Что значит решить рациональное уравнение. Решение уравнений с двумя переменными. Основные свойства степеней

I. Рациональные уравнения.

1) Линейные уравнения.

2) Системы линейных уравнений.

3) Квадратные уравнения и уравнения, сводящиеся к ним.

4) Возвратные уравнения.

5) Формула Виета для многочленов высших степеней.

6) Системы уравнений второй степени.

7) Метод введения новых неизвестных при решении уравнений и систем уравнений.

8) Однородные уравнения.

9) Решение симметрических систем уравнений.

10) Уравнения и системы уравнений с параметрами.

11) Графический метод решения систем нелинейных уравнений.

12) Уравнения, содержащие знак модуля.

13) Основные методы решения рациональных уравнений

II. Рациональные неравенства.

1) Свойства равносильных неравенств.

2) Алгебраические неравенства.

3) Метод интервалов.

4) Дробно-рациональные неравенства.

5) Неравенства, содержащие неизвестное под знаком абсолютной величины.

6) Неравенства с параметрами.

7) Системы рациональных неравенств.

8) Графическое решение неравенств.

III. Проверочный тест.

Рациональные уравнения

Функция вида

P(x) = a 0 x n + a 1 x n – 1 + a 2 x n – 2 + … + a n – 1 x + a n ,

где n - натуральное, a 0 , a 1 ,…, a n - некоторые действительные числа, называется целой рациональной функцией.

Уравнение вида P(x) = 0, где P(x) - целая рациональная функция, называется целым рациональным уравнением.

Уравнение вида

P 1 (x) / Q 1 (x) + P 2 (x) / Q 2 (x) + … + P m (x) / Q m (x) = 0,

где P 1 (x), P 2 (x), … ,P m (x), Q 1 (x), Q 2 (x), …, Q m (x) - целые рациональные функции, называется рациональным уравнением.

Решение рационального уравнения P (x) / Q (x) = 0, где P (x) и Q (x) - многочлены (Q (x) ¹ 0), сводится к решению уравнения P (x) = 0 и проверке того, что корни удовлетворяют условию Q (x) ¹ 0.

Линейные уравнения.

Уравнения вида ax+b=0, где a и b - некоторые постоянные, называется линейным уравнением.

Если a¹0, то линейное уравнение имеет единственный корень:x = -b /a.

Если a=0; b¹0, то линейное уравнение решений не имеет.

Если a=0; b=0, то, переписав исходное уравнение в виде ax = -b, легко видеть, что любое x является решением линейного уравнения.

Уравнение прямой имеет вид: y = ax + b.

Если прямая проходит через точку с координатами X 0 и Y 0 , то эти координаты удовлетворяют уравнению прямой, т. е. Y 0 = aX 0 + b.

Пример 1.1 . Решить уравнение

2x – 3 + 4(x – 1) = 5.

Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x – 3 + 4x – 4 = 5, 2x + 4x = 5 + 4 + 3,

Пример 1.2. Решить уравнение

2x – 3 + 2(x – 1) = 4(x – 1) – 7.

Решение. 2x + 2x – 4x = 3 +2 – 4 – 7, 0x = – 6.

Пример 1.3 . Решить уравнение.

2x + 3 – 6(x – 1) = 4(x – 1) + 5.

Решение. 2x – 6x + 3 + 6 = 4 – 4x + 5,

– 4x + 9 = 9 – 4x,

4x + 4x = 9 – 9,

Ответ: Любое число.

Системы линейных уравнений.

Уравнение вида

a 1 x 1 + a 2 x 2 + … + a n x n = b,

где a 1 , b 1 , … ,a n , b -некоторые постоянные, называется линейным уравнением с n неизвестными x 1 , x 2 , …, x n .

Система уравнений называется линейной, если все уравнения, входящие в систему, являются линейными. Если система из n неизвестных, то возможны следующие три случая:

1) система не имеет решений;

2) система имеет ровно одно решение;

3) система имеет бесконечно много решений.

Пример 2.4. решить систему уравнений

2x + 3y = 8,

Решение. Решить систему линейных уравнений можно способом подстановки, который состоит в том, что какого-либо уравнения системы выражают одно неизвестное через другие неизвестные, а затем подставляют значение этого неизвестного в остальные уравнения.

Из первого уравнения выражаем:x= (8 – 3y) / 2. Подставляем это выражение во второе уравнение и получаем систему уравнений


Решение. Система не имеет решений, так как два уравнения системы не могут удовлетворяться одновременно (из первого уравнения x + y = 3, а из второго x + y = 3,5).

Ответ: Решений нет.

Пример 2.6. решить систему уравнений


Решение. Система имеет бесконечно много решений, так как второе уравнение получается из первого путём умножения на 2 (т.е. фактически есть всего одно уравнение с двумя неизвестными).

Ответ: Бесконечно много решений.

Пример 2.7. решить систему уравнений

x + y – z = 2,

2x – y + 4z = 1,

– x + 6y + z = 5.

Решение. При решении систем линейных уравнений удобно пользоваться методом Гаусса, который состоит в преобразовании системы к треугольному виду.

Умножаем первое уравнение системы на – 2 и, складывая полученный результат со вторым уравнением, получаем – 3y + 6z = – 3. Это уравнение можно переписать в виде y – 2z = 1. Складывая первое уравнение с третьим, получаем 7y = 7, или y = 1.

Таким образом, система приобрела треугольный вид


x + y – z = 2,

Подставляя y = 1 во второе уравнение, находим z = 0. Подставляя y =1 и z = 0 в первое уравнение, находим x = 1.

Ответ: (1; 1; 0).

Пример 2.8. при каких значениях параметра a система уравнений

2x + ay = a + 2,

(a + 1)x + 2ay = 2a + 4

имеет бесконечно много решений?

Решение. Из первого уравнения выражаем x:

x = – (a / 2)y + a / 2 +1.

Подставляя это выражение во второе уравнение, получаем

(a + 1)(– (a / 2)y + a / 2 +1) + 2ay = 2a + 4.

(a + 1)(a + 2 – ay) + 4ay = 4a + 8,

4ay – a(a + 1)y = 4(a + 2) – (a + 1)(a + 2),

ya(4 – a – 1) = (a + 2)(4 – a – 1),

ya(3 – a) = (a + 2)(3 – a).

Анализируя последнее уравнение, отметим, что при a = 3 оно имеет вид 0y = 0, т.е. оно удовлетворяется при любых значениях y.

Квадратные уравнения и уравнения, сводящиеся к ним.

Уравнение вида ax 2 + bx + c = 0, где a, b и c - некоторые числа (a¹0);

x - переменная, называется квадратным уравнением.

Формула решения квадратного уравнения.

Сначала разделим обе части уравнения ax 2 + bx + c = 0 на a - от этого его корни не изменятся. Для решения получившегося уравнения

x 2 + (b / a)x + (c / a) = 0

выделим в левой части полный квадрат

x 2 + (b / a) + (c / a) = (x 2 + 2(b / 2a)x + (b / 2a) 2) – (b / 2a) 2 + (c / a) =

= (x + (b / 2a)) 2 – (b 2) / (4a 2) + (c / a) = (x + (b / 2a)) 2 – ((b 2 – 4ac) / (4a 2)).

Для краткости обозначим выражение (b 2 – 4ac) через D. Тогда полученное тождество примет вид

Возможны три случая:

1) если число D положительно (D > 0), то в этом случае можно извлечь из D квадратный корень и записать D в виде D = (ÖD) 2 . Тогда

D / (4a 2) = (ÖD) 2 / (2a) 2 = (ÖD / 2a) 2 , потому тождество принимает вид

x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 – (ÖD / 2a) 2 .

По формуле разности квадратов выводим отсюда:

x 2 + (b / a)x + (c / a) = (x + (b / 2a) – (ÖD / 2a))(x + (b / 2a) + (ÖD / 2a)) =

= (x – ((-b + ÖD) / 2a)) (x – ((– b – ÖD) / 2a)).

Теорема : Если выполняется тождество

ax 2 + bx + c = a(x – x 1)(x – x 2),

то квадратное уравнение ax 2 + bx + c = 0 при X 1 ¹ X 2 имеет два корня X 1 и X 2 , а при X 1 = X 2 - лишь один корень X 1 .

В силу этой теоремы из, выведенного выше, тождества следует, что уравнение

x 2 + (b / a)x + (c / a) = 0,

а тем самым и уравнение ax 2 + bx + c = 0, имеет два корня:

X 1 =(-b + Ö D) / 2a; X 2 = (-b - Ö D) / 2a.

Таким образом x 2 + (b / a)x + (c / a) = (x – x1)(x – x2).

Обычно эти корни записывают одной формулой:

где b 2 – 4ac = D.

2) если число D равно нулю (D = 0), то тождество

x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 – (D / (4a 2))

принимает вид x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 .

Отсюда следует, что при D = 0 уравнение ax 2 + bx + c = 0 имеет один корень кратности 2: X 1 = – b / 2a

3) Если число D отрицательно (D < 0), то – D > 0, и потому выражение

x 2 + (b / a)x + (c / a) = (x + (b / 2a)) 2 – (D / (4a 2))

является суммой двух слагаемых, одно из которых неотрицательно, а другое положительно. Такая сумма не может равняться нулю, поэтому уравнение

x 2 + (b / a)x + (c / a) = 0

не имеет действительных корней. Не имеет их и уравнение ax 2 + bx + c = 0.

Таким образом, для решения квадратного уравнения следует вычислить дискриминант

D = b 2 – 4ac.

Если D = 0, то квадратное уравнение имеет единственное решение:

Если D > 0, то квадратное уравнение имеет два корня:

X 1 =(-b + ÖD) / (2a); X 2 = (-b - ÖD) / (2a).

Если D < 0, то квадратное уравнение не имеет корней.

Если один из коэффициентов b или c равен нулю, то квадратное уравнение можно решать, не вычисляя дискриминанта:

1) b = 0; c ¹ 0; c / a <0; X1,2 = ±Ö(-c / a)

2) b ¹ 0; c = 0; X1 = 0, X2= -b / a.

Корни квадратного уравнения общего вида ax 2 + bx + c = 0 находятся по формуле

§ 1 Целое и дробное рациональные уравнение

В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

Рациональные выражения бывают:

Дробные.

Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

Например:

В дробных выражениях есть деление на переменную или выражение с переменной. Например:

Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

при х = -9 не имеет смысла, так как при х = -9 знаменатель обращается в нуль.

Значит, рациональное уравнение может быть целым и дробным.

Целое рациональное уравнение - это рациональное уравнение, в котором левая и правая части - целые выражения.

Например:

Дробное рациональное уравнение - это рациональное уравнение, в котором или левая, или правая части - дробные выражения.

Например:

§ 2 Решение целого рационального уравнения

Рассмотрим решение целого рационального уравнения.

Например:

Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

Для этого:

1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

дополнительный множитель для дроби

дополнительный множитель для дроби

3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

которое равносильно данному уравнению

Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

Приведем подобные члены многочлена и получим

Видим, что уравнение линейное.

Решив его, найдем, что х = 0,5.

§ 3 Решение дробного рационального уравнения

Рассмотрим решение дробного рационального уравнения.

Например:

1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

Найдем общий знаменатель для знаменателей х + 7 и х - 1.

Он равен их произведению (х + 7)(х - 1).

2.Найдем дополнительный множитель для каждой рациональной дроби.

Для этого общий знаменатель (х + 7)(х - 1) делим на каждый знаменатель. Дополнительный множитель для дроби

равен х - 1,

дополнительный множитель для дроби

равен х+7.

3.Умножим числители дробей на соответствующие им дополнительные множители.

Получим уравнение (2х - 1)(х - 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

5.Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

6.Приведем подобные члены многочлена:

7.Можно обе части разделить на -1. Получим квадратное уравнение:

8.Решив его, найдем корни

Так как в уравнении

левая и правая части - дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

При х = -27 общий знаменатель (х + 7)(х - 1) не обращается в нуль, при х = -1 общий знаменатель также не равен нулю.

Следовательно, оба корня -27 и -1 являются корнями уравнения.

При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

Рассмотрим еще один пример решения дробного рационального уравнения.

Например, решим уравнение

Знаменатель дроби правой части уравнения разложим на множители

Получим уравнение

Найдем общий знаменатель для знаменателей (х - 5), х, х(х - 5).

Им будет выражение х(х - 5).

теперь найдем область допустимых значений уравнения

Для этого общий знаменатель приравняем к нулю х(х - 5) = 0.

Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

Теперь можно найти дополнительные множители.

Дополнительным множителем для рациональной дроби

дополнительным множителем для дроби

будет (х - 5),

а дополнительный множитель дроби

Числители умножим на соответствующие дополнительные множители.

Получим уравнение х(х - 3) + 1(х - 5) = 1(х + 5).

Раскроем скобки слева и справа, х2 - 3х + х - 5 = х + 5.

Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

Х2 - 3х + х - 5 - х - 5 = 0

И после приведения подобных членов получим квадратное уравнение х2 - 3х - 10 = 0. Решив его, найдем корни х1 = -2; х2 = 5.

Но мы уже выяснили, что при х = 5 общий знаменатель х(х - 5) обращается в нуль. Следовательно, корнем нашего уравнения

будет х = -2.

§ 4 Краткие итоги урока

Важно запомнить:

При решении дробных рациональных уравнений надо поступить следующим образом:

1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

3.Решить получившееся целое уравнение.

4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

Список использованной литературы:

  1. Макарычев Ю.Н., Н. Г. Миндюк, Нешков К.И., Суворова С.Б. / Под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
  2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
  3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
  4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

При выполнении различных алгебраических преобразований часто удобно пользоваться формулами сокращенного умножения. Зачастую эти формулы применяются не столько для того чтобы сократить процесс умножения, а наоборот скорее для того, чтобы по результату понять, что его можно представить как произведение некоторых множителей. Таким образом, данные формулы нужно уметь применять не только слева направо, но и справа налево. Перечислим основные формулы сокращенного умножения. Квадрат суммы:

Квадрат разности:

Предыдущие две формулы также иногда записывают в несколько другом виде, который даёт нам какое-то выражение для суммы квадратов:

Также нужно понимать, что будет получаться если в скобках в квадрате знаки будут расставлены "нестандартным" способом:

Разность кубов:

Сумма кубов:

Куб суммы:

Куб разности:

Последние две формулы также часто удобно использовать в виде:

Квадратное уравнение и квадратный трехчлен

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле :

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле :

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле :

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой :

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета . Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Произведение корней квадратного уравнения согласно теореме Виета может быть вычислено по формуле:

График параболы задается квадратичной функцией:

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Основные свойства степеней

У математических степеней есть несколько важных свойств, перечислим их. При умножении степеней с одинаковыми основаниями показатели степеней складываются:

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель степени делителя:

При возведении степени в степень показатели степеней перемножаются:

Если перемножаются числа с одинаковой степенью, но разным основанием, то можно сначала перемножить числа, а затем произведение возвести в эту степень. Обратная процедура также возможна, если имеется произведение в степени, то можно каждое из умножаемых возвести в эту степень по отдельности а результаты перемножить:

Также, если делятся числа с одинаковой степенью, но разным основанием, то можно сначала поделить числа, а затем частное возвести в эту степень (обратная процедура также возможна):

Несколько простых свойств степеней:

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень. Ну а основное свойство отрицательной степени записывается следующим образом:

Основные свойства математических корней

Математический корень можно представить в виде обычной степени, а затем пользоваться всеми свойствами степеней приведёнными выше. Для представления математического корня в виде степени используют следующую формулу:

Тем не менее можно отдельно выписать ряд свойств математических корней, которые основываются на свойствах степеней описанных выше:

Для арифметических корней выполняется следующее свойство (которое одновременно можно считать определением корня):

Последнее справедливо: если n – нечетное, то для любого a ; если же n – четное, то только при неотрицательном a . Для корня нечетной степени выполняется также следующее равенство (из под корня нечетной степени можно выносить знак "минус"):

Так как значение корня четной степени может быть только неотрицательным , то для таких корней имеется следующее важное свойство:

Некоторые дополнительные сведения из алгебры

Если x 0 – корень многочлена n -ой степени P n (x ), то выполняется следующее равенство (здесь Q n-1 (x ) – некоторый многочлен (n – 1)-ой степени):

Процедура в рамках которой квадратный трехчлен представляется как скобка в квадрате и еще некоторое слагаемое называется выделением полного квадрата . И хотя операцию выделения полного квадрата проще выполнять каждый раз "с ноля" в конкретных цифрах, тем не менее имеется и общая формула, с помощью которой можно записывать сразу результат выделения полного квадрата:

Существует операция, обратная операции сложения дробей с одинаковыми знаменателями, и которая называется почленным делением . Она заключается в том, чтобы наоборот каждое слагаемое из суммы в числителе некоторой дроби, записать отдельно над знаменателем этой дроби. Для операции почленного деления также можно записать общую формулу:

Существует также формула для разложения суммы квадратов на множители :

Решение рациональных уравнений

Решить уравнение – значит найти все его корни. Основной метод решения – путем алгебраических преобразований или замены переменных свести уравнение к равносильному, которое решается просто (например, к квадратному). Если свести уравнение к равносильному не получается, то могут возникать побочные корни. Сомневаетесь – проверяйте корни подстановкой.

Для многих уравнений важно понятие области допустимых значений для корней, далее – ОДЗ. На данном этапе (в рациональных уравнениях, т.е. тех, которые не содержат арифметических корней, тригонометрических функций, логарифмов и т.д.), основное условие которому должны отвечать корни уравнения, это чтобы при их подстановке в изначальный вид уравнения знаменатели дробей не обращались в ноль, т.к. на ноль делить нельзя. Таким образом, ОДЗ включает все возможные значения кроме тех которые обращают в ноль знаменатели дробей.

При решении уравнений (а в дальнейшем и неравенств) нельзя сокращать множители с переменной в левой и правой части уравнения (неравенства), в этом случае Вы потеряете корни. Нужно переносить все выражения налево от знака равно и выносить "сокращающийся" множитель за скобки, в дальнейшем нужно учесть корни, которые он дает.

Для того чтобы произведение двух или более скобок было равно нулю, достаточно чтобы любая из них по отдельности была равна нулю, а остальные существовали. Поэтому в таких случаях нужно по очереди приравнивать все скобки к нулю. В итоговый ответ нужно записать корни всех этих "веток" решения (если конечно эти корни входят в ОДЗ).

Иногда некоторые из дробей в рациональном уравнении можно сократить. Это нужно обязательно попытаться сделать и не упустить ни одной такой возможности. Но при сокращении дроби Вы можете потерять ОДЗ, поэтому дроби нужно сокращать только после записи ОДЗ, или же в конце решения полученные корни подставлять в первоначальное уравнение для проверки существования знаменателей.

Итак, для решения рационального уравнения необходимо:

  1. Разложить все знаменатели всех дробей на множители.
  2. Перенести все слагаемые влево, чтобы справа получился ноль.
  3. Записать ОДЗ.
  4. Сократить дроби, если это возможно.
  5. Привести к общему знаменателю.
  6. Упростить выражение в числителе.
  7. Приравнять числитель к нулю и решать полученное уравнение.
  8. Не забыть проверить корни на соответствие ОДЗ.

Одним из самых распространённых методов решения уравнений является метод замены переменных . Зачастую замена переменных выбирается индивидуально для каждого конкретного примера. При этом важно помнить о двух основных критериях введения замены в уравнения. Итак после введения замены в некоторое уравнение это уравнение должно:

  • во-первых, стать проще;
  • во-вторых, больше не содержать первоначальной переменной.

Кроме того, важно не забывать выполнять обратную замену, т.е. после нахождения значений для новой переменной (для замены), записывать вместо замены то, чему она равна через первоначальную переменную, приравнивать это выражение к найденным значениям для замены и опять решать уравнения.

Отдельно остановимся на алгоритме решения очень распространённых однородных уравнений . Однородные уравнения имеют вид:

Здесь А, В и С – числа, не равные нулю, а f (x ) и g (x ) – некоторые функции с переменной х . Однородные уравнения решают так: разделим все уравнение на g 2 (x ) и получим:

Производим замену переменных:

И решаем квадратное уравнение:

Получив корни этого уравнения не забываем выполнить обратную замену, а также проверить корни на соответствие ОДЗ.

Также при решении некоторых рациональных уравнений хорошо бы помнить про следующие полезные преобразования:

Решение систем рациональных уравнений

Решить систему уравнений – значит найти не просто решение, а комплекты решений, то есть такие значения всех переменных которые, будучи одновременно подставленными в систему, обращают каждое ее уравнение в тождество. При решении систем уравнений можно применять следующие методы (про ОДЗ при этом не забываем):

  • Метод подстановки. Метод состоит в том, чтобы выразив одну из переменных из одного из уравнений, подставить это выражение вместо данной неизвестной в остальные уравнения, уменьшив таким образом количество неизвестных в оставшихся уравнениях. Данная процедура повторяется пока не останется одно уравнение с одной переменной, которое затем и решается. Остальные неизвестные последовательно находятся по уже известным значениям найденных переменных.
  • Метод расщепления системы. Этот метод состоит в том, чтобы разложить одно из уравнений системы на множители. При этом необходимо чтобы справа в этом уравнении был ноль. Тогда приравнивая по очереди каждый множитель этого уравнения к нолю и дописывая остальные уравнения первоначальной системы, получим несколько систем, но каждая из них будет проще первоначальной.
  • Метод сложения и вычитания. Данный метод состоит в том, чтобы складывая либо вычитая два уравнения системы (их предварительно можно и часто нужно умножать на некоторый коэффициент) получить новое уравнение, и заменить им одно из уравнений первоначальной системы. Очевидно, что такая процедура имеет смысл, только если новое уравнение будет получаться значительно проще ранее имевшихся.
  • Метод деления и умножения. Данный метод состоит в том, чтобы разделив либо умножив соответственно левые и правые части двух уравнений системы получить новое уравнение, и заменить им одно из уравнений первоначальной системы. Очевидно, что такая процедура опять таки имеет смысл, только если новое уравнение будет получаться значительно проще ранее имевшихся.

Существуют и другие методы решения систем рациональных уравнений. В числе которых - замена переменных . Зачастую замена переменных подбирается индивидуально под каждый конкретный пример. Но есть два случая, где всегда нужно вводить совершенно определённую замену. Первый из этих случаев, это случай когда оба уравнения системы с двумя неизвестными являются однородными многочленами приравненными к некоторому числу. В этом случае нужно использовать замену:

После применения этой замены, к слову, нужно будет для продолжения решения таких систем использовать метод деления. Второй случай, это симметричные системы с двумя переменными, т.е. такие системы, которые не изменяются при замене x на y , а y на x . В таких системах необходимо применять следующую двойную замену переменных:

При этом, для того чтобы ввести такую замену в симметричную систему, первоначальные уравнения скорее всего придется сильно преобразовывать. Про ОДЗ и обязательность выполнения обратной замены в обоих этих методах, конечно нельзя забывать.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Инструкция

Способ подстановкиВыразите одну переменную и подставте ее в другое уравнение. Выражать можно любую переменную по вашему усмотрению. Например, выразите «у из второго уравнения:
х-у=2 => у=х-2Затем подставьте все в первое уравнение:
2х+(х-2)=10Перенесите все без «х в правую часть и подсчитайте:
2х+х=10+2
3х=12 Далее, чтобы «х, разделите обе части уравнения на 3:
х=4.Итак, вы нашли «х. Найдите «у. Для этого подставьте «х в то уравнение, из которого вы выразили «у:
у=х-2=4-2=2
у=2.

Сделайте проверку. Для этого подставьте получившиеся значения в уравнения:
2*4+2=10
4-2=2
Неизвестные найдены верно!

Способ сложения или вычитания уравненийИзбавьтесь сразу от -нибудь перемененной. В нашем случае это проще сделать с «у.
Так как в уравнении «у со знаком «+ , а во втором «- , то вы можете выполнить операцию сложения, т.е. левую часть складываем с левой, а правую с правой:
2х+у+(х-у)=10+2Преобразуйте:
2х+у+х-у=10+2
3х=12
х=4Подставьте «х в любое уравнение и найдите «у:
2*4+у=10
8+у=10
у=10-8
у=2По 1-ому способу можете проверить, что корни найдены верно.

Если нет четко выраженных переменных, то необходимо немного преобразовать уравнения.
В первом уравнении имеем «2х, а во втором просто «х. Для того, чтобы при сложении или вычитании «х сократился, второе уравнение умножьте на 2:
х-у=2
2х-2у=4Затем вычтите из первого уравнения второе:
2х+у-(2х-2у)=10-4Заметим, если перед скобкой стоит минус, то после раскрытия поменяйте знаки на противоположные:
2х+у-2х+2у=6
3у=6
у=2«х найдите, выразив из любого уравнения, т.е.
х=4

Видео по теме

При решении дифференциальных уравнений не всегда явно доступен аргумент x (или время t в задачах физических). Тем не менее – это упрощенный частный случай задания дифференциального уравнения, что часто способствует упрощению поиска его интеграла.

Инструкция

Рассмотрите физическую задачу, приводящую к дифференциальному уравнению, в котором отсутствует аргумент t. Это задача о колебаниях массой m, подвешенного на нити длиной r, расположенной в вертикальной плоскости. Требуется уравнение движения маятника, если в начальный был неподвижен и отклонен от состояния равновесия на угол α. Силами следует пренебречь (см. рис. 1a).

Решение. Математический маятник представляет собой материальную точку, подвешенную на невесомой и нерастяжимой нити в точке О. На точку действуют две силы: сила тяжести G=mg и сила натяжения нити N. Обе эти силы лежат в вертикальной плоскости. Поэтому для решения задачи можно применить уравнение вращательного движения точки вокруг горизонтальной оси, проходящей через точку О. Уравнение вращательного движения тела имеет вид, приведенный на рис. 1b. При этом I - момент инерции материальной точки; j - угол поворота нити вместе с точкой, отсчитываемый от вертикальной оси против часовой стрелки; M - момент сил, приложенных к материальной точке.

Вычислите эти величины. I=mr^2, M=M(G)+M(N). Но M(N)=0, так как линия действия силы проходит через точку О. M(G)=-mgrsinj. Знак «-» обозначает, что момент силы направлен в сторону противоположную движению. Подставьте момент инерции и момент силы в уравнение движения и получите уравнение, отображенное на рис. 1с. Сокращая массу, возникает соотношение (см. рис. 1d). Здесь нет аргумента t.

Линейное уравнение – уравнение вида a x = b , где x — переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение линейное.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного уравнения: x = b a .

Примеры:

  1. 2 x + 1 = 2 (x − 3) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b:

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

2 x − 4 x = 2 − 1

Теперь поделим левую и правую часть на число (-2) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Ответ: x = − 0,5

  1. x 2 − 1 = 0

Это уравнение не является линейным, так как старшая степень, в которой стоит переменная x равна двум.

  1. x (x + 3) − 8 = x − 1

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

Примеры:

  1. 2 x − 4 = 2 (x − 2)

2 x − 4 = 2 x − 4

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом.

Ответ: x ∈ (− ∞ ;   + ∞)

  1. 2 x − 4 = 2 (x − 8)

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как. Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным.