоскости. Так вот, изображение, соответствующее некоторой паре реализованных последовательностей, представляет собой геометрическое место всех таких точек на плоскости.

Казалось бы, для каждой реализации пары последовательностей мы будем получать своё изображение, отличное от других. Однако, как это ни парадоксально, получаемые изображения каждый раз будут практически совпадать (т. е. при построении на компьютере будут неразличимы человеческим глазом). А при соответствующем подборе итерационных функций и законов распределения случайных величин, участвующих в формировании членов последовательностей, можно создавать весьма интересные узоры.

Добавим, что при построении изображений на компьютере, мы, разумеется, будем выполнять лишь конечное (но достаточно большое) число итераций.

О генерации псевдослучайных чисел

При написании программы мы столкнёмся с необходимостью генерировать псевдослучайные числа, распределённые, вообще говоря, не равномерно, а по заранее заданному закону. В то же самое время, мы будем располагать лишь программным генератором псевдослучайных чисел, равномерно распределённых на промежутке . Как из второго распределения получить первое?

Переведём задачу в математическую плоскость. Пусть имеется непрерывная случайная величина U , распределённая равномерно на отрезке . Зададимся целью построить дискретную случайную величину T как функцию от U , таким образом, чтобы T принимала значения 0, 1, …, m − 1 с соответствующими вероятностями p 0 , p 1 , …, p m -1 .

Решить поставленную задачу весьма просто. Введём в рассмотрение суммы вероятностей

s k = ∑ i = 0 k - 1 p i , k = 0 , 1 , … , m - 1 .

Если верхний предел суммирования по i меньше нижнего, то такую сумму по определению будем полагать равной 0.

Т выразим через U следующим образом:

T = 0 , если U ∈ s 0 , s 1 , 1 , если U ∈ s 1 , s 2 , 2 , если U ∈ s 2 , s 3 , … … … … … … , … … … … … … , m - 1 , если U ∈ s m - 1 , 1 .

Очевидно, случайная величина T распределена по требуемому нами закону. Заметим, что, по сути, Т - это номер промежутка, в который попадает случайная величина U (при условии, что промежутки мы нумеруем числами от 0 до m − 1 в порядке возрастания их левых границ).

С практической точки зрения полученный результат позволяет на каждом шаге итерации в качестве номера итерационных функций брать номер промежутка, в который попадает число, сгенерированное датчиком псевдослучайных чисел, равномерно распределённых на отрезке .

А теперь можно переходить к написанию программы.

Структура программы

Программа состоит из файла main.c и файлов, образующих графическую библиотеку pgraph. Содержимое файла main.c начинается со следующей директивы, подключающей графическую библиотеку:

#include "pgraph.h"

Далее в файле содержатся описания глобальных константных переменных и константных массивов. За ними - определения функций get_random_value() и main() . Первая из них генерирует псевдослучайные числа, а вторая выполняет основную работу по построению изображений.

Глобальные константные переменные и константные массивы

Вся информация, необходимая для построения конкретного изображения, содержится в глобальных константных переменных и константных массивах. Разумеется, для каждого изображения набор значений констант и элементов константных массивов будет "свой".

Ниже приводятся описания данных констант и массивов.

  • n - количество итераций;
  • w - ширина изображения в пикселях;
  • h - высота изображения в пикселях;
  • xc - абсцисса начала новой системы координат в старой системе;
  • yc - ордината начала новой системы координат в старой системе;
  • l - длина в пикселях отрезка, параллельного одной из осей координат, имеющего в новой системе координат единичную длину;
  • m - количество пар итерационных функций, т. е. число m ;
  • s - одномерный массив размера m , содержащий суммы вероятностей случайных величин T n (k -й элемент массива содержит s k );
  • f - двухмерный массив, состоящий из m f k (x , y k , 0), (k , 1), (k , 2) содержат числа a k , b k , c k соответственно, где 0 ≤ k m − 1);
  • g - двухмерный массив, состоящий из m "строк" и 3-х "столбцов", содержащий константы, задействованные в функциях g k (x , y ) (элементы массива с индексами (k , 0), (k , 1), (k , 2) содержат числа d k , e k , h k соответственно, где 0 ≤ k m − 1).

Все переменные имеют тип int , а базовым типом всех массивов является double .

Поясним, что под "старой" системой координат подразумевается та, которая определена в библиотеке pgraph. Построения всех изображений будут вестись в новой системе, полученной из старой параллельным переносом (сдвиги по осям абсцисс и ординат равны соответственно x c и y c ) и "сжатием" в l раз. Таким образом, точка, имеющая в новой системе координаты (x , y ), в старой будет иметь координаты (x l + x c , y l + y c ). Излишне, думаю, пояснять, что за хранение чисел x c , y c и l ответственны константные переменные xc , yc и l соответственно.

Для хранения чисел x 0 и y 0 переменные не выделяются, поскольку во всех случаях построения изображений в качестве этих чисел берутся нули.

Генерация псевдослучайных чисел: функция get_random_value()

Функция get_random_value() при каждом обращении к ней генерирует псевдослучайное целое число в диапазоне от 0 до m − 1 в соответствии с описанной ранее схемой . Вот код этой функции:

1. int get_random_value() 2. { 3. double r = (double ) rand() / RAND_MAX; 4. int c = 1 ; 5. while (s[c] < r && ++c < m) 6. ; 7. return c - 1 ; 8. }

Получаем с помощью стандартной библиотечной функции rand() псевдослучайное число в диапазоне от 0 до значения макроса RAND_MAX , делим полученный результат на это значение и присваиваем частное переменной r (стр. 3). Теперь в r хранится число, принадлежащее отрезку . Его приближённо можно считать значением случайной величины, равномерно распределённой на этом отрезке.

Поясним, что значение макроса RAND_MAX , в нашем случае (т. е. в случае использования компилятора MinGW64 версии 4.9.2 для 64-битных систем) равно 32767.

Теперь, с помощью линейного поиска, задействующего цикл while , ищем индекс наибольшего элемента массива s , не превосходящего значение r , увеличенный на единицу, и сохраняем его в переменной c (см. стр. 4-6). Отметим, что в случае, если значение r - нулевое, цикл не выполняется ни разу, а переменная с сохраняет единичное значение (см. стр. 4).

Значение, возвращаемое функцией, можно приближённо рассматривать как значение случайной величины T , описанной в упомянутом выше разделе.

Генерация изображения: функция main()

А вот и код функции main() :

1. int main() 2. { 3. image *img = create_image(w, h); 4. double x = 0 , y = 0 ; 5. for (int i = 0 ; i < n; i++) 6. { 7. int r = get_random_value(); 8. double x1 = f[r] * x + f[r] * y + f[r]; 9. double y1 = g[r] * x + g[r] * y + g[r]; 10. x = x1; 11. y = y1; 12. set_color(img, round(x * l) + xc, round(y * l) + yc, BLACK); 13. } 14. save_to_file(img, "out.bmp" ); 15. free(img); 16. return 0 ; 17. }

Создаём изображение с заданными размерами (стр. 3). Выделяем память под переменные x и y , в которых будут храниться текущие члены последовательностей, и инициализируем их нулями (стр. 4). Напомню, что в качестве чисел x 0 и y 0 , участвующих в вычислении первых членов каждой из последовательностей, берутся нули.

Вычисляем в цикле for первые n членов каждой последовательности (стр. 5-13). Получаем сначала псевдослучайное число и записываем его в r (стр. 7). Далее вычисляем текущие значения членов обеих последовательностей, помещая их во временные переменные x1 и y1 (стр. 8, 9). При вычислении используем константы, фигурирующие в итерационных функциях и хранящиеся в массивах f и g . Выбор той или иной пары наборов коэффициентов (а значит, пары итерационных функций) зависит от значения r , использующегося в качестве первых индексов участвующих в вычислениях элементов массивов.

Переписываем вычисленные текущие значения в переменные x и y (стр. 10, 11). Координаты точки, содержащиеся в этих переменных, переводим в координаты исходной системы координат, округляем до целых и наносим точку с результирующими координатами на изображение чёрным цветом (стр. 12).

По завершении цикла сохраняем сформированное изображение в файле "out.bmp" (стр. 14) и освобождаем занимаемую изображением память (стр. 15). На этом работа функции завершается.

Построение изображения треугольника Серпиньского

Треугольник Серпиньского представляет собой множество точек, получаемого из всех точек некоторого исходного равностороннего треугольника следующим образом. Треугольник разбивается тремя средними линиями на 4 треугольника, после чего "центральный" треугольник удаляется. Далее c каждым из оставшихся трёх равносторонних треугольников выполняется та же операция. Наконец, то же самое мы делаем с получившимися девятью равносторонними треугольниками.

Продолжая описанные операции до бесконечности, удаляем, в итоге, из исходного треугольника бесконечное число равносторонних треугольников, сумма площадей которых равна площади исходного. Оставшиеся точки образуют линию, называемую треугольником Серпиньского , играющую важную роль в теории множеств.

В книге Седжвика и других авторов предлагается следующий способ построения изображения треугольника Серпиньского. Рассмотрим 3 точки на плоскости, являющиеся вершинами равностороннего треугольника, например, точки с координатами 0 , 0 , 0 , 1 , 1 / 2 , 3 / 2 в декартовой прямоугольной системе координат. Выбираем наугад (с равными вероятностями) одну из трёх вершин треугольника и строим точку, делящую отрезок, соединяющий вершину с координатами 0 , 0 и выбранную наугад вершину, пополам. Это первая точка нашего изображения.

Приведённый алгоритм можно уложить в описанную ранее схему построения изображений, задействующую случайные последовательности и итерационные функции.

Нам потребуются 3 пары итерационных функций. Их индексы 0, 1, 2 должны выбираться с вероятностями 1/3, 1/3, 1/3 соответственно. Сами итерационные функции приведены ниже.

F 0 x , y = 1 / 2 x , g 0 x , y = 1 / 2 y , f 1 x , y = 1 / 2 x + 1 / 2 , g 1 x , y = 1 / 2 y , f 2 x , y = 1 / 2 x + 1 / 4 , g 2 x , y = 1 / 2 y + 3 / 4 .

Теперь давайте вставим в нашу программу описания глобальных константных переменных и константных массивов, соответствующие данным вероятностям и данным итерационным функциям. Но для начала определим макрос TRIANGLE , поместив в файл main.с после инструкции #include следующую инструкцию

#define TRIANGLE

После инструкции вставляем в файл следующий код:

//Треугольник Серпиньского #ifdef TRIANGLE const int n = 100000 ; //количество итераций const int w = 620 , h = 550 ; //размеры изображения const int xc = 10 , yc = 10 ; //координаты начала новой системы координат в старой const int l = 600 ; //коэффициент сжатия const int m = 3 ; //количество пар итерационных функций const double s = {0 , 0.3333333 , 0.6666667 }; //массив сумм вероятностей const double f = {{0.5 , 0.0 , 0.0 }, //массив коэффициентов для функций f(x,y), {0.5 , 0.0 , 0.5 }, //задействованных для вычислений x {0.5 , 0.0 , 0.25 }}; const double g = {{0.0 , 0.5 , 0.0 }, //массив коэффициентов для функций g(x,y), {0.0 , 0.5 , 0.0 }, //задействованных для вычислений y {0.0 , 0.5 , 0.4330127 }}; #endif

Приведённый фрагмент кода (без директив препроцессора) будет скомпилирован только в случае, если определён макрос TRIANGLE (а он определён). Разумеется, константы, представимые лишь с помощью бесконечных десятичных дробей (рациональных или иррациональных) мы округляли.

В результате компиляции и выполнения программы в корневой директории исполняемого файла появляется графический файл out.bmp, содержащий следующее изображение:

Построение изображения папоротника Барнсли

Следующее изображение, построение которого описывается в книге Седжвика и других, - это изображение папоротника Барнсли. Теперь нам уже потребуются 4 пары итерационных функций. Их индексы 0, 1, 2, 3 будут выбираться с вероятностями 0,01, 0,85, 0,07, 0,07 соответственно. А вот и сами итерационные функции:

F 0 x , y = 0 , 5 , g 0 x , y = 0 , 16 y , f 1 x , y = 0 , 85 x + 0 , 04 y + 0 , 075 , g 1 x , y = - 0 , 04 x + 0 , 85 y + 0 , 18 , f 2 x , y = 0 , 2 x - 0 , 26 y + 0 , 4 , g 2 x , y = 0 , 23 x + 0 , 22 y + 0 , 045 , f 3 x , y = - 0 , 15 x + 0 , 28 y + 0 , 575 , g 3 x , y = 0 , 26 x + 0 , 24 y - 0 , 086 .

Вносим теперь изменения в программу. Инструкцию #define заменяем инструкцией

#define FERN

А после #ifdef -блока помещаем следующий фрагмент кода:

//Папоротник Барнсли #ifdef FERN const int n = 100000 ; const int l = 600 ; const int m = 4 ; const double s = {0 , 0.01 , 0.86 , 0.93 }; const double f = {{0.0 , 0.0 , 0.5 }, {0.85 , 0.04 , 0.075 }, {0.2 , -0.26 , 0.4 }, {-0.15 , 0.28 , 0.575 }}; const double g = {{0.0 , 0.16 , 0.0 }, {-0.04 , 0.85 , 0.18 }, {0.23 , 0.22 , 0.045 }, {0.26 , 0.24 , -0.086 }}; #endif

Результатом компиляции и запуска программы является следующее изображение:

Построение изображения дерева

Теперь построим то, что в книге Седжвика и других авторов называется "деревом", хотя то, что оказывается изображённым, скорее, похоже на набор деревьев различных размеров. На этот раз в итерационном процессе будут участвовать 6 пар итерационных функций. Их индексы 0, 1, 2, 3, 4, 5 будут выбираться с вероятностями 0,1, 0,1, 0,2, 0,2, 0,2, 0,2 соответственно. Вот эти функции:

F 0 x , y = 0 , 55 , g 0 x , y = 0 , 6 y , f 1 x , y = - 0 , 05 x + 0 , 525 , g 1 x , y = - 0 , 5 x + 0 , 75 , f 2 x , y = 0 , 46 x - 0 , 15 y + 0 , 27 , g 2 x , y = 0 , 39 x + 0 , 38 y + 0 , 105 , f 3 x , y = 0 , 47 x - 0 , 15 y + 0 , 265 , g 3 x , y = 0 , 17 x + 0 , 42 y + 0 , 465 , f 4 x , y = 0 , 43 x + 0 , 26 y + 0 , 29 , g 4 x , y = - 0 , 25 x + 0 , 45 y + 0 , 625 , f 5 x , y = 0 , 42 x + 0 , 26 y + 0 , 29 , g 5 x , y = - 0 , 35 x + 0 , 31 y + 0 , 525 .

#define TREE

За последним #ifdef -блоком вставляем следующий код:

//Дерево #ifdef TREE const int n = 100000 ; const int w = 620 , h = 620 ; const int xc = 0 , yc = 10 ; const int l = 600 ; const int m = 6 ; const double s = {0 , 0.1 , 0.2 , 0.4 , 0.6 , 0.8 }; const double f = {{0.0 , 0.0 , 0.55 }, {-0.05 , 0.0 , 0.525 }, {0.46 , -0.15 , 0.27 }, {0.47 , -0.15 , 0.265 }, {0.43 , 0.26 , 0.29 }, {0.42 , 0.26 , 0.29 }}; const double g = {{0.0 , 0.6 , 0.0 }, {-0.5 , 0.0 , 0.75 }, {0.39 , 0.38 , 0.105 }, {0.17 , 0.42 , 0.465 }, {-0.25 , 0.45 , 0.625 }, {-0.35 , 0.31 , 0.525 }}; #endif

Результат работы скомпилированной программы - это изображение, приведённое ниже:

Последнее изображение, которое мы построим, руководствуясь книгой Седжвика, - это изображение коралла. Нам потребуются 3 пары итерационных функций. Их индексы 0, 1, 2 будут выбираться с вероятностями 0,4, 0,15, 0,45 соответственно. Итерационные функции приведены ниже.

F 0 x , y = 0 , 3077 x - 0 , 5315 y + 0 , 8863 , g 0 x , y = - 0 , 4615 x - 0 , 2937 y + 1 , 0962 , f 1 x , y = 0 , 3077 x - 0 , 0769 y + 0 , 2166 , g 1 x , y = 0 , 1538 x - 0 , 4476 y + 0 , 3384 , f 2 x , y = 0 , 5455 y + 0 , 0106 , g 2 x , y = 0 , 6923 x - 0 , 1958 y + 0 , 3808 .

Заменяем инструкцию #define инструкцией

#define CORAL

За последним #ifdef -блоком вставляем новый блок:

//Коралл #ifdef CORAL const int n = 100000 ; const int w = 620 , h = 620 ; const int xc = 10 , yc = 10 ; const int l = 600 ; const int m = 3 ; const double s = {0 , 0.4 , 0.55 }; const double f = {{0.3077 , -0.5315 , 0.8863 }, {0.3077 , -0.0769 , 0.2166 }, {0.0 , 0.5455 , 0.0106 }}; const double g = {{-0.4615 , -0.2937 , 1.0962 }, {0.1538 , -0.4476 , 0.3384 }, {0.6923 , -0.1958 , 0.3808 }}; #endif

Вот какое изображение получаем в результате компиляции и выполнения программы:

Заключение

Не знаю, как вам, а мне было интересно наблюдать за тем, как наборы математических формул "превращается" в весьма забавные изображения. А ещё меня удивляет то, что те, кто всё это придумали, смогли подобрать вероятности и константы, участвующие в итерационных функциях, таким образом, чтобы добиться таких удивительных картин! Методика подбора всех этих чисел (за исключением случая треугольника Серпиньского) мне совершенно непонятна!

Отмечу, что, судя по изображениям, треугольник Серпиньского и папоротник Барнсли являются фракталами. Скорее всего, то же самое можно сказать про "дерево" и "коралл", но их фрактальная природа, пожалуй, чуть менее очевидна.

По приведённой ниже ссылке, как всегда, можно скачать исходный код рассмотренной в статье программы. В файле main.c имеются четыре инструкции #define , каждая из которых соответствует одному из четырёх изображений. Три из них закомментированы. Ясно, что для того, чтобы перейти от одного изображения к другому, требуется закомментировать незакомментированную инструкцию и раскомментировать одну из закомментированных. Ну, Вы поняли...

А ещё с помощью несложного алгоритма можно добиться того, чтобы рассмотренные в статье изображения плавно "превращались" друг в друга. Но это уже тема для отдельной статьи .

Построения с помощью циркуля и линейки - раздел евклидовой геометрии, известный с античных времён. задачах на построение циркуль и линейка считаются идеальными инструментами, в частности:

  • Линейка не имеет делений и имеет сторону бесконечной длины, но только одну.
  • Циркуль может иметь какой угодно большой или малый раствор (то есть может чертить окружность произвольного радиуса).
  • 1 Пример
  • 2 Формальное определение
  • 3 Известные задачи
    • 3.1 Построение правильных многоугольников
    • 3.2 Неразрешимые задачи
  • 4 Возможные и невозможные построения
  • 5 Вариации и обобщения
  • 6 Интересные факты
  • 7 См. также
  • 8 Примечания
  • 9 Литература

Пример

Разбиение отрезка пополам

Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB.
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q.
  • Находим искомую середину отрезка AB - точку пересечения AB и PQ.

Формальное определение

В задачах на построение рассматриваются множество всех точек плоскости, множество всех прямых плоскости и множество всех окружностей плоскости, над которыми допускаются следующие операции:

  1. Выделить точку из множества всех точек:
    1. произвольную точку
    2. произвольную точку на заданной прямой
    3. произвольную точку на заданной окружности
    4. точку пересечения двух заданных прямых
    5. точки пересечения/касания заданной прямой и заданной окружности
    6. точки пересечения/касания двух заданных окружностей
  2. «С помощью линейки » выделить прямую из множества всех прямых:
    1. произвольную прямую
    2. произвольную прямую, проходящую через заданную точку
    3. прямую, проходящую через две заданных точки
  3. «С помощью циркуля » выделить окружность из множества всех окружностей:
    1. произвольную окружность
    2. произвольную окружность с центром в заданной точке
    3. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками
    4. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками

В условиях задачи задается некоторое множество точек. Требуется с помощью конечного количества операций из числа перечисленных выше допустимых операций построить другое множество точек, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

  • Задача Аполлония о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.
  • Задача Брахмагупты о построении вписанного четырехугольника по четырем его сторонам.

Построение правильных многоугольников

Основная статья: Теорема Гаусса - Ванцеля Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для, и.

В 1796 году Гаусс показал возможность построения правильных n-угольников при, где - различные простые числа Ферма. 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

  • Трисекция угла - разбить произвольный угол на три равные части.
  • Удвоение куба - построить ребро куба вдвое большего по объёму, чем данный куб
  • Квадратура круга - построить квадрат, равный по площади данному кругу.

Лишь в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

  • Другая известная неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис. Причём эта задача остаётся неразрешимой даже при наличии трисектора.

Возможные и невозможные построения

Каждое построение на самом деле является решением какого-либо уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа. рамках вышеописанных требований возможны следующие построения:

  • Построение решений линейных уравнений.
  • Построение решений квадратных уравнений.

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,

  • Если задан только отрезок длины, то невозможно представить в таком виде (отсюда невозможность удвоения куба).
  • Возможность построить правильный 17-угольник следует из выражения на косинус угла:

Вариации и обобщения

  • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения. частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако
    • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (Теорема Штейнера - Понселе).
    • Если на линейке есть две засечки, то построения с помощью неё эквивалентны построениям с помощью циркуля и линейки (важный шаг в доказательстве этого сделал Наполеон).
  • Построения с помощью инструментов с ограниченными возможностями. задачах такого рода инструменты (в противоположность классической постановке задачи) считаются не идеальными, а ограниченными: прямую через две точки с помощью линейки можно провести только при условии, что расстояние между этими точками не превышает некоторой величины; радиус окружностей, проводимых с помощью циркуля, может быть ограничен сверху, снизу или одновременно и сверху, и снизу.
  • Построения с помощью плоского оригами. см. правила Худзита
  • Узор на флаге Ирана описывается как построение с помощью циркуля и линейки.

См. также

  • Программы динамической геометрии позволяют выполнять построения с помощью циркуля и линейки на компьютере.

Примечания

  1. Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
  2. Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
  3. Стандарт флага Ирана (перс.)

Литература

  • А. Адлер. Теория геометрических построений / Перевод с немецкого Г. М. Фихтенгольца. - Издание третье. - Л.: Учпедгиз, 1940. - 232 с.
  • И. И. Александров. Сборник геометрических задач на построение. - Издание восемнадцатое. - М.: Учпедгиз, 1950. - 176 с.
  • Б. И. Аргунов, М. Б. Балк. Геометрические построения на плоскости. Пособие для студентов педагогических институтов. - Издание второе. - М.: Учпедгиз, 1957. - 268 с.
  • А. М. Воронец. Геометрия циркуля. - М.-Л.: ОНТИ, 1934. - 40 с. - (Популярная библиотека по математике под общей редакцией Л. А. Люстерника).
  • В. А. Гейлер Неразрешимые задачи на построение // СОЖ. - 1999. - № 12. - С. 115-118.
  • В. А. Кириченко Построения циркулем и линейкой и теория Галуа // Летняя школа «Современная математика». - Дубна, 2005.
  • Ю. И. Манин. Книга IV. Геометрия // Энциклопедия элементарной математики. - М.: Физматгиз, 1963. - 568 с.
  • Ю. Петерсен. Методы и теории решения геометрических задач на построение. - М.: Типография Э. Лисснера и Ю. Романа, 1892. - 114 с.
  • В. В. Прасолов. Три классические задачи на построение. Удвоение куба, трисекция угла, квадратура круга. - М.: Наука, 1992. - 80 с. - (Популярные лекции по математике).
  • Я. Штейнер. Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга. - М.: Учпедгиз, 1939. - 80 с.
  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. - М.: Просвещение, 1991. - С. 80. - 383 с. - ISBN 5-09-001287-3.

Построение с помощью циркуля и линейки Информацию О

Если вполне естественно, что с допущением большего разнообразия инструментов оказывается возможным решать более обширное множество задач на построение, то можно было бы предвидеть, что, напротив, при ограничениях, налагаемых на инструменты, класс разрешимых задач будет суживаться. Тем более замечательным нужно считать открытие, сделанное итальянцем Маскерони (1750-1800): все геометрические построения, выполнимые с помощью циркуля и линейки, могут быть выполнены с помощью одного только циркуля. Следует, конечно, оговорить, что провести на самом деле прямую линию через две данные точки без линейки невозможно, так что это основное построение не покрывается теорией Маскерони. Вместо того приходится считать, что прямая задана, если заданы две ее точки. Но с помощью одного лишь циркуля удается найти точку пересечения двух прямых, заданных таким образом, или точку пересечения прямой с окружностью.

Вероятно, простейшим примером построения Маскерони является удвоение данного отрезка АВ. Решение было уже дано на стр. 174-175. Далее, на стр. 175-176 мы научились делить данный отрезок пополам. Посмотрим теперь, как разделить пополам дугу окружности АВ с центром О. Вот описание этого построения (рис. 47). Радиусом АО проводим две дуги с центрами A и В. От точки О откладываем на этих дугах две такие дуги ОР и OQ, что OP = OQ = АВ . Затем находим точку R пересечения дуги с центром Р и радиусом РВ и дуги с центром Q и радиусом QA. Наконец, взяв в качестве радиуса отрезок OR, опишем дугу с центром Р или Q до пересечения с дугой AВ - точка пересечения и является искомой средней точкой дуги АВ. Доказательство предоставляем читателю в качестве упражнения.

Было бы невозможно доказать основное утверждение Маскерони, указывая для каждого построения, выполнимого с помощью циркуля и линейки, как его можно выполнить с помощью одного циркуля: ведь возможных построений бесчисленное множество. Но мы достигнем той же цели, если установим, что каждое из следующих основных построений выполнимо с помощью одного циркуля:

  1. Провести окружность, если заданы ее центр и радиус.
  2. Найти точки пересечения двух окружностей.
  3. Найти точки пересечения прямой и окружности.
  4. Найти точку пересечения двух прямых.

Любое геометрическое построение (в обычном смысле, с допущением циркуля и линейки) составляется из выполнения конечной последовательности этих элементарных построений. Что первые два из них выполнимы с помощью одного циркуля, ясно непосредственно. Более трудные построения 3 и 4 выполняются с использованием свойств инверсии, рассмотренных в предыдущем пункте.

Обратимся к построению 3: найдем точки пересечения данного круга С с прямой, проходящей через данные точки А и В. Проведем дуги с центрами А и В и радиусами, соответственно равными АО и ВО, кроме точки О, они пересекутся в точке Р. Затем построим точку Q, обратную точке Р относительно окружности С (см. построение, описанное на стр. 174). Наконец, проведем окружность с центром Q и радиусом QO (она непременно пересечется с С): ее точки пересечения Х и Х" окружностью С и будут искомыми. Для доказательства достаточно установить, что каждая из точек X и X" находится на одинаковых расстояниях от О и P (что касается точек А и В, то аналогичное их свойство сразу вытекает из построения). Действительно, достаточно сослаться на то обстоятельство, что точка, обратная точке Q, отстоит от точек X и Х" на расстояние, равное радиусу круга С (см. стр. 173). Стоит отметить, что окружность, проходящая через точки X, X" и О, является обратной прямой АВ в инверсии относительно окружности С, так как эта окружность и прямая АВ пересекаются с С в одних и тех же точках. (При инверсии точки основной окружности остаются неподвижными.) Указанное построение невыполнимо только в том случае, если прямая АВ проходит через центр С. Но тогда точки пересечения могут быть найдены посредством построения, описанного на стр. 178, как середины дуг С, получающихся, когда мы проводим произвольную окружность с центром В, пересекающуюся с С в точках В 1 и В 2 .

Метод проведения окружности, обратной прямой," соединяющей две данные точки, немедленно дает и построение, решающее задачу 4. Пусть прямые даны точками А, В и A", В" (рис. 50) Проведем произвольную окружность С и с помощью указанного выше метода построим окружности, обратные прямым АВ и А"В". Эти окружности пересекаются в точке О и еще в одной точке Y, Точка X, обратная точке Y, и есть искомая точка пересечения: как ее построить - уже было разъяснено выше. Что X есть искомая точка, это ясно из того факта, что Y есть единственная точка, обратная точке, одновременно принадлежащей обеим прямым АВ и А"В", следовательно, точка X, обратная Y, должна лежать одновременно и на АВ, и на А"В".

Этими двумя построениями заканчивается доказательство эквивалентности между построениями Маскерони, при которых разрешается пользоваться только циркулем, и обыкновенными геометрическими построениями с циркулем и линейкой.

Мы не заботились об изяществе решения отдельных проблем, нами здесь рассмотренных, так как нашей целью было выяснить внутренний смысл построений Маскерони. Но в качестве примера мы еще укажем построение правильного пятиугольника; точнее говоря, речь идет о нахождении каких-то пяти точек на окружности, которые могут служить вершинами правильного вписанного пятиугольника.

Пусть Л- произвольная точка на окружности К. Так как сторона правильного вписанного шестиугольника равна радиусу круга, то не представит труда отложить на К такие точки В, С, D, что АВ = ВС = CD = 60° (рис. 51). Проводим дуги с центрами А и D радиусом, равным АС; пусть они пересекаются в точке X. Тогда, если О есть центр K, дуга с центром А и радиусом ОХ пересечет К в точке F, являющейся серединой дуги ВС (см. стр. 178). Затем радиусом, равным радиусу K, опишем дуги с центром F, пересекающиеся с K в точках G и H. Пусть Y есть точка, расстояния которой от точек G и Н равны ОХ и которая отделена от X центром О. В таком случае отрезок AY как раз и есть сторона искомого пятиугольника. Доказательство предоставляется читателю в качестве упражнения. Интересно отметить, что при построении используются только три различных радиуса.

В 1928 г. датский математик Ельмслев нашел в книжной лавке в Копенгагене экземпляр книги под названием Euclides Danicus , опубликованной в 1672 г. никому не известным автором Г. Мором. По титульному листу можно было сделать заключение, что это просто один из вариантов евклидовых "Начал", снабженный, может быть, редакторским комментарием. Но по внимательном рассмотрении оказалось, что в ней содержится полное решение проблемы Маскерони, найденное задолго до Маскерони.

Упражнения. В дальнейшем дается описание построений Мора. Проверьте их правильность. Почему можно утверждать, что они решают проблему Маскерони?

Вдохновляясь результатами Маскерони, Якоб Штейнер (1796-1863) предпринял попытку исследования построений, выполнимых с помощью одной только линейки. Конечно, одна только линейка не выводит за пределы данного числового поля, и потому она недостаточна для выполнения всех геометрических построений в классическом их понимании. Но тем более замечательны результаты, полученные Штейнером при введенном им ограничении - пользоваться циркулем только один раз. Он доказал, что все построения на плоскости, выполнимые с помощью циркуля и линейки, выполнимы также с помощью одной линейки при условии, что задан единственный неподвижный круг вместе с центром. Эти построения подразумевают применение проективных методов и будут описаны позднее (см. стр. 228).

* Без круга, и притом с центром, обойтись нельзя. Например, если дан круг, но не указан его центр, то найти центр с помощью одной линейки невозможно. Мы сейчас докажем это, ссылаясь, однако, на факт, который будет установлен позднее (см. стр. 252): существует такое преобразование плоскости самой в себя, что а) заданная окружность остается неподвижной, b) всякая прямая линия переходит в прямую, с) центр неподвижной окружности не остается неподвижным, а смещается. Само существование такого преобразования свидетельствует о невозможности построить центр данной окружности, пользуясь одной линейкой. В самом деле, какова бы ни была процедура построения, она сводится к ряду отдельных этапов, заключающихся в проведении прямых линий и нахождении их пересечений друг с другом или с данной окружностью. Представим себе теперь, что вся фигура в целом - окружность, а все прямые, проведенные по линейке при выполнении построения центра, подвергнуты преобразованию, существование которого мы здесь допустили. Тогда ясно, что фигура, полученная после преобразования, также удовлетворяла бы всем требованиям построения; но указываемое этой фигурой построение приводило бы к точке, отличной от центра данной окружности. Значит, построение, о котором идет речь, невозможно.