Эндоплазматическая сеть кем и когда открыта. Гладкая эндоплазматическая сеть

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) - система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи).

Комплекс Гольджи

Пластинчатый комплекс Гольджи - это упаковочный центр клетки. Представляет собой совокупность диктиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома - стопка из 3-12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гликопротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

Строение и функции немембранных структур клетки

В эту группу органоидов входят рибосомы, микротрубочки и микрофиламенты, клеточный центр.

Рибосома

Рибосомы (рис. 1) присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию вбиосинтезе белков. В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов. Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20-30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называетсяполисомой . Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка).

Рис.1. Схема строения рибосомы, сидяшей на мембране эндоплазматической сети: 1 - малая субъединииа; 2 иРНК; 3 - аминоацил-тРНК; 4 - аминокислота; 5 - большая субъединица; 6 - - мембрана эндоплазматической сети; 7 - синтезируемая полипептидная цепь

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Микротрубочки

Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета - 15 нм, толщина стенки - около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек. Микротрубочки построены из стереотипных белковых субъединиц путем их полимеризации. В любой клетке процессы полимеризации идут параллельно процессам деполимеризации. Причем соотношение их определяется количеством микротрубочек. Микротрубочки имеют различную устойчивость к разрушающим их факторам, например, к колхицину (это химическое вещество, вызывающее деполимеризацию). Функции микротрубочек:

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме. Иногда образуют пучки. Виды микро-филаментов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения (например, амебоидные), играют роль клеточного каркаса, участвуют в организации перемещений органелл и участков цитоплазмы внутри клетки;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмалеммой и по окружности ядра. Выполняют опорную (каркасную) роль. В разных клетках (эпителиальных, мышечных, нервных, фибробластах) построены из разных белков.

Микрофиламенты, как и микротрубочки, построены из субъединиц, поэтому их количество определяется соотношением процессов полимеризации и деполимеризации.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра.

Клеточный центр обычно располагается рядом с ядром.

Он состоит из двух центриолей, каждая из которых представляет собой полый цилиндр диаметром около 150 нм, длиной 300-500 нм.

Центриоли расположены взаимоперпендикулярно. Стенка каждой центриоли образована 27 микротрубочками, состоящими из белка тубулина. Микротрубочки сгруппированы в 9 триплетов.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Клеточные включения. Так называются непостоянные компоненты в клетке, присутствующие в основном веществе цитоплазмы в виде зерен, гранул или капелек. Включения могут быть окружены мембраной или же не окружаются ею.

В функциональном отношении выделяют три вида включений: запасные питательные вещества (крахмал, гликоген, жиры, белки), секреторные включения (вещества, характерные для железистых клеток, продуцируемые ими, - гормоны желез внутренней секреции и т. п.) и включения специального назначения (в узкоспециализированных клетках, например гемоглобин в эритроцитах).

Гладкая Эндоплазматическая сеть.

Эндоплазматическую сеть подразделяют на два типа — гладкую и шероховатую.

Гладкую ЭПС ещё называют агранулярной.

Гладкая эндоплазматическая сеть возникает и развивается за счет гранулярной эндоплазматической сети (при освобождении ее от рибосом)।

Гладкая сеть состоит из трубочек, стенки которых представляют собой мембраны, каналов и пузырьков меньшего сечения, чем в шероховатой сети. Диаметр вакуолей и канальцев гладкой эндоплазматической сети обычно около 50—100 нм. Ее функции так же разнообразны: здесь синтезируются липиды мембран, но, кроме них, и немембранные липиды (например, особые гормоны животных), специальными ферментными комплексами обезвреживаются ядовитые вещества, накапливаются ионы. Так, в поперечнополосатых мышцах гладкая сеть служит резервуаром ионов кальция. Мембраны этой сети содержат мощные кальциевые «насосы», которые в сотые доли секунды переносят в любую сторону большое количество ионов кальция. Также синтезируется углеводы. В специализированных клетках вид гладкой сети различен, что связано с ее конкретными функциями во внутриклеточном обмене.

Гладкая сеть характеризуется наличием энзимных систем, участвующих в ключе вых звеньях обмена веществ. Гладкая эндоплазматическая сеть легко повреждается при гипоксии, активации эндогенных фосфолипаз. Выпадение ее функций в клетках ре зко снижает устойчивость организма к экзо - и эндогенным патогенным продуктам и способствует развитию болезни.

Гладкая ЭПС хорошо развита в тех клетках, в которых идут процессы синтеза и расщепления липидов. Это клетки надпочечников и семенников (в них синтезируются стероидные гормоны), клетки печени, мышечные клетки, эпителиальные клетки кишечника.

В мембранах гладкой ЭПС встроены ферменты гидроксилирования - особого способа окисления, которое иногда называется микросомальным, используется при синтезе многих липидов (например: стероидных гормонов) и для обезвреживания различных вредных веществ.

Электронная микрофотография

1 — вакуоли и трубочки гладкой ЭПС. На их поверхности, обращенной к гиалоплазме, нет рибосом. Однако

здесь связаны ферментные системы синтеза и модифи

кации липидов.

Другие структуры:
2 — митохондрии.
3 — пероксисома,

4 — рибосомы.
5 — резидуальное тело.

Эндоплазматическая сеть или ЭПС - это совокупность мембран, относительно равномерно распределенная по цитоплазме клеток эукариот. ЭПС имеет огромное количество разветвлений и представляет собой сложно структурированную систему взаимосвязей.

ЭПС является одной из составляющих клеточной мембраны. Сама же она включается в себя каналы, трубочки и цистерны, позволяющие распределить внутреннее пространство клетки на определенные участки, а также значительно расширить ее. Все место внутри клетки заполняет матрикс - плотное синтезированное вещество, и каждый из его участков имеет разный химический состав. Поэтому в полости клетки может идти сразу несколько химических реакций, охватывающих только определенную область, а не всю систему. Заканчивается ЭПС перинуклеарным пространством.

Липиды и белки - основные вещества в составе мембраны эндоплазматической сети. Нередко встречаются еще и различные ферменты.

Виды ЭПС:

  • Агранулярная (аПС) - по сути своей - система скрепленных трубочек, не содержащая рибосом. Поверхность такой ЭПС, из-за отсутствия на ней чего-либо, гладкая.
  • Гранулярная (грЭС) - такая же, как и предыдущая, но имеет на поверхности рибосомы, благодаря чему наблюдаются шероховатости.

В некоторых случаях в этот список включают транзиторную эндоплазматическую сеть (тЭС). Второе ее название - переходящая. Она находится в зоне стыка двух видов сети.

Шероховатая ЭС может наблюдаться внутри всех живых клеток, исключая сперматозоиды. Однако, в каждом организме она развита в разной степени.

Так, например, грЭС достаточно высокоразвита в плазматических клетках, вырабатывающих иммуноглобулины, в фибробластах, продуцентах коллагена, и в железистых эпителиальных клетках. Последние находятся в поджелудочной железе, где синтезируют ферменты, и в печени, производя альбумины.

Гладкая ЭС представлена клетками надпочечников, которые, как известно, создают гормоны. Также ее можно обнаружить в мышцах, где проходит обмен кальция, и в фундальных желудочных железах, выделяющих хлор.

Также существует два вида внутренних мембран ЭПС. Первый являет собой систему трубочек с многочисленными разветвлениями, они насыщены разнообразными ферментами. Второй тип - везикулы - небольшие пузырьки с собственной мембраной. Они выполняют транспортную функцию для синтезируемых веществ.

Функции ЭПС

В первую очередь эндоплазматическая сеть - синтезирующая система. Но также она не реже занимается транспортом цитоплазматических соединений, что делает всю клетку способной на более сложные функциональные особенности.

Вышеописанные возможности ЭПС свойственны для любого из ее типов. Таким образом, эта органелла - универсальная система.

Общие функции для гранулярной и агранулярной сети:

  • Синтезирующая - выработка мембранных жиров (липидов) с помощью ферментов. Именно они позволяют ЭПС самостоятельно воспроизводиться.
  • Структурирующая - организация областей цитоплазмы и предотвращение попадания в нее ненужных веществ.
  • Проводящая - возникновение возбуждающих импульсов за счет реакции между мембранами.
  • Транспортная - выведение веществ даже сквозь мембранные стенки.

Помимо основных особенностей, каждый род эндоплазматических сетей обладает собственными специфическими функциями.

Функции гладкой (агранулярной) эндоплазматической сети

АЭС, не считая особенностей, свойственных для всех типов ЭПС, обладает собственными следующими функциями:

  • Детоксикационнная - ликвидация токсинов как внутри, так и снаружи клетки.

Фенобарбитал разрушается в клетках почек, а именно, в гепатоцитах, вследствие воздействия ферментов оксидазы.

  • Синтезирующая - выработка гормонов и холестерина. Последний выводится в нескольких местах сразу: половые железы, почки, печень и надпочечники. А в кишечнике синтезируются жиры (липиды), попадающие в кровь через лимфу.

АЭС способствует синтезу гликогена в печени, благодаря действию ферментов.

  • Транспортная - саркоплазматический ретикулум, он же специальная ЭПС в поперечно-полосатых мышцах, служит местом хранения кальций-ионов. А благодаря специализированным кальциевым помпам, он выбрасывает кальций прямо в цитоплазму, откуда моментально отправляет его в область каналов. Занимается мышечная ЭПС этим, вследствие изменения количества кальция особыми механизмами. Они находятся, в основном, в клетках сердца, скелетных мышц, а также в нейронах и яйцеклетке.

Функции шероховатой (гранулярной) эндоплазматической сети

Также, как и агранулярная, грЭС имеет свойственные только для себя самой функции:

  • Транспортная - перемещение веществ по внутримембранной секции, так, например, выработанные белки по поверхности ЭПС переходят в комплекс Гольджи, после чего выходят из клетки.
  • Синтезирующая - все, как и раньше: производство белков. Но начинается оно на свободных полисомах, и только после этого вещества связываются с ЭПС.
  • Благодаря гранулярной эндоплазматической сети синтезируются буквально все виды белков: секреторные, выходящие внутрь самой клетки, специфические во внутренней фазе органоидов, а также все вещества в мембране клетки, за исключением митохондрий, хлоропластов и некоторых типов белков.
  • Образующая - комплекс Гольджи создается в том числе благодаря грЭС.
  • Модификационная - включает в себя фосфориллирование, сульфатирование и гидроксилирование белков. Специальный фермент гликозилтранфераза обеспечивает проведение процесса гликозилирования. В основном он предшествует транспорту веществ к выходу из цитоплазмы либо происходит перед секрецией клетки.

Можно проследить, что функции грЭС направлены в основном на регуляцию транспорта белков, синтезирующихся на поверхности эндоплазматической сети в рибосомах. Они преобразуются в третичную структуру, скручиваясь, именно в ЭПС.

Типичное поведение белка заключается в поступлении в гранулированную ЭПС, после в аппарат Гольджи и, в конечном шаге, в выходе наружу к другим органоидам. Также он может отложиться, как запасной. Но часто, в процессе перемещения, он способен кардинально изменить состав и внешний вид: фосфориллироваться, например, или преобразоваться в гликопротеид.

Оба типа эндоплазматической сети способствуют детоксикации клеток печени, то есть выводу из нее ядовитых соединений.

ЭПС пропускает сквозь себя вещества не во всех участках, благодаря чему количество соединений в канальцах и снаружи их разная. По такому же принципу работает проницаемость внешней мембраны. Эта особенность играет определенную роль в жизнедеятельности клетки.

В клеточной цитоплазме мышц гораздо меньше кальций-ионов, чем в ее эндоплазматической сети. Следствием этого является удачное сокращение мышц, ведь именно кальций при выходе из каналов ЭПС обеспечивает этот процесс.

Образование эндоплазматической сети

Основные составляющие ЭПС - белки и липиды. Первые транспортируются из мембранных рибосом, вторые синтезируются самой эндоплазматической сетью с помощью ее ферментов. Так как гладкая ЭПС (аПС) не имеет на поверхности рибосом, а сама синтезировать белок не способна, она образуется при отбрасывании рибосом сетью гранулярного типа.

Строение эндоплазматической сети

Определение 1

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Замечание 1

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Замечание 2

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция . Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов , веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;
  • детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

    Пример 1

    В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

    ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков : гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки (комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

Пример 2

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

Цитоплазма включает в себя жидкое содержимое клетки или гиалоплазму и органоиды. Плазмолемма на 80-90% состоит из воды. Плотный остаток включает в себя различные электролиты и органические вещества. С точки зрения содержания веществ и концентрации ферментов гиалоплазму можно разделить на центральную и периферическую. Содержание ферментов в периферической гиалоплазме значительно выше, кроме того в ней выше концентрация ионов. Гиалоплазма компартментализирована в основном за счет тонких филаментов. Хотя и все остальные компоненты СОСА выполняют структурную функцию. Часть органоидов, например, рибосомы, митохондрии, клеточный центр взаимодействуют с фибриллярными структурами, поэтому можно сказать, что вся цитоплазма структурно организована. Органоиды клетки делятся на мембранные и немембранные. К мембранным органоидам относятся: комплекс Гольджи, ЭПС, лизосомы, пероксисомы. К немембранным органоидам относятся: клеточный центр, рибосомы (у прокариот из органоидов присутствуют только рибосомы).

Э.П.С.

Это структурно-единая мембранная система, которая пронизывает всю клетку и которая, как предполагают, первой образовалась в процессе становления эукориотной клетки. Произошел экзоцитоз плазмалеммы, и такие клетки получили определенное преимущество, т.к. возник компартмент, в котором можно осуществлять определенные ферментативные процессы, а именно полость ЭПС. С функциональной точки зрения ЭПС можно разделить на 3 отдела:

    шероховатая или гранулярная ЭПС. Представлена уплощенными мембранными цистернами, на которых располагаются рибосомы.

    промежуточная ЭПС, так же представлена уплощенными цистернами, но на них не располагаются рибосомы

    гладкая ЭПС представлена сетью разветвленных аностомазирующих мембранных трубочек. Рибосом на мембране нет.

Функции шЭПС.

Основная функция связана с синтезом и сегрегацией белков. Это во многом определяется тем, что на мембране располагаются специальные белки рибофорины, с которыми способна взаимодействовать большая часть рибосом. Т.о. на мембране ЭПС могут идти элонгация и терминация белкового синтеза. В ряде случаев рибосомы, на которых происходит белковый синтез в гиалоплазме не доводят его до конца и вступают в так называемую трансляционную паузу, затем при помощи специальных причальных белков такие рибосомы присоединяются к мембране шЭПС и выходят из трансляционной паузы заканчивая синтез белка. Помимо рибофоринов на мембране шЭПС образуются специальный комплекс интегральных белков, который называется транслокационным комплексом. Он участвует в транспортировке определенных белков через мембрану шЭПС в ее полость. Все белки, которые синтезируются на рибосомах ЭПС можно разделить на две группы:

    белки, которые уходят в ПАК и геалоплазму

    белки, которые уходят в полость ЭПС и которые на своем конце имеют специальную пептидную последовательность, она опознается рецепторами транслокационного комплекса и в процессе прохождения белка через транслокационный комплекс отделяется.

Первый этап сигригации проходит на мембране шЭПС. В полости шЭПС белки сигрегируют на два потока:

    белки собственно ЭПС, например, рибофорины, белки транслокационного комплекса, рецепторы, ферменты. Эти белки имеют специальный аминокислотный сигнал задержки и называются резидентными белками.

    белки, которые из полости шЭПС выводятся в промежуточную ЭПС не имеют сигнала задержки и еще в полости шЭПС гликозилируются. Такие белки называются транзитными.

С внутренней стороны на мембране промежуточной ЭПС находятся рецепторы, которые опознают углеводородную сигнальную часть. За счет экзоцитоза в промежуточной ЭПС образуются мембранные пузырьки, которые содержат гликозилированные белки и рецепторы их опознающие. Эти пузырьки направляются к комплексу Гольджи.

Помимо синтеза и сегрегации белков в шЭПС осуществляются конечные этапы синтеза некоторых мембранных липидов.

Функции промежуточной ЭПС.

Заключается в отпочковывании мембранных пузырьков с помощью клатринподобных белков. Эти белки сильно увеличивают скорость экзоцитоза.

Функции гладкой ЭПС.

    на мембране гЭПС существуют ферменты за счет, которых синтезируются практически все клеточные липиды. В первую очередь это относится к фосфолипидам и церамиду. Кроме того в гладкой ЭПС локализованы ферменты, которые участвуют в синтезе холестерола, который в свою очередь является предшественником стероидных гормонов. Холестерол в основном синтезируется гепатоцитами, поэтому при различных вирусных гепатитах наблюдается гипохолесторемия. Результатом является анемия, т.к. страдают мембраны эритроцитов. В некоторых клетках например надпочечников и половых желез синтезируются стероидные гормоны, причем в надпочечниках в начале синтезируются женские половые гормоны, а затем на их основе мужские половые гормоны.

    депонирование кальция и регуляция концентрации Са в гиалоплазме. Эта функция определяется тем, что на мембране трубочек гЭПС существуют переносчики для Са, а в полости гЭПС находятся Са-связывающии белки. За счет активного транспорта с помощью Са-ого насоса он закачивается в полость ЭПС и связывается с белками. При уменьшении концентрации Са в клетке пассивным транспортом Са выводится в гиалоплазму. Эта функция особенно развита в мышечных клетках, например, в кардиомиоцитах. Транспорт Са может быть вызван активацией фосфолипазной системы. Регуляция уровня Са в клетке особенно важна в условиях Са-вой перегрузки. При избытке Са возможен Са-зависимый апоптоз. Поэтому в мембране г ЭПС существует белок, который препятствует апоптозу

    детоксикация. Выполняется в основном клетками печени, куда поступают лекарственные препараты и различные ядовитые вещества из кишечника. В клетках печени ядовитые гидрофобные вещества переводятся в неядовитые гидрофобные, при помощи специфичных оксидоредуктаз

    гладкая ЭПС участвует в метоболизме углеводов. Эта функция особенно характерна для клеток печени, мышечных клеток, клеток кишечника. В этих клетках на мембране гЭПС локализован фермент глюкоза-6-фосфатаза, который способен отщеплять фосфатный остаток от глюкозы. Глюкоза может быть выведена в кровь только после дефосфолилирования, при наследственных дефектах этого фермента наблюдается болезнь Гирке. Для этой болезни характерно накопление избытка гликогена в печени и почках, а также гипогликимия. Кроме того, образуется большое количество молочной кислоты, что приводит к развитию ацидоза.

КОМПЛЕКС ГОЛЬДЖИ.

Универсальной функцией комплекса Гольджи является то, что он участвует в:

    формировании компонентов ПАКа

    формировании секреторных гранул

    формировании лизосом

в комплексе Гольджи наблюдается сегрегация белков, которые транспортируются сюда из ЭПС. (сами белки комплекса Гольджи синтезируются на рибосомах, которые локализованы в непосредственной близости от комплекса. Эти белки имеют сигнальную последовательность и транспортируются в полость комплекса Гольджи через транслокационный комплекс.)

Мембранные пузырьки, поступающие из ЭПС, сливаются с цистерной спасения. Цистерна спасения выполняется функцию возвращения в ЭПС рецепторов и причальных белков. Белки из цистерны спасения транспортируются в соседнюю цистерну цис-отдела. Здесь происходит сегрегация белков на два потока. Часть белков фосфолилируются за счет специального фермента фосфогликозыдазы, т.е. фосфолилирование идет по углеводной части. После этого белки поступают в медиальный отдел, где происходят различные химические модификации: гликозилирование, ацетилирование, сиалирование, после чего белки поступают в транс отдел, где наблюдается частичный протеолиз белков возможны дальнейшие химические модификации, а затем белки в трансраспределительном отделе сегрегируются на три потока:

    постоянный или констутативный поток белков к ПАКу, за счет которых регинирируют компоненты плазмолеммы и гликокаликса

    поток секреторных гранул. Они могут задерживаться, либо около комплекса Гольджи, либо под плазмалеммой, это так называемый индуцируемый экзоцитоз

    с помощью этого потока из комплекса Гольджи выводятся мембранные пузырьки с фосфолилированными белками. Это поток так называемых первичных лизосом, которые затем участвуют в фагических циклах клетки. Помимо этого в комплексе Гольджи происходит синтез гликозамингликанов, синтезируются многии гликопротеины и гликолипиды, происходит окончательный синтез сфинголипидов, происходит конденсация растворенных веществ.

ЛИЗОСОМЫ.

Это универсальные органоиды эукариотной клетки, который представлен мембранными пузырьками, диаметром 0,4мкм, которые участвуют в обеспечении клетки реакций гидролиза. Все лизосомы имеют матрикс, состоящий из мукополисахаридов, к котором локализованы неактивные гидролазы. Ингибирование гидролаз осуществляется за счет их гликозилирования в ЭПС, за счет фосфолилирования в комплексе Гольджи, за счет того, что Рh матрикса не соответствует реакциям гидролиза. Функции лизосом реализуются в двух фагических циклах:

    аутофагический цикл

    гетерофагический цикл

Аутофагический цикл.

При помощи этого цикла можно:

    расщеплять старые, потерявшие функциональную активность компоненты клетки (митохондрии). Это обеспечивает физиологическую регенерацию клетки и возможность ее существования значительно дольше любую из ее структур

    расщеплять запасные питательные вещества в клетке

    расщеплять избыточное количество секреторных гранул.

Т.о. аутофагический цикл обеспечивает клетку мономерами, которые необходимы для синтеза свойственных клетке новых биополимеров. В ряде случаев, когда экзогенное питание клетки отсутствует, он становится единственным источником мономеров, т.е. клетка переходит к экзогенному питанию. При длительном голодании это приводит к лизису клетки. Выделяют 2 типа аутофагического цикла:

    макроаутофагия или типичная аутофагия. Она начинается с формирования мембранных пузырьков, в которые заключен старый органоид клетки. Такой пузырек называется аутофагосомой. Первичная лизосома, образующаяся в комплексе Гольджи и содержащая неактивные гидролазы, сливается с аутофагосомой. Процесс слияния активирует на мембране вторичной лизосомы протольные помпы или насосы. Протоны закачиваются внутрь лизосомы, что приводит к сдвигу Ph , на мембране активируется фермент кислая фосфотаза, которая отщепляет фосфатный остаток от гидролаз. Гидролазы становятся активными и начинают отщеплять сложные молекулы, и мономеры поступают в цитоплазму. С вторичной лизосомой могут сливаться аутофагасомы и первичные лизосомы пока гидролазы не потеряют свою активность, и вторичные лизосомы ни превратятся в телолизосомы. Телолизосомы либо выводятся из клетки, либо накапливаются в ней.

    микроаутофагия. В этом случае вещества, подлежащие расщеплению, поступают в первичную лизосому не в виде аутофагического пузырька, а непосредственно через мембрану лизосомы. В этом случае наблюдается фосфолилирование определенных белков первичной лизосомы.

Патологии. Причинами патологий может являться дестабилизация мембраны первичной лизосомы. Наблюдается массовый выход гидролаз в цитоплазму и неконтролируемое расщепление компонентов клетки. Таким дестабилизирующим агентом является ионизирующее облучение, токсины некоторых грибов, витамины А, Д, Е, интенсивные физические нагрузки, гипер- и гипотермия. Стрессовые факторы вызывают такой выход гидролаз, т.к. на клетки организма начинает действовать повышая количество адреналина, который дестабилизирует мембрану. Возможны варианты суперстабилизации лизосомной мембраны. В этом случае лизосомы не могут вступать в фагический цикл. При нарушении структуры ферментов лизосом наблюдается различные болезни, которые чаще всех ведут к гибели организма. Если белки в комплексе Гольджи не фосфолилируются, то гидролазы обнаруживаются не в первичных лизосомах, а в секреторных потоках, которые выводятся из клетки. Одной из патологий является У-клеточная болезнь, характерная для фибробластов, клеток соединительной ткани. Там лизосомы не содержат гидролаз. Они выводятся в плазму крови. В фибробластах накапливаются различные вещества, что приводит к развитию болезни накопления (синдром Тея-Сакса). В нейронах накапливается большое количество комплексных углеводов - гликозидов, а лизосомы занимают очень большой объем. Ребенок теряет эмоциональность, перестает улыбаться, узнавать родителей, отстает в психомоторном развитии, теряет зрение и умирает к 4-5 годам. Болезни накопления могут быть связаны с патологичным развитием лизосомных ферментов, но как правило ведут к летальному исходу. Возможны варианты нормального лизирования клеток в ходе аутофагического цикла. В основном это касается лизиса клеток у разных организмов в период эмбрионального развития. У человека аутолизу подвергаются перепонки между пальцами. У головастика аутолизу подвергается хвост. В наибольшей степени аутолизу подвергаются насекомые с полным метаморфозом.

Гетерофагический цикл.

Заключается в расщеплении веществ, поступающих в клетку из внешней среды. За счет любого из типов эндоцитоза формируется гетерофагосома, которая способна сливаться с первичной лизосомой. Весь дальнейший гетерофагический цикл осуществляется так же, как и аутофагический.

Функции гетерофагического цикла.

    Трофическая у одноклеточных

    Защитная. Характерна для нейтрофилов и макрофагов.

Существуют варианты гетерофагического цикла, при которых гидролазы выводятся из клетки во внешнюю среду. Например, простеночное пищеварение, акросомы реакция сперматозоида. Модификационного гетефагического цикла наблюдается при переломах костей, в местах переломов межотломкоквая щель заполняется хрящевой тканью, затем благодаря деятельности специальных клеток остеобластов. Хрящевая ткань разрушается и образуется костная мозоль. Патологии гетерофагического цикла являются различные иммунодефициты.

ПЕРОКСИСОМЫ.

Это универсальный мембранный органоид клетки, диаметром примерно 0,15-0,25нм. Главной функцией пероксисом является расщепление длиннорадикальных жирных кислот. Хотя в целом они могут выполнять и другие функции. Пероксисомы в клетке образуются только за счет деления материнских пероксисом, поэтому, если в клетку по каким-то причинам не попали пероксисомы, то клетка погибает из-за накопления жирных кислот. Мембрана пероксисом имеет типичное жидкостно-мозаичное строение и может увеличиваться за счет переносимых сюда специальными белками переносчиками сложных липидов и белков.

Функции.

    Расщепление жирных кислот. В пероксисомах содержаться ферменты, относящиеся к группе ферментов оксидоредуктаз, которые начинают расщепление жирных кислот с отщепления остатков уксусной кислоты и образуют внутри радикала жирной кислоты двойную связь и как побочный продукт образуется перекись водорода. Перекись расщепляется специальным ферментом каталазой до Н 2 О и О 2 . такой процесс расщепления жирных кислот получило название β-окисление, он проходит не только в пероксисомах, но и в митохондриях. В митохондриях происходит расщепление короткорадикальные кислоты. В любом случае расщепление идет с образованием остатков уксусной кислоты или ацетата. Ацетат взаимодействует с коферментов А с образованием ацетилСоА. Это вещество является ключевым продуктом метаболизма, до которого расщепляется все органические соединения. АцСоА может использоваться в энергообмене и на основе АцСоА образуются новые жирные кислоты. При нарушении β-окисления жирных кислот наблюдается Синдром Боумена-Цельвегера. Он характеризуется отсутствием пероксисом в клетках. Новорожденные рождаются с очень маленьким весом и с патологичным развитием некоторых внутренних органов, например, мозга, печени, почек. Сильно отстают в развитие, рано погибают (до 1 года), причем в клетках обнаруживаются большое количество длиннорадикальных кислот.

    Пероксисомы участвуют в детоксикации многих вредных веществ, например, спиртов, альдегидов и кислот. Эта функция характерна для клеток печени, причем пероксисомы в печени имеют более крупные размеры. Детоксикация ядов веществ происходит за счет их окисления. Например, окисление этанола проходит до Н 2 О и ацетальдегида. В пероксисомах проходит окисление 50% этанола. Образовавшийся ацетальдегид поступает в митохондрии, где из него образуется ацетилСоА. При хроническом употреблении алкоголя количество ацетилСоА в гепатоцитах резко возрастает. Это приводит к снижению β-окисления жирных кислот и к синтезу новых жирных кислот. Следовательно, начинается синтезироваться жиры, которые откладываются в клетках печени и это приводит к возникновению жирового перерождения печени (цирроз)

    Пероксисомы способны катализировать окисление уратов, т.к. в них находится фермент уратоксидаза. Однако у высших приматов и человека данный фермент неактивен, поэтому в крови циркулирует большое количество уратов в растворенном виде. Они хорошо фильтруются в почечных клубочках и выводятся с вторичной мочой. Концентрация уратов в крови способствует развитию определенных заболеваний, например, наследственные патологии метаболизма пурина приводят к увеличению концентрации уратов в десятки раз. В результате развивается подагра, которая заключается в отложении уратов в суставах и некоторых тканях, а также возникновении уратных камней в почках.