Сформулировать второе начало термодинамики раскрыть понятие энтропия. Большая энциклопедия нефти и газа. Важные годы в истории термодинамики

§6 Энтропия

Обычно всякий процесс, при котором система переходит из одного состояния в другое, протекает таким образом, что нельзя провести этот процесс в обратном направлении так, чтобы система проходила через те же промежуточные состояния, и при этом в окружающих телах не произошли какие-либо изменения. Это связано с тем, что в процессе часть энергии рассеивается, например, за счет трения, излучения и т. п. Т. о. практически все процессы в природе необратимы. В любом процессе часть энергии теряется. Для характеристики рассеяния энергии вводится понятие энтропии. (Величина энтропии характеризует тепловое состояние системы и определяет вероятность осуществления данного состояния тела. Чем более вероятно данное состояния, тем больше энтропия.) Все естественные процессы сопровождаются ростом энтропии. Энтропия остается постоянной только в случае идеализированного обратимого процесса, происходящего в замкнутой системе, то есть в системе, в которой не происходит обмен энергией с внешними по отношению к этой системе телами.

Энтропия и ее термодинамический смысл:

Энтропия - это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

Поскольку энтропия есть функция состояния, то свойством интеграла является его независимость от формы контура (пути), по которому он вычисляется, следовательно, интеграл определяется только начальным и конечным состояниям системы.

  • В любом обратимом процессе изменения энтропии равно 0

(1)

  • В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает

Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

Δ S ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const , то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const ; T 1 = T 2 : )

При изохорном процессе (V = const ; V 1 = V 2 ; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S 1 + S 2 + S 3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостояния (w ≥ 1, а математическая вероятность ≤ 1 ).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданность состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной.

§7 Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения энергии и превращения энергии, не позволяет установить направление протекания т/д процессов. Кроме того, можно представить множество процессов, не противоречащих I началу т/д, в которых энергия сохраняется, а в природе они не осуществляются. Возможные формулировки второго начало т/д:

1) закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимой процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает Δ S ≥ 0 (необратимый процесс) 2) Δ S ≥ 0 (S = 0 при обратимом и Δ S ≥ 0 при необратимом процессе)

В процессах, происходящих в замкнутой системе, энтропия не убывает.

2) Из формулы Больцмана S = , следовательно, возрастание энтропии означает переход системы из менее вероятного состояния в более вероятное.

3) По Кельвину: не возможен круговой процесс, единственным результатом которого является превращения теплоты, полученной от нагревателя в эквивалентную ей работу.

4) По Клаузиусу: не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Для описания т/д систем при 0 К используют теорему Нернста-Планка (третье начало т/д): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к 0 К

Из теоремы Нернста-Планка следует, что C p = C v = 0 при 0 К

§8 Тепловые и холодильные машины.

Цикл Карно и его к.п.д.

Из формулировки второго начала т/д по Кельвину следует, что вечный двигатель второго рода невозможен. (Вечный двигатель - это периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты.)

Термостат - это т/д система, которая может обмениваться теплотой с телами без изменения температуры.

Принцип действия теплового двигателя: от термостата с температурой Т 1 - нагревателя, за цикл отнимается количество теплоты Q 1 , а термостату с температурой Т 2 (Т 2 < Т 1) -холодильнику, за цикл передается количество теплоты Q 2 , при этом совершается работа А = Q 1 - Q 2

Круговым процессом или циклом называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме состояний цикл изображается замкнутой кривой. Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1), работа расширения положительна А 1-2 > 0, т.к. V 2 > V 1 , работа сжатия отрицательна А 1-2 < 0, т.к. V 2 < V 1 . Следовательно, работа совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой 1-2-1. Если за цикл совершается положительная работа (цикл по часовой стрелке), то цикл называется прямым, если - обратный цикл (цикл происходит в направлении против часовой стрелки).

Прямой цикл используется в тепловых двигателях - периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах - периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии равно нулю. Тогда І начало т/д для кругового процесса

Q = Δ U + A = A ,

Т. е. работа, совершаемая за цикл равна количеству полученной извне теплоты, но

Q = Q 1 - Q 2

Q 1 - количество теплоты, полученное системой,

Q 2 - количество теплоты, отданное системой.

Термический к.п.д. для кругового процесса равен отношению работы, совершенной системой, к количеству теплоты, подведенному к системе:

Чтобы η = 1, должно выполняться условие Q 2 = 0, т.е. тепловой двигатель должен иметь один источник теплоты Q 1 , но это противоречит второму началу т/д.

Процесс обратный происходящему в тепловом двигателе, используется в холодильной машине.

От термостата с температурой Т 2 отнимается количество теплоты Q 2 и передается термостату с температурой T 1 , количество теплоты Q 1 .

Q = Q 2 - Q 1 < 0, следовательно A < 0.

Без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому.

Основываясь на втором начале т/д, Карно вывел теорему.

Теорема Карно: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т 1) и холодильников (Т 2), наибольшим к.п.д. обладают обратимые машины. К.П.Д. обратимых машин при равных Т 1 и Т 2 равны и не зависят от природы рабочего тела.

Рабочее тело - тело, совершающее круговой процесс и обменивающиеся энергией с другими телами.

Цикл Карно - обратимый наиболее экономичный цикл, состоящий из 2-х изотерм и 2-х адиабат.

1-2-изотермическое расширения при Т 1 нагревателя; к газу подводится теплота Q 1 и совершается работа

2-3 - адиабат. расширение, газ совершает работу A 2-3 >0 над внешними телами.

3-4-изотермическое сжатие при Т 2 холодильника; отбирается теплота Q 2 и совершается работа ;

4-1-адиабатическое сжатие, над газом совершается работа A 4-1 <0 внешними телами.

При изотермическом процессе U = const , поэтому Q 1 = A 12

1

При адиабатическом расширении Q 2-3 = 0, и работа газа A 23 совершается за счет внутренней энергии A 23 = - U

Количество теплоты Q 2 , отданное газом холодильнику при изотермическом сжатии равно работе сжатия А 3-4

2

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса

A = A 12 + A 23 + A 34 + A 41 = Q 1 + A 23 - Q 2 - A 23 = Q 1 - Q 2

и равна площади кривой 1-2-3-4-1.

Термический к.п.д. цикла Карно

Из уравнения адиабаты для процессов 2-3 и 3-4 получим

Тогда

т.е. к.п.д. цикла Карно определяется только температурами нагревателя и холодильника. Для увеличения к.п.д. нужно увеличивать разность Т 1 - Т 2 .

******************************************************* ******************************************************

Второе начало термодинамики

Исторически второе начало термодинамики возникло из анализа работы тепловых машин (С. Карно, 1824). Существует несколько его эквивалентных формулировок. Само название «второе начало термодинамики» и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу.

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются.

Опыт показывает, что разные виды энергии неравноценны в отношении способности превращаться в другие виды энергии. Механическую энергию можно целиком превратить во внутреннюю энергию любого тела. Для обратных превращений внутренней энергии в другие виды существуют определённые ограничения: запас внутренней энергии, ни при каких условиях, не может превратиться целиком в другие виды энергии. С отмеченными особенностями энергетических превращений связано направление протекания процессов в природе.

Второе начало термодинамики – принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью.

В отличие от чисто механических (без трения) или электродинамических (без выделения джоулевой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики отражает направленность естественных процессов и налагает ограничения на возможные направления энергетических превращений в макроскопических системах, указывая, какие процессы в природе возможны, а какие – нет.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Формулировки второго закона термодинамики

1). Формулировка Карно : наибольший КПД тепловой машины не зависит от рода рабочего тела и вполне определяется предельными температурами , между которыми машина работает.

2). Формулировка Клаузиуса : невозможен процесс единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого , к телу более нагретому.

Второе начало термодинамики не запрещает переход теплоты от менее нагретого тела к более нагретому. Такой переход осуществляется в холодильной машине, но при этом внешние силы осуществляют работу над системой, т.е. этот переход не является единственным результатом процесса.

3). Формулировка Кельвина : невозможен круговой процесс , единственным результатом которого является превращение теплоты , полученной от нагревателя , в эквивалентную ей работу.

На первый взгляд может показаться, что такой формулировке противоречит изотермического расширения идеального газа. Действительно, всё полученное идеальным газом от какого-то тела тепло превращается полностью в работу. Однако получение тепла и превращение его в работу не единственный конечный результат процесса; кроме того, в результате процесса происходит изменение объёма газа.

P.S. : необходимо обратить внимание на слова «единственным результатом»; запреты второго начала снимаются, если процессы, о которых идёт речь, не являются единственными.

4). Формулировка Оствальда : осуществление вечного двигателя второго рода невозможно.

Вечным двигателем второго рода называется периодически действующее устройство , которое совершает работу за счёт охлаждения одного источника теплоты.

Примером такого двигателя мог бы служить судовой двигатель, получающий тепло из моря и использующий его для движения судна. Такой двигатель был бы практически вечным, т.к. запас энергии в окружающей среде практически безграничен.

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

Энтропия

Понятие «энтропия» введено в науку Р.Клаузиусом в 1862 г. и образовано из двух слов: «эн » - энергия, «тропэ » - превращаю.

Согласно нулевому началу термодинамики изолированная термодинамическая система с течением времени самопроизвольно переходит в состояние термодинамического равновесия и остаётся в нём сколь угодно долго, если внешние условия сохраняются неизменными.

В равновесном состоянии все виды энергии системы переходят в тепловую энергию хаотического движения атомов и молекул, составляющих систему. Никакие макроскопические процессы в такой системе невозможны.

Количественной мерой перехода изолированной системы в равновесное состояние служит энтропия. По мере перехода системы в равновесное состояние её энтропия возрастает и достигает максимума при достижении равновесного состояния.

Энтропия является функцией состояния термодинамической системы, обозначается: .

Теоретическое обоснование : приведённая теплота , энтропия

Из выражения для КПД цикла Карно: следует, что или , где – количество теплоты, отдаваемое рабочим телом холодильнику, принимаем: .

Тогда последнее соотношение можно записать в виде:

Отношение теплоты, полученной телом в изотермическом процессе, к температуре теплоотдающего тела называется приведённым количеством теплоты :

С учётом формулы (2) формулу (1) представим в виде:

т.е. для цикла Карно алгебраическая сумма приведённых количеств теплоты равна нулю.

Приведённое количество теплоты, сообщаемое телу на бесконечно малом участке процесса: .

Приведённое количество теплоты для произвольного участка:

Строгий теоретический анализ показывает, что для любого обратимого кругового процесса сумма приведённых количеств теплоты равна нулю:

Из равенства нулю интеграла (4) следует, что подынтегральная функция есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние:

Однозначная функция состояния , полным дифференциалом которой является ,называется энтропией .

Формула (5) справедлива лишь для обратимых процессов, в случае неравновесных необратимых процессов такое представление несправедливо.

Свойства энтропии

1). Энтропия определяется с точностью до произвольной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий двух состояний:

. (6)

Пример : если система (идеальный газ) совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии равно:

,

где ; .

т.е. изменение энтропии идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода.

В общем случае в формуле (6) приращение энтропии не зависит от пути интегрирования.

2).Абсолютное значение энтропии можно установить с помощью третьего начала термодинамики (теоремы Нернста):

Энтропия любого тела стремиться к нулю при стремлении к абсолютному нулю его температуры : .

Таким образом, за начальную точку отсчёта энтропии принимают при .

3). Энтропия величина аддитивная, т.е. энтропия системы из нескольких тел является суммой энтропий каждого тела: .

4). Как и внутренняя энергия, энтропия есть функция параметров термодинамической системы .

5), Процесс, протекающий при постоянной энтропии называетсяизоэнтропийным.

В равновесных процессах без передачи тепла энтропия не меняется.

В частности, изоэнтропийным является обратимый адиабатный процесс: для него ; , т.е. .

6). При постоянном объёме энтропия является монотонно возрастающей функцией внутренней энергии тела.

Действительно, из первого закона термодинамики следует, что при имеем: , тогда . Но температура всегда. Поэтому приращения и имеют один и тот же знак, что и требовалось доказать.

Примеры изменения энтропии в различных процессах

1). При изобарном расширении идеального газа

2). При изохорном расширении идеального газа

3). При изотермическом расширении идеального газа

.

4). При фазовых переходах

Пример : найти изменение энтропии при превращении массы льда при температуре в пар .

Решение

Первый закон термодинамики: .

Из уравнения Менделеева – Клапейрона следует: .

Тогда выражения для первого закона термодинамики примет вид:

.

При переходе из одного агрегатного состояния в другое, общее изменение энтропии складывается из изменений в отдельных процессах:

A). Нагревание льда от температуры до температуры плавления :

,где –удельная теплоёмкость льда.

Б). Плавление льда: ,где – удельная теплота плавления льда.

В). Нагревание воды от температуры до температуры кипения :

, где –удельная теплоёмкость воды.

Г). Испарение воды: ,где –удельная теплота парообразования воды.

Тогда общее изменение энтропии:

Принцип возрастания энтропии

Энтропия замкнутой системы при любых, происходящих в ней процессах не убывает:

или для конечного процесса: , следовательно: .

Знак равенства относится к обратимому процессу, знак неравенства – к необратимому. Последние две формулы – математическое выражение второго закона термодинамики. Таким образом, введение понятия «энтропия» позволило строго математически сформулировать второе начало термодинамики.

Необратимые процессы приводят к установлению равновесного состояния. В этом состоянии энтропия изолированной системы достигает максимума. Никакие макроскопические процессы в такой системе невозможны.

Величина изменения энтропии является качественной характеристикой степени необратимости процесса.

Принцип возрастания энтропии относится к изолированным системам. Если система неизолированная, то её энтропия может и убывать.

Вывод : т.к. все реальные процессы необратимые, то все процессы в замкнутой системе ведут к увеличению её энтропии.

Теоретическое обоснование принципа

Рассмотрим замкнутую систему, состоящую из нагревателя, холодильника, рабочего тела и «потребителя» совершаемой работы (тело, обменивающееся с рабочим телом энергией только в форме работы), совершающую цикл Карно. Это обратимый процесс, изменение энтропии которого равно:

,

где – изменение энтропии рабочего тела; – изменение энтропии нагревателя; – изменение энтропии холодильника; – изменение энтропии «потребителя» работы.

Формулировка второго начала. Приведем две наиболее известные формулировки:

1. Невозможен процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой у теплового резервуара при постоянной температуре (формулировка Томсона). Эта же формулировка, но выраженная другими словами, утверждает невозможность создания вечного двигателя второго рода (т.е. производящего работу за счет внутренней энергии теплового резервуара).

2. Невозможен процесс, единственным результатом которого была бы передача энергии от более холодного тела к более горячему (формулировка Клаузиуса).

Формулировки Томсона и Клаузиуса эквивалентны.

Теорема Карно. Циклом Карно называют цикл, в котором рабочее тело получает теплоту только от резервуара при постоянной температуре (нагревателя), а отдает - только резервуару при постоянной температуре (холодильнику). Теорема Карно утверждает, что КПД произвольного цикла Карно не может превышать КПД

обратимого цикла Карно, работающего при тех же Из этого немедленно следует, что КПД обратимого цикла Карно зависит только от и и не зависит от природы рабочего тела.

Покажем в общих чертах, как можно доказать теорему Карно. Предположим, что КПД обратимой машины меньше, чем необратимой. Подберем объем рабочего тела обратимой машины так, чтобы она совершала за цикл такую же работу, как необратимая. С учетом (15) неравенство для КПД приобретает вид откуда имеем Пустим обратимую машину в обратную сторону так, чтобы работа необратимой машины потреблялась обратимой. За цикл объединенной машины ее работа будет равна нулю, а нагреватель получит энергию целиком взятую у холодильника. Мы пришли к противоречию с формулировкой Клаузиуса.

Так как нам известен КПД одной из машин Карно - газовой (16), то теорему Карно можно записать так:

причем равенство соответствует обратимому циклу Карно.

Термодинамическая шкала температур. Теорема Карно позволяет определить шкалу температур, не зависящую от свойств конкретных тел. Отношение температур двух тел определяют, присоединив к ним обратимую машину Карно; так как отношение зависит только от их температур, то его можно принять равным отношению термодинамических температур: Как видно из (17), отношение термодинамических температур равно отношению газовых температур (в той области, где газовая шкала определена).

Второе начало: вычисление внутренней энергии. Второе начало термодинамики позволяет вывести важное соотношение для внутренней энергии простой системы, которое не может быть получено в рамках первого начала:

Покажем, как можно получить (18) из теоремы Карно. Рассмотрим (бесконечно) малый обратимый цикл Карно и изобразим его в координатах . Работа системы за цикл, равная площади маленького параллелограмма (рис. 14), не изменится при замене кусочков адиабат вертикальными отрезками, длина которых равна Умножив на высоту получим Теплота, полученная на верхней изотерме, равна где для приращения при постоянной температуре использовано (8). Из теоремы Карно и уравнения (17) имеем

откуда получим (18).

Приведем несколько применений формулы (18).

1) Внутренняя энергия идеального газа. Подставим в (18) уравнение состояния . В результате получим т.е. внутренняя энергия идеального газа не зависит от объема.

2) Внутренняя энергия газа Ван-дер-Ваальса. Выразив давление из уравнения состояния (3) и подставив в (18), приходим к формуле

Кроме того, имеем

т.е. не зависит от объема. В области температур, где слабо зависит от Т, можно записать

Второе начало термодинамики определяет направленность реальных тепловых процессов, протекающих с конечной скоростью.

Второе начало (второй закон) термодинамики имеет несколько формулировок . Например, любое действие , связанное с преобразованием энергии (то есть с переходом энергии из одной формы в другую), не может происходить без ее потери в виде тепла, рассеянного в окружающей среде . В более общем виде это означает, что процессы трансформации (превращения) энергии могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной (упорядоченной) формы в рассеянную (неупорядоченную) форму.

Еще одно определение второго закона термодинамики непосредственно связано с принципом Клаузиуса : процесс, при котором не происходит никаких изменений, кроме передачи тепла от горячего тела к холодному, необратим, то есть теплота не может переходить самопроизвольно от более холодного тела к более горячему. При этом такое перераспределение энергии в системе характеризуется величиной , получившей название энтропии , которая как функция состояния термодинамической системы (функция, имеющая полный дифференциал), была впервые введена в 1865 году именно Клаузиусом. Энтропия – это мера необратимого рассеяния энергии. Энтропия тем больше, чем большее количество энергии необратимо рассеивается в виде тепла.

Таким образом, уже из этих формулировок второго закона термодинамики можно сделать вывод, что любая система , свойства которой изменяются во времени, стремится к равновесному состоянию, в котором энтропия системы принимает максимальное значение . В связи с этим второй закон термодинамики часто называют законом возрастания энтропии , а саму энтропию (как физическую величину или как физическое понятие) рассматривают в качестве меры внутренней неупорядоченности физико-химической системы .

Другими словами, энтропия функция состояния, характеризующая направление протекания самопроизвольных процессов в замкнутой термодинамической системе. В состоянии равновесия энтропия замкнутой системы достигает максимума и никакие макроскопические процессы в такой системе невозможны. Максимальная энтропия соответствует полному хаосу .

Чаще всего переход системы из одного состояния в другое характеризуют не абсолютной величиной энтропии S , а ее изменением ∆S , которое равно отношению изменения количества теплоты (сообщенного системе или отведенного от нее) к абсолютной температуре системы: ∆S = Q/T, Дж/град. Это – так называемая термодинамическая энтропия .

Кроме того, энтропия имеет и статистический смысл. При переходе из одного макросостояния в другое статистическая энтропия также возрастает, так как такой переход всегда сопровождается большим числом микросостояний, а равновесное состояние (к которому стремится система) характеризуется максимальным числом микросостояний.

В связи с понятием энтропии в термодинамике новый смысл приобретает понятие времени. В классической механике направление времени не учитывается и состояние механической системы можно определить как в прошлом, так и в будущем. В термодинамике время выступает в форме необратимого процесса возрастания энтропии в системе. То есть чем больше энтропия, тем больший временной отрезок прошла система в своем развитии.

Кроме того, для понимания физического смысла энтропии необходимо иметь в виду, что в природе существует четыре класса термодинамических систем :

а) изолированные системы или замкнутые (при переходе таких систем из одного состояния в другое не происходит переноса энергии, вещества и информации через границы системы);

б) адиабатические системы (отсутствует только теплообмен с окружающей средой);

в) закрытые системы (обмениваются с соседними системами энергией, но не веществом) (например, космический корабль);

г) открытые системы (обмениваются с окружающей средой веществом, энергией и информацией). В этих системах за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией.

Для открытых систем энтропия уменьшается . Последнее прежде всего касается биологических систем , то есть живых организмов, которые представляют собой открытые неравновесные системы . Такие системы характеризуются градиентами концентрации химических веществ, температуры, давлений и других физико-химических величин. Использование концепций современной, то есть неравновесной термодинамики, позволяет описать поведение открытых, то есть реальных систем. Такие системы всегда обмениваются с окружающей их средой энергией, веществом и информацией. Причем такие обменные процессы характерны не только для физических или биологических систем, но и для социально-экономических, культурно-исторических и гуманитарных систем, так как происходящие в них процессы, как правило, необратимы.

Третье начало термодинамики (третий закон термодинамики) связано с понятием«абсолютный нуль». Физический смысл этого закона, показанный в тепловой теореме В. Нернста (немецкого физика), состоит в принципиальной невозможности достижения абсолютного нуля (-273,16ºС), при котором должно прекратиться поступательное тепловое движение молекул, а энтропия перестанет зависеть от параметров физического состояния системы (в частности, от изменения тепловой энергии). Теорема Нернста относится только к термодинамически равновесным состояниям систем.

Другими словами, теореме Нернста можно дать следующую формулировку : при приближении к абсолютному нулю приращение энтропии S стремится к вполне определенному конечному пределу, не зависящему от значений, которые принимают все параметры, характеризующие состояние системы (например, от объема, давления, агрегатного состояния и пр.).

Понять суть теоремы Нернста можно на следующем примере. При уменьшении температуры газа будет происходить его конденсация и энтропия системы будет убывать, так как молекулы размещаются более упорядоченно. При дальнейшем уменьшении температуры будет происходить кристаллизация жидкости, сопровождающаяся большей упорядоченностью расположения молекул и, следовательно, еще большим убыванием энтропии. При абсолютном нуле температуры всякое тепловое движение прекращается, неупорядоченность исчезает, число возможных микросостояний уменьшается до одного и энтропия приближается к нулю.

4.Понятие самоорганизации. Самоорганизация в открытых системах.

Понятие “синергетика” было предложено в 1973 году немецким физиком Германом Хакеном для обозначения направления , призванного исследовать общие законы самоорганизации – феномена согласованного действия элементов сложной системы без управляющего действия извне. Синергетика (в переводе с греч. – совместный, согласованный, содействующий) – научное направление изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико-химических, геолого-географических и др.) благодаря интенсивному (потоковому) обмену веществом, энергией и информацией с окружающей средой в неравновесных условиях . В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень упорядоченности (уменьшается энтропия), то есть развивается процесс самоорганизации.

Равновесие есть состояние покоя и симметрии , а асимметрия приводит к движению и неравновесному состоянию .

Значительный вклад в теорию самоорганизации систем внес бельгийский физик российского происхождения И.Р. Пригожин (1917-2003). Он показал, что в диссипативных системах (системах, в которых имеет место рассеяние энтропии) в ходе необратимых неравновесных процессов возникают упорядоченные образования, которые были названы им диссипативными структурами.

Самоорганизация – это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим. Система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы “сбрасывает” ее избыток, возрастающий за счет внутренних процессов, в окружающую среду.

Возникающая из хаоса упорядоченная структура (аттрактор , или диссипативная структура) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В резльтате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры.

Синергетика опирается на термодинамику неравновесных процессов, теорию случайных процессов, теорию нелинейных колебаний и волн.

Синергетика рассматривает возникновение и развитие систем . Различают три вида систем : 1) замкнутые, которые не обмениваются с соседними системами (или с окружающей средой) ни веществом, ни энергией, ни информацией; 2) закрытые , которые обмениваются с соседними системами энергией, но не веществом (например, космический корабль); 3) открытые, которые обмениваются с соседними системами и веществом, и энергией. Практически все природные (экологические) системы относятся к типу открытых.

Существование систем немыслимо без связей. Последние делят на прямы и обратные. Прямой называют такую связь , при которой один элемент (А ) действует на другой (В ) без ответной реакции. При обратной связи элемент В отвечает на действие элемента А. Обратные связи бывают положительными и отрицательными.

Обратная положительная связь ведет к усилению процесса в одном направлении. Пример ее действия – заболачивание территории (например, после вырубки леса). Процесс начинает действовать в одном направлении : увеличение увлажнения – обеднение кислородом – замедление разложения растительных остатков – накопление торфа – дальнейшее усиление заболачивания.

Обратная отрицательная связь действует таким образом, что в ответ на усиление действия элемента А увеличивается противоположная по направлению сила действия элемента В. Такая связь позволяет сохраняться системе в состоянии устойчивого динамического равновесия. Это наиболее распространенный и важный вид связей в природных системах. На них прежде всего базируется устойчивость и стабильность экосистем.

Важным свойством систем является эмерджентность (в переводе с англ. - возникновение, появление нового). Это свойство заключается в том, что свойства системы как целого не являются простой суммой свойств слагающих ее частей или элементов, а взаимосвязи различных звеньев системы обусловливают ее новое качество.

В основе синенергетического подхода к рассмотрению систем лежат три понятия : неравновесность, открытость и нелинейность .

Неравновесность (неустойчивость) состояние системы , при котором происходит изменение ее макроскопических параметров, то есть состава, структуры, поведения.

Открытость – способность системы постоянно обмениваться веществом, энергией, информацией с окружающей средой и обладать как “источниками” - зонами подпитки энергией из окружающей среды, так и зонами рассеяния, “стока”.

Нелинейность – свойство системы пребывать в различных стационарных состояниях, соответствующих различным допустимым законам поведения этой системы.

В нелинейных системах развитие идет по нелинейным законам, приводящим к многовариантности путей выбора и альтернатив выхода из состояния неустойчивости. В нелинейных системах процессы могут носить резко пороговый характер , когда при постепенном изменении внешних условий наблюдается скачкообразный их переход в другое качество. При этом старые структуры разрушаются, переходя к качественно новым структурам.

Второе начало термодинамики – теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому. Под теплотой понимается внутренняя энергия тела.

Рассмотрим систему, способную контактировать с двумя тепловыми резервуарами. Температуры резервуаров (нагреватель) и (холодильник) .. В первоначальном состоянии (поз. 1) температура системы . Приведем ее в тепловой контакт с нагревателем и, квазистатически уменьшив давление, увеличим объем.

Система перешла в состояние с той же температурой , но с большим объемом и меньшим давлением (поз. 2). При этом системой была выполнена работа , а нагреватель передал ей количество теплоты . Далее уберем нагреватель и квазистатически по адиабате переведем систему в состояние с температурой (поз. 3). При этом система выполнит работу . Затем приведем систему в контакт с холодильником и вказистатически уменьшим объем системы. Количество тепла , которое при этом выделит система, поглотится холодильником – ее температура останется прежней.Над системой была выполнена работа (или система выполнила отрицательную работу– ). Состояние системы (поз. 4) выбирается таким, чтобы можно было по адиабате вернуть систему в исходное состояние (поз 1). При этом система выполнит отрицательную работу Т.к. система вернулась в исходное состояние, то внутренняя энергия после цикла осталась прежней, но при этом системой была выполнена работа . Из этого следует, что изменения энергии при выполнении работы компенсировались нагревателем и холодильником. Значит , – количество теплоты, которая пошла на выполнение работы .Коэффициент полезного действия (КПД) определяется по формуле:

.


Отсюда следует, что .


Теорема Карно
гласит, что коэффициент полезного действия тепловой машины, работающей по циклу Карно, зависит только от температур и нагревателя и холодильника, но не зависит от устройства машины, а также от вида рабочего вещества.

Вторая теорема Карно гласит – коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

Неравенство Клаузиуса:



Из него видно, что количество теплоты, которое получила система при круговом процессе, отнесенное к абсолютной температуре, при которой происходил процесс, есть величина неположительная. Если процесс квазистатический, то неравенство переходит в равенство:

Это значит, что приведенное количество теплоты, получаемое системой при любом квазистатическом круговом процессе, равно нулю .

– элементарное приведенное количество теплоты, получаемое в бесконечно

малом процессе.

– элементарное приведенное количество теплоты, получаемое в конечном


процессе.

Энтропия системы есть функция ее состояния, определенная с точностью до произвольной постоянной.

Разность энтропий в двух равновесных состояниях и , по определению, равна приведенному количеству теплоты, которое надо сообщить системе, чтобы перевести ее из состояния в состояние по любому квазистатическому пути.

Энтропия выражается функцией:

.


Предположим, что система переходит из равновесного состояния в равновесное состояние по пути , и переход – необратимый (штрихованная). Систему в квазистатически можно вернуть в исходное состояние по другому пути . Опираясь на неравенство Клаузиуса можно написать: