Что такое диэлектрик в физике определение. Основные характеристики диэлектрических материалов. Активные и пассивные диэлектрики

5.8.2. Жидкие диэлектрики

Подразделяются на 3 группы:

1) нефтяные масла;

2) синтетические жидкости;

3) растительные масла.

Жидкие диэлектрики используют для пропитки кабелей высокого напряжения, конденсаторов, для заливки трансформаторов, выключателей и вводов. Кроме этого они выполняют функции теплоносителя в трансформаторах, дугогасителя в выключателях и др.

Нефтяные масла

Нефтяные масла представляют собой смесь углеводородов парафинового (С n Н 2 n+ 2 ) и нафтенового (С n Н 2 n ) рядов. Они широко применяются в электротехнике в качестве трансформаторного, кабельного и конденсаторного масел. Масло, заполняя промежутки и поры внутри электротехнических установок и изделий, повышает электрическую прочность изоляции и улучшает теплоотвод от изделий.

Трансформаторное масло получают из нефти путем перегонки. Электрические свойства трансформаторного масла в значительной степени зависят от качества очистки масла от примесей, содержания в нем воды и степени обезгаживания . Диэлектрическая проницаемость масла 2,2, удельное электрическое сопротивление 10 13 Ом· м .

Назначение трансформаторных масел – повышать электрическую прочность изоляции; отводить тепло; способствовать дугогашению в масляных выключателях, улучшать качество электроизоляции в электротехнических изделиях: реостатах, бумажных конденсаторах, кабелях с бумажной изоляцией, силовых кабелях - путем заливки и пропитки.

Трансформаторное масло в процессе эксплуатации стареет, что ухудшает его качество. Старению масла способствуют: контакт масла с воздухом, повышенные температуры, соприкосновение с металлами (Сu , Рb , Fе ), воздействие света. Для увеличения срока службы масло регенерируют очисткой и удалением продуктов старения, добавлением ингибиторов.

Кабельное и конденсаторное масла отличаются от трансформаторного более высоким качеством очистки.

Синтетические жидкие диэлектрики

Синтетические жидкие диэлектрики по некоторым свойствам превосходят нефтяные электроизоляционные масла.

Хлорированные углеводороды

Совол пентахлордифенил С 6 Н 2 Сl 3 – С 6 Н 3 Сl 2 , получают при хлорировании дифенила С 12 Н 10

С 6 Н 5 – С 6 Н 5 + 5 Сl 2 → С 6 Н 2 Сl 3 – С 6 Н 3 Сl 2 + 5 НСl

Совол применяется для пропитки и заливки конденсаторов. Обладает более высокой по сравнению с нефтяными маслами диэлектрической проницаемостью. Диэлектрическая проницаемость совола 5,0, удельное электрическое сопротивление 10 11 ¸ 10 12 Ом · м.Применяется совол для пропитки бумажных силовых и радиоконденсаторов с повышенной удельной емкостью и невысоким рабочим напряжением.

Совтол – смесь совола с трихлорбензолом . Используется для изоляции взрывобезопасных трансформаторов.

Кремнийорганические жидкости

Наибольшее распространение имеют полидиметилсилоксановые , полидиэтилсилоксановые , полиметилфенилсилоксановые жидкости.

Полисилоксановые жидкости – жидкие кремнийорганические полимеры (полиорганосилоксаны ), обладают такими ценными свойствами как: высокая нагревостойкость , химическая инертность, низкая гигроскопичность, низкая температура застывания, высокие электрические характеристики в широком интервале частот и температур.

Жидкие полиорганосилоксаны представляют собой полимерные соединения с низкой степенью полимеризации, молекулы которых содержат силоксанную группировку атомов

,

где атомы кремния связаны с органическими радикалами R : метилом CH 3 , этилом C 2 H 5 , фенилом C 6 H 5 . Молекулы полиорганосилоксановых жидкостей могут иметь линейную, линейно-разветвленную и циклическую структуру.

Жидкие полиметилсилоксаны получают при гидролизе диметилдихлорсилана в смеси с триметилхлорсиланом .

Образующиеся жидкости бесцветны, растворяются в ароматических углеводородах, дихлорэтане и ряде других органических растворителей, не растворяются в спиртах и ацетоне. Полиметилсилоксаны химически инертны, не оказывают агрессивного действия на металлы и не взаимодействуют с большинством органических диэлектриков и резин. Диэлектрическая проницаемость 2,0 ¸ 2,8, удельное электрическое сопротивление 10 12 Ом · м , электрическая прочность 12 ¸ 20 МВ/м

Формула полидиметилсилоксан а имеет вид

Si (СН 3 ) 3 – О – [ Si (СН 3 ) 2 – О ] n – Si (СН 3 ) = О

Жидкие кремнийорганические полимеры находят применение как:

Полидиэтилсилоксаны получают при гидролизе диэтилдихлорсилана и триэтилхлорсилана . Имеют широкий интервал температур кипения. Строение выражается формулой:


Свойства зависят от температуры кипения. Электрические свойства совпадают со свойствами полидиметилсилоксана .

