Типы спутниковых орбит. К параметрам орбиты спутника относится также период обращения Т-время между двумя последовательными прохождениями одной и той же точки орбиты. Спутниковые навигационные системы

Центральных осей можно провести сколько угодно. Является вопрос, нельзя ли выразить момент инерции относительно любой центральной оси в зависимости от момента инерции относительно одной или двух определенных осей. Для этого посмотрим, как будут меняться моменты инерции относительно двух взаимно перпендикулярных осей при повороте их на угол.

Возьмем какую-либо фигуру и проведем через ее центр тяжести О две взаимно перпендикулярные оси Оу и Oz (Рис. 2).

Рис. 2.

Пусть нам известны осевые моменты инерции относительно этих осей, а также центробежный момент инерции.Начертим вторую систему координатных осей и наклоненных к первым под углом; положительное направление этого угла будем считать при повороте осей вокруг точки О против часовой стрелки. Начало координат О сохраняем. Выразим моменты относительно второй системы координатных осей и, через известные моменты инерции и.

Напишем выражения для моментов инерции относительно этих осей:

Из чертежа видно, что координаты площадки dF в системе повернутых осей будут:

Подставляя эти значения и в формулы (14.9), получим:

или момент инерция плоский ось

Аналогично:

Первые два интеграла выражений (4) и (5) представляют собой осевые моменты инерции и, а последний -- центробежный момент инерции площади относительно этих осей. Тогда:

Для решения задач могут понадобиться формулы перехода от одних осей к другим для центробежного момента инерции. При повороте осей (Рис.2) имеем:

где и вычисляются по формулам (14.10); тогда


После преобразований получим:

Таким образом, для того чтобы вычислить момент инерции относительно любой центральной оси, надо знать моменты инерции и относительно системы каких-нибудь двух взаимно перпендикулярных центральных осей Оу и Oz, центробежный момент инерции относительно тех же осей и угол наклона оси к оси у.

Для вычисления же величин > , приходится так выбирать оси у и z и разбивать площадь фигуры на такие составные части, чтобы иметь возможность произвести это вычисление, пользуясь только формулами перехода от центральных осей каждой из составных частей к осям, им параллельным. Как это сделать на практике, будет показано ниже на примере. Заметим, что при этом вычислении сложные фигуры надо разбивать на такие элементарные части, для которых по возможности известны величины центральных моментов инерции относительно системы взаимно перпендикулярных осей.

Заметим, что ход вывода и полученные результаты не изменились бы, если бы начало координат было взято не в центре тяжести сечения, а в любой другой точке О. Таким образом, формулы (6) и (7) являются формулами перехода от одной системы взаимно-перпендикулярных осей к другой, повернутой на некоторый угол, независимо от того, центральные это оси или нет.

Из формул (6) можно получить еще одну зависимость между моментами инерции при повороте осей. Сложив выражения для и получим

т.е. сумма моментов инерции относительно любых взаимно перпендикулярных осей у и z не меняется при их повороте. Подставляя последнее выражение вместо и их значения, получим:

где -- расстояние площадок dF от точки О. Величина является, как уже известно, полярным моментом инерции сечения относительно точки О.

Таким образом, полярный момент инерции сечения относительно какой-либо точки равен сумме осевых моментов инерции относительно взаимно перпендикулярных осей, проходящих через эту точку. Поэтому эта сумма и остается постоянной при повороте осей. Этой зависимостью (14.16) можно пользоваться для упрощения вычисления моментов инерции. Так, для круга:

Так как по симметрии для круга то

что было получено выше путем интегрирования.

Точно также для тонкостенного кольцевого сечения можно получить.

Главные оси и главные моменты инерции

При повороте осей координат центробежный момент инерции меняет знак, а следовательно, существует такое положение осей, при котором центробежный момент равен нулю.

Оси, относительно которых центробежный момент инерции сечения обращается в нуль, называются главными осями , а главные оси, проходящие через центр тяжести сечения - главными центральными осями инерции сечения .

Моменты инерции относительно главных осей инерции сечения называются главными моментами инерции сечения и обозначаются через I1 и I2 причем I1>I2 . Обычно, говоря о главных моментах, подразумевают осевые моменты инерции относительно главных центральных осей инерции.

Предположим, что оси u и v главные. Тогда

Отсюда

.

(6.32)

Уравнение (6.32) определяет положение главных осей инерции сечения в данной точке относительно исходных осей координат. При повороте осей координат изменяются также и осевые момента инерции. Найдем положение осей, относительно которых осевые моменты инерции достигают экстремальных значений. Для этого возьмем первую производную от Iu по α и приравняем ее нулю:

отсюда

.

К тому же результату приводит и условие dIv / dα. Сравнивая последнее выражение с формулой (6.32), приходим к заключению, что главные оси инерции являются осями, относительно которых осевые моменты инерции сечения достигают экстремальных значений.

Для упрощения вычисления главных моментов инерции формулы (6.29) - (6.31) преобразовывают, исключая из них с помощью соотношения (6.32) тригонометрические функции:

.

(6.33)

Знак плюс перед радикалом соответствует большему I1 , а знак минус - меньшему I2 из моментов инерции сечения.

Укажем на одно важное свойство сечений, у которых осевые моменты инерции относительно главных осей одинаковы. Предположим, что оси y и z главные (Iyz =0), а Iy = Iz . Тогда согласно равенствам (6.29) - (6.31) при любом угле поворота осей α центробежный момент инерции Iuv =0, а осевые Iu=Iv.

Итак, если моменты инерции сечения относительно главных осей одинаковы, то все оси, проходящие через ту же точку сечения, являются главными и осевые моменты инерции относительно всех этих осей одинаковы: Iu=Iv=Iy=Iz. Этим свойством обладают, например, квадратные, круглые, кольцевые сечения.

Формула (6.33) аналогична формулам (3.25) для главных напряжений. Следовательно, и главные моменты инерции можно определять графическим способом методом Мора.

Изменение моментов инерции при повороте осей координат

Предположим, что задана система осей координат и известны моменты инерции Iz , Iy и Izy фигуры относительно этих осей. Повернем оси координат на некоторый угол α против часовой стрелки и определим моменты инерции той же фигуры относительно новых осей координат u и v.

Рис. 6.8.

Из рис. 6.8 следует, что координаты какой-либо точки в обеих системах координат связаны между собой соотношениями

Момент инерции

Следовательно,

(6.29)

(6.30)

Центробежный момент инерции

.

(6.31)

Из полученных уравнений видно, что

,

т. е. сумма осевых моментов инерции при повороте осей координат остается величиной постоянной. Поэтому, если относительно какой-либо оси момент инерции достигает максимума, то относительно перпендикулярной ей оси он имеет минимальное значение.