Жидкие полиметилфенилсилоксаны имеют строение, выражаемое формулой

Получают гидролизом фенилметилдихлорсиланов и др. Масло вязкое. После обработки NаОН вязкость повышается в 3 раза. Выдерживает нагрев в течение 1000 час до 250 °С. Электрические свойства совпадают со свойствами полидиметилсилоксана .

При γ – облучении вязкость кремнийорганических жидкостей сильно возрастает, а диэлектрические характеристики резко ухудшаются. При большой дозе облучения жидкостипревращаются в каучукоподобную массу, а затем в твердое хрупкое тело.

Фторорганические жидкости

Фторорганические жидкости – С 8 F 16 – негорючи и взрывобезопасны, высоконагревостойки (200 °С), обладают малой гигроскопичностью. Пары их имеют высокую электрическую прочность. Жидкости имеют низкую вязкость, летучи. Обладают лучшим теплоотводом , чем нефтяные масла и кремнийорганические жидкости. –) n ,

представляет собой неполярный полимер линейной структуры. Получается полимеризацией газа этилена С 2 Н 4 при высоком давлении (до 300 МПа), либо при низком (до 0,6 МПа). Молекулярная масса полиэтилена высокого давления – 18000 – 40000, низкого – 60000 – 800000.

Молекулы полиэтилена обладают способностью образовывать участки материала с упорядоченным расположением цепей (кристаллитов), поэтому полиэтилен состоит из двух фаз (кристаллической и аморфной), соотношение которых определяет его механические и тепловые свойства. Аморфная придает материалу эластичные свойства, а кристаллическая – жесткость. Аморфная фаза имеет температуру стеклования +80 °С. Кристаллическая фаза обладает более высокой нагревостойкостью .

Агрегаты молекул полиэтилена кристаллической фазы представляют собой сферолиты с орторомбической структурой. Содержание кристаллической фазы (до 90 %) в полиэтилене низкого давления выше, чем в полиэтилене высокого давления (до 60 %). Благодаря высокой кристалличности полиэтилен низкого давления имеет более высокую температуру плавления (120 -125 °С) и более высокую прочность при растяжении. Структура полиэтилена в значительной степени зависит от режима охлаждения. При его быстром охлаждении образуются мелкие сферолиты, при медленном охлаждении – крупные. Быстро охлажденный полиэтилен отличается большой гибкостью и меньшей твердостью.

Свойства полиэтилена зависят от молекулярного веса, чистоты, посторонних примесей. Механические свойства зависят от степени полимеризации. Полиэтилен обладает большой химической стойкостью. Как электроизоляционный материал широко применяется в кабельной промышленности и в производстве изолированных проводов.

В настоящее время изготовляются следующие виды полиэтилена и полиэтиленовых изделий:

1. полиэтилен низкого и высокого давления - (н.д.) и (в.д.);

2. полиэтилен низкого давления для кабельной промышленности;

3. полиэтилен низкомолекулярный высокого или среднего давления;

4. пористый полиэтилен;

5. полиэтиленовый специальный шланговый пластикат;

6. полиэтилен для производства ВЧ кабеля;

7. электропроводящий полиэтилен для кабельной промышленности;

8. полиэтилен, наполненный сажей;

9. хлорсульфированный полиэтилен;

10. пленка полиэтиленовая.

Фторопласты

Существует несколько видов фторуглеродных полимеров, которые могут быть полярными и неполярными.

Рассмотрим свойства продукта реакции полимеризации газа тетрафторэтилена

(F 2 С = СF 2 ).

Фторопласт – 4 (политетрафторэтилен) – рыхлый порошок белого цвета. Структура молекул имеет вид

Молекулы фторопласта имеют симметричное строение. Поэтому фторопласт является неполярным диэлектриком

Симметричность молекулы и высокая чистота обеспечивают высокий уровень электрических характеристик. Большая энергия связи между С и F придает ему высокую холодостойкость и нагревостойкость . Радиодетали из него могут работать от-195 ÷ +250°С. Негорюч , химически стоек, негигроскопичен, обладает гидрофобностью, не поражается плесенью. Удельное электрическое сопротивление составляет 10 15 ¸ 10 18 Ом · м , диэлектрическая проницаемость 1,9 ¸ 2,2, электрическая прочность 20 ¸ 30 МВ/м

Радиодетали изготавливают из порошка фторопласта холодным прессованием. Отпрессованные изделия спекают в печах при 360 - 380°С. При быстром охлаждении изделия получаются закаленными с высокой механической прочностью. При медленном охлаждении – незакаленные. Они легче обрабатываются, менее тверды, имеют высокий уровень электрических характеристик. При нагреве деталей до 370° из кристаллического состояния переходят в аморфное и приобретают прозрачность. Термическое разложение материала начинается при > 400°. При этом образуется токсичный фтор.

Недостаток фторопласта – его текучесть под действием механической нагрузки. Имеет низкую стойкость к радиации и трудоемок при переработке в изделия. Один из лучших диэлектриков для техники ВЧ и СВЧ. Изготовляют электро - и радиотехнические изделия в виде пластин, дисков, колец, цилиндров. Изолируют ВЧ кабели тонкой пленкой, уплотняющиеся при усадке.

Фторопласт можно модифицировать, применяя наполнители – стекловолокно, нитрид бора, сажу и др., что дает возможность получать материалы с новыми свойствами и улучшить имеющиеся свойства.

Диэлектрические материалы в радиоэлектронной аппаратуре разделяют электрически, а твердые - и объединяют механически проводники, находящиеся под разными электрическими потенциалами. Применяют их для электрической изоляции элементов аппаратуры, для накопления энергии электрического поля (конденсаторы), для изготовления деталей конструкции, а также в виде покрытий на поверхности деталей, для склеивания деталей.

Диэлектрические свойства материалов

Основное свойство диэлектрика - не проводить электрический ток. УДЕЛЬНОЕ ОБЪЕМНОЕ СОПРОТИВЛЕНИЕ диэлектриков велико: от 108 до 1018 Омм, так как в них почти отсутствуют свободные носители электрического заряда. Причиной некоторой проводимости являются примеси и дефекты структуры.

Примесей и дефектов всегда больше на поверхности любого тела, поэтому для диэлектриков вводят понятие поверхностной проводимости и параметр УДЕЛЬНОЕ ПОВЕРХНОСТНОЕ СОПРОТИВЛЕНИЕ s, определяемое как сопротивление, измеряемое между двумя линейными проводниками длиной в 1 м каждый, расположенными параллельно друг другу на расстоянии 1 м на поверхности диэлектрика. Величина s сильно зависит от способа получения (обработки) поверхности и ее состояния (запыленность, увлажнение и т. п.). Поскольку поверхностная электропроводность обычно значительно превосходит объемную, предусматривают меры для ее уменьшения.

Диэлектрик является изолятором лишь по отношению к постоянному напряжению. В переменном электрическом поле через диэлектрик протекает ток вследствие его поляризации.

ПОЛЯРИЗАЦИЯ - это процесс смещения связанных зарядов на ограниченное расстояние под действием внешнего электрического поля.

Электроны атомов смещаются в сторону положительного полюса, ядра атомов - в сторону отрицательного. То же происходит с ионами в ионных кристаллах, с молекулами или участками молекул при неравномерном распределении в занимаемом ими объеме заряженных частиц. В результате поляризации в диэлектрике образуется собственное внутреннее поле, вектор его меньше по величине и противоположен по направлению вектору внешнего поля. Электрическая емкость между электродами с диэлектриком больше, чем между теми же электродами без диэлектрика в раз, где - ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ДИЭЛЕКТРИКА.

При ЭЛЕКТРОННОЙ ПОЛЯРИЗАЦИИ под действием внешнего электрического поля деформируются электронные оболочки атомов вещества. Она характеризуется малым (около 10-15 с) временем установления и поэтому безынерционна для радиочастот, не зависит от частоты, слабо зависит от температуры и происходит практически без потерь. Вещества с преимущественно электронной поляризацией (слабо полярные диэлектрики) имеют небольшую диэлектрическую проницаемость: от 1,8 до 2,5. Этот вид поляризации присущ всем веществам.

ИОННАЯ ПОЛЯРИЗАЦИЯ происходит в ионных твердых телах, имеет время установления порядка 10-13 с, следовательно, практически не зависит от частоты поля, слабо зависит от температуры. Величина у большинства материалов с ионной поляризацией составляет от 5 до 10.

ДИПОЛЬНАЯ (ОРИЕНТАЦИОННАЯ) ПОЛЯРИЗАЦИЯ проявляется как ориентация под действием поля полярных молекул или групп атомов. Полярны, например, молекулы воды, в которой атомы водорода расположены несимметрично относительно атома кислорода, или винилхлорида (мономер поливинилхлорида) H2C-CHCl. На преодоление взаимодействия молекул и сил трения расходуется энергия поля, которая превращается в тепловую энергию, следовательно, дипольная поляризация носит неупругий, релаксационный характер. Из-за больших размеров и масс диполей, участвующих в дипольной поляризации, ее инерционность значительна и проявляется в виде сильной зависимости диэлектрической проницаемости и потерь энергии от частоты.

МИГРАЦИОННАЯ ПОЛЯРИЗАЦИЯ вызывается неупругими перемещениями слабо связанных примесных ионов на небольшие расстояния. По последствиям (потери энергии, частотная зависимость) эта поляризация подобна дипольной.

Потери энергии в диэлектрике при поляризации оценивают ТАНГЕНСОМ УГЛА ПОТЕРЬ tg . Диэлектрик с потерями в электрической цепи представляют в виде эквивалентной схемы: идеальный конденсатор и присоединенное параллельно ему сопротивление потерь. Угол дополняет до 90o угол сдвига между током и напряжением на векторной диаграмме такого двухполюсника. Хорошие (слабо полярные) диэлектрики имеют tg10-3, мало зависящий от частоты. Плохие диэлектрики имеют tg, измеряемый десятыми долями единицы и даже более, сильно зависящий от частоты.

Особые виды образуют поляризация под действием механических напряжений, наблюдаемая в ПЬЕЗОЭЛЕКТРИКАХ, а также СПОНТАННАЯ ПОЛЯРИЗАЦИЯ в ПИРОЭЛЕКТРИКАХ и СЕГНЕТОЭЛЕКТРИКАХ. Такие диэлектрики называют АКТИВНЫМИ и используют в специальных приборах: в резонаторах, фильтрах, пьезоэлектрических генераторах и трансформаторах, преобразователях излучений, конденсаторах большой удельной емкости и т. д.

ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ - способность диэлектрика сохранять высокое удельное сопротивление в цепях большой напряженности. Оценивается пробивной напряженностью поля Епр=Uпр/d, где Uпр - напряжение, вызывающее пробой, d - толщина диэлектрика. Размерность Епр - В/м. У разных диэлектриков Епр=10...1000 МВ/м, и даже у одного материала эта величина колеблется в широких пределах в зависимости от толщины, формы электродов, температуры и ряда других факторов. Причина этого - в многообразии процессов при пробое. ЭЛЕКТРИЧЕСКИЙ ПРОБОЙ обусловлен туннельным переходом электронов в зону проводимости из валентной зоны, с примесных уровней или металлических электродов, а также лавинным размножением их за счет ударной ионизации в полях высокой напряженности. ЭЛЕКТРОТЕПЛОВОЙ ПРОБОЙ имеет причиной экспоненциальный рост электропроводности диэлектрика при повышении его температуры. При этом растет ток утечки, еще более разогревающий диэлектрик, в его толще образуется проводящий канал, сопротивление резко падает, в зоне термических воздействий происходит плавление, испарение, деструкция материала. ЭЛЕКТРОХИМИЧЕСКИЙ ПРОБОЙ обусловлен явлениями электролиза, миграции ионов и, вследствие этого, изменениями в составе материала. ИОНИЗАЦИОННЫЙ ПРОБОЙ происходит вследствие частичных разрядов в диэлектрике, имеющем воздушные включения. Электрическая прочность воздуха ниже, а напряженность поля в этих включениях выше, чем в плотном диэлектрике. Этот вид пробоя характерен для пористых материалов. ПОВЕРХНОСТНЫЙ ПРОБОЙ (ПЕРЕКРЫТИЕ) диэлектрика возникает вследствие недопустимо больших поверхностных токов. При достаточной мощности источника тока поверхностный пробой развивается по воздуху и переходит в дуговой. Условия, способствующие этому пробою: трещины, другие неровности и загрязнения на поверхности диэлектрика, влажность, запыленность, пониженное атмосферное давление воздуха.

Для надежной работы любого электротехнического устройства рабочее напряжение его изоляции Uраб должно быть существенно меньше пробивного напряжения Uпр. Отношение Uпр/Uраб называют КОЭФФИЦИЕНТОМ ЗАПАСА ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ ИЗОЛЯЦИИ.

Классификация по строению молекул

Классификация по химическому составу

Классификация по способу получения

Классификация по агрегатному состоянию

Активные и пассивные диэлектрики

Определение диэлектрических материалов

Классификация и области использования диэлектрических материалов

Диэлектриками называются вещества, основным электрическим свойством которых является способность поляризоваться в электрическом поле.

Электроизоляционными материалами называют диэлектрические материалы, предназначенные для создания электрической изоляции токоведущих частей электротехнических установок.

Изолятором называется изделие из электроизоляционного материала, задачами которого являются крепление и изоляция друг от друга проводников, находящихся под различными потенциалами (например, изоляторы воздушной ЛЭП).

Электрической изоляцией называется электроизоляционная система определенного конкретного электротехнического изделия, выполненная из одного или нескольких электроизоляционных материалов.

Используемые в качестве электроизоляционных материалов диэлектрики называются пассивными диэлектриками. В настоящее время широко применяются, так называемые, активные диэлектрики, параметры которых можно регулировать, изменяя напряженность электрического поля, температуру, механические напряжения и другие параметры воздействующих на них факторов.

Например, конденсатор, диэлектрическим материалом в котором служит пьезоэлектрик, под действием приложенного переменного напряжения изменяет свои линейные размеры и становится генератором ультразвуковых колебаний. Емкость электрического конденсатора, выполненного из нелинейного диэлектрика – сегнетоэлектрика, изменяется в зависимости от напряженности электрического поля; если такая емкость включена в колебательный LC-контур, то изменяется и его частота настройки.

Диэлектрические материалы классифицируют:

По агрегатному состоянию: газообразные, жидкие и твердые;

По способу получения: естественные и синтетические;

По химическому составу: органические и неорганические;

По строению молекул: нейтральные и полярные.

ГАЗООБРАЗНЫЕ ДИЭЛЕКТРИКИ

К газообразным диэлектрикам относятся: воздух, азот, водород, углекислый газ, элегаз, хладон (фреон), аргон, неон, гелий и др. Они используются при изготовлении электрических аппаратов (воздушные и элегазовые выключатели, разрядники)


Наиболее широко в качестве электроизолирующего материала используется воздух. Воздух содержит: пары воды и газы: азот(78%), кислород (20,99%), углекислый газ (0,03%), водород(0,01%), аргон (0,9325%), неон (0,0018%), а также гелий, криптон, и ксенон, которые по объему в сумме составляют десятитысячные доли процента.

Важными свойствами газов являются их способность восстанавливать электрическую прочность, малая диэлектрическая проницаемость, высокое значение удельного сопротивления, практически отсутствие старения, инертность ряда газов по отношению к твердым и жидким материалам, нетоксичность, способность их работать при низких температурах и высоком давлении, негорючесть.

ЖИДКИЕ ДИЭЛЕКТРИКИ

Жидкие диэлектрики предназначены для отвода теплоты от обмоток и магнитопроводов в трансформаторах, гашение дуги в масляных выключателях, усиление твердой изоляции в трансформаторах, маслонаполненых вводах, конденсаторах, маслопропитанных и маслонаполненных кабелях.

Жидкие диэлектрики делят на две группы:

Нефтяные масла (трансформаторное, конденсаторное, кабельное);

Синтетические масла (совтол, жидкие кремнийорганические и фтороорганические соединения).

4.1.7 Области использования диэлектриков как ЭТМ

Применение в электроэнергетике:

- линейная и подстанционная изоляция - это фарфор, стекло и кремнийорганическая резина в подвесных изоляторах ВЛ, фарфор в опорных и проходных изоляторах, стеклопластики в качестве несущих элементов, полиэтилен, бумага в высоковольтных вводах, бумага, полимеры в силовых кабелях;

- изоляция электрических приборов - бумага, гетинакс, стеклотекстолит, полимеры, слюдяные материалы;

- машин, аппаратов - бумага, картон, лаки, компаунды, полимеры;

- конденсаторы разных видов - полимерные пленки, бумага, оксиды, нитриды.

С практической точки зрения в каждом случае выбора материала электрической изоляции следует анализировать условия работы и выбирать материал изоляции в соответствии с комплексом требований. Для ориентировки целесообразно разделить основные диэлектрические материалы на группы по условиям применения.

1. Нагревостойкая электрическая изоляция. Это в первую очередь изделия из слюдяных материалов, некоторые из которых способны работать до температуры 700 ° С. Стекла и материалы на их основе (стеклоткани, стеклослюдиниты). Органосиликатные и металлофосфатные покрытия. Керамические материалы, в частности нитрид бора. Композиции из кремнийорганики с термостойким связующим. Из полимеров высокой нагревостойкостью обладают полиимид, фторопласт.

2. Влагостойкая электрическая изоляция. Эти материалы должны быть гидрофобны (несмачивание водой) и негигроскопичны. Ярким представителем этого класса является фторопласт. В принципе возможна гидрофобизация путем создания защитных покрытий.

3. Радиационно стойкая изоляция. Это, в первую очередь, неорганические пленки, керамика, стеклотекстолит, слюдинитовые материалы, некоторые виды полимеров (полиимиды, полиэтилен).

4. Тропикостойкая изоляция. Материал должен быть гидрофобным, чтобы работать в условиях высокой влажности и температуры. Кроме того, он должен быть стойким против плесневых грибков. Лучшие материалы: фторопласт, некоторые другие полимеры, худшие - бумага, картон.

5. Морозостойкая изоляция. Это требование характерно, в основном для резин, т.к. при понижении температуры все резины теряют эластичность. Наиболее морозостойка кремнийорганическая резина с фенильными группами (до -90° С).

6. Изоляция для работы в вакууме (космос, вакуумные приборы). Для этих условий необходимо использовать вакуумно-плотные материалы. Пригодны некоторые, специально приготовленные керамические материалы, малопригодны полимеры.

Электротехнический картон используется в качестве диэлектрических дистанцирующих прокладок, шайб, распорок, в качестве изоляции магнитопроводов, пазовой изоляции вращающихся машин и т.п. Картон, как правило, используется после пропитки трансформаторным маслом. Электрическая прочность пропитанного картона достигает 40-50 кВ/мм. Поскольку она выше прочности трансформаторного масла, для увеличения электрической прочности трансформаторов зачастую устраивают в среде масла специальные барьеры из картона. Маслобарьерная изоляция обычно имеет прочность Е=300-400 кВ/см. Недостатком картона является гигроскопичность, в результате попадания влаги уменьшается механическая прочность и, резко уменьшается электрическая прочность (в 4 и более раз).

В последнее время бурно развивается производство изоляторов для ВЛ на основе кремнийорганической резины . Этот материал относится к каучукам, основное свойство которых - эластичность. Это позволяет изготовлять из каучуков не только изоляторы, но и гибкие кабели. В энергетике используются разные типы каучуков: натуральные каучуки, бутадиеновые, бутадиен-стирольные, этиленпропиленовые и кремнийорганические.

Электротехнический фарфор является искусственным минералом, образованным из глинистых минералов, полевого шпата и кварца в результате термообработки по керамической технологии. К числу наиболее ценных его свойств относится высокая стойкость к атмосферным воздействиям, положительным и отрицательным температурам, к воздействию химических реагентов, высокие механическая и электрическая прочность, дешевизна исходных компонентов. Это определило широкое применение фарфора для производства изоляторов.

Электротехническое стекло в качестве материала для изоляторов имеет некоторые преимущества перед фарфором. В частности у него более стабильная сырьевая база, проще технология, допускающая большую автоматизацию, возможность визуального контроля неисправных изоляторов.

Слюда является основой большой группы электроизоляционных изделий. Главное достоинство слюды - высокая термостойкость наряду с достаточно высокими электроизоляционными характеристиками. Слюда является природным минералом сложного состава. В электротехнике используют два вида слюд: мусковит КАl 2 (АlSi 3 О 10)(ОН) 2 и флогопит КMg 3 (АlSi 3 О 10 (ОН) 2 . Высокие электроизоляционные характеристики слюды обязаны ее необычному строению, а именно - слоистости. Слюдяные пластинки можно расщеплять на плоские пластинки вплоть до субмикронных размеров. Разрушающие напряжения при отрыве одного слоя от другого слоя составляют примерно 0.1 МПа, тогда как при растяжении вдоль слоя - 200-300 МПа. Из других свойств слюды отметим невысокий tg , менее чем 10 -2 ; высокое удельное сопротивление, более 10 12 Ом·м; достаточно высокую электрическую прочность, более 100 кВ/мм; термостойкость, температура плавления более 1200° С.

Слюда используется в качестве электрической изоляции, как в виде щипаных тонких пластинок, в т.ч. склееных между собой (миканиты), так и в виде слюдяных бумаг, в т.ч. пропитанных различными связующими (слюдиниты или слюдопласты). Слюдяная бумага производится по технологии, близкой к технологии обычной бумаги. Слюду размельчают, готовят пульпу, на бумагоделательных машинах раскатывают листы бумаги.

Миканиты обладают лучшими механическими характеристиками и влагостойкостью, но они более дороги и менее технологичны. Применение - пазовая и витковая изоляция электрических машин.

Слюдиниты - листовые материалы, изготовленные из слюдяной бумаги на основе мусковита. Иногда их комбинируют с подложкой из стеклоткани (стеклослюдинит), или полимерной пленки (пленкослюдинит). Бумаги, пропитанные лаком, или другим связующим, обладают лучшими механическими и электрофизическими характеристиками, чем непропитанные бумаги, но их термостойкость обычно ниже, т.к. она определяется свойствами пропитывающего связующего.

Слюдопласты - листовые материалы, изготовленные из слюдяной бумаги на основе флогопита и пропитанные связующими. Как и слюдиниты, они также комбинируются с другими материалами. По сравнению со слюдинитами они обладают несколько худшими электрофизическими характеристиками, но обладают меньшей стоимостью. Применение слюдинитов и слюдопластов - изоляция электрических машин, нагревостойкая изоляция электрических приборов.

Наибольшее применение из газов в энергетике имеет воздух. Это связано с дешевизной, общедоступностью воздуха, простотой создания, обслуживания и ремонта воздушных электроизоляционных систем, возможностью визуального контроля. Объекты, в которых применяется воздух в качестве электрической изоляции - линии электропередач, открытые распределительные устройства, воздушные выключатели и т.п.

Из электроотрицательных газов с высокой электрической прочностью наибольшее применение нашел элегаз SF6. . Свое название он получил от сокращения “электрический газ”. Уникальные свойства элегаза были открыты в России, его применение также началось в России. В 30х годах известный ученый Б.М. Гохберг исследовал электрические свойства ряда газов и обратил внимание на некоторые свойства шестифтористой серы SF6. Электрическая прочность при атмосферном давлении и зазоре 1 см составляет Е=89 кВ/см. Молекулярная масса составляет 146, характерным является очень большой коэффициент теплового расширения и высокая плотность. Это важно для энергетических установок, в которых проводится охлаждение каких-либо частей устройства, т.к. при большом коэффициенте теплового расширения легко образуется конвективный поток, уносящий тепло. Из теплофизических свойств: температура плавления= -50 ° С при 2 атм, температура кипения (возгонки)= -63° С, что означает возможность применения при низких температурах.

Из других полезных свойств отметим следующие: химическая инертность, нетоксичность, негорючесть, термостойкость (до 800° С), взрывобезопасность, слабое разложение в разрядах, низкая температура сжижения . В отсутствие примесей элегаз совершенно безвреден для человека. Однако продукты разложения элегаза в результате действия разрядов (например, в разряднике или выключателе) токсичны и химически активны. Комплекс свойств элегаза обеспечил достаточно широкое использование элегазовой изоляции. В устройствах элегаз обычно используется под давлением в несколько атмосфер для большей компактности энергоустановок, т.к. электрическая прочность увеличивается с ростом давления. На основе элегазовой изоляции созданы и эксплуатируются ряд электроустройств, из них кабели, конденсаторы, выключатели, компактные ЗРУ (закрытые распределительные устройства).

Наиболее распространенный в энергетике жидкий диэлектрик - это трансформаторное масло.

Трансформаторное масло - очищенная фракция нефти, получаемая при перегонке, кипящая при температуре от 300 ° С до 400 ° С. В зависимости от происхождения нефти обладают различными свойствами и эти отличительные свойства исходного сырья отражаются на свойствах масла. Оно имеет сложный углеводородный состав со средним весом молекул 220-340 а.е., и содержит следующие основные компоненты.

Из родственных трансформаторному маслу по свойствам и применению жидких диэлектриков стоит отметить конденсаторные и кабельные масла.

Конденсаторные масла. Под этим термином объединена группа различных диэлектриков, применяемая для пропитки бумажно-масляной и бумажно-пленочной изоляции конденсаторов. Наиболее распространенное конденсаторное масло по ГОСТ 5775-68 производят из трансформаторного масла путем более глубокой очистки. Отличается от обычных масел большей прозрачностью, меньшим значением tg  (более, чем в десять раз). Касторовое масло растительного происхождения, оно получается из семян клещевины. Основная область использования - пропитка бумажных конденсаторов для работы в импульсных условиях.
Плотность касторового масла 0,95-0,97 т/м3, температура застывания от -10 ° С до -18 ° С. Его диэлектрическая проницаемость при 20° С составляет 4,0 - 4,5, а при 90° С -  = 3,5 - 4,0; tg  при 20° С равен 0,01- 0,03, а при 100° С tg  = 0,2- 0,8; Епр при 20° С равно 15- 20 МВ/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте. В отличие от нефтяных масел касторовое не вызывает набухания обычной резины. Этот диэлектрик относится к слабополярным жидким диэлектрикам, его удельное сопротивление при нормальных условиях составляет 108 - 1010 Oм·м.

Кабельные масла предназначены для пропитки бумажной изоляции силовых кабелей. Основой их также является нефтяные масла. От трансформаторного масла отличаются повышенной вязкостью, увеличенной температурой вспышки и уменьшенными диэлектрическими потерями. Из марок масел отметим МН-4 (маловязкое, для заполнения кабелей низкого давления), С-220 (высоковязкое для заполнения кабелей высокого давления), КМ-25 (наиболее вязкое).

Второй тип жидких диэлектриков - трудногорючие и негорючие жидкости. Жидких диэлектриков с такими свойствами достаточно много. Наибольшее распространение в энергетике и электротехнике получили хлордифенилы . В зарубежной литературе они называются хлорбифенилами . Это вещества, имеющие в своем составе двойное бензольное кольцо, т.н. ди(би)фенильное кольцо и присоединенные к нему один или несколько атомов хлора. В России применяются диэлектрики этой группы в виде смесей, в основном смеси пентахлордифенила с трихлордифенилом. Коммерческие названия некоторых из них - “совол”, “совтол”, “калория-2”.

Диэлектрические материалы классифицируются и по ряду внутривидовых признаков, которые определяются их основными характеристиками: электрическими, механическими, физико-химическими, тепловыми.

4.2.1 К электрическим характеристикам диэлектрических материалов относятся:

Удельное объемное электрическое сопротивление ρ, Ом*м или удельная объемная проводимость σ, См/м;

Удельное поверхностное электрическое сопротивление ρ s , Ом, или удельная поверхностная проводимость σ s См;

Температурный коэффициент удельного электрического сопротивления ТК ρ , ˚С -1 ;

Диэлектрическая проницаемость ε;

Температурный коэффициент диэлектрической проницаемости ТКε;

Тангенс угла диэлектрических потерь δ;

Электрическая прочность материала Е пр,МВ/м.

4.2.2 Тепловые характеристики определяют термические свойства диэлектриков.

К тепловым характеристикам относятся:

Теплоемкость;

Температура плавления;

Температура размягчения;

Температура каплепадения;

Теплостойкость;

Нагревостойкость;

Холодностойкость – способность диэлектриков противостоять низким температурам, сохраняя электроизоляционные свойства;

Тропикостойкость – стойкость диэлектриков к комплексу внешних воздействий в условиях тропического климата (резкий перепад температур, высокая влажность, солнечная радиация);

Термоэлатичность;

Температура вспышки паров электроизоляционных жидкостей.

Нагревостойкость – одна из важнейших характеристик диэлектриков. В соответствии с ГОСТ 21515-76 нагревостойкость – это способность диэлектрика длительно выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком нормальной эксплуатации, без недопустимого ухудшения его свойств.

Классы нагревостойкости. Всего семь. Характеризуются температурным индексом ТИ. Это температура, при которой срок службы материала составляет 20 тыс. Часов.

4.2.3 Влажностные свойства диэлектриков

Влагостойкость – это надежность эксплуатации изоляции при нахождении ее в атмосфере водяного пара близкого к насыщению. Влагостойкость оценивают по изменению электрических, механических и других физических свойств после нахождения материала в атмосфере с повышенной и высокой влажностью; по влаго- и водопроницаемости; по влаго- и водопоглощаемости.

Влагопроницаемость – способность материала пропускать пары влаги при наличии разности относительных влажностей воздуха с двух сторон материала.

Влагопоглощаемость – способность материала сорбировать воду при длительном нахождении во влажной атмосфере близкой к состоянию насыщения.

Водопоглощаемость – способность материала сорбировать воду при длительном погружении его в воду.

Тропикостойкость и тропикализация оборудования – защита электрооборудования от влаги, плесени, грызунов.

4.2.4 Механические свойства диэлектриков определяют следующие характеристики:

Разрушающее напряжение при статическом растяжении;

Разрушающее напряжение при статическом сжатии;

Разрушающее напряжение при статическом изгибе;

Твердость;

Ударная вязкость;

Сопротивление раскалывания;

Стойкость к надрыву (для гибких материалов);

Гибкость по числу двойных перегибов;

Пластоэластические свойства.

Механические характеристики диэлектриков определяют соответствующие ГОСТы.

4.2.5 Физико-химические характеристики:

Кислотное число, определяющее количество свободных кислот в диэлектрике, ухудшающих диэлектрические свойства жидких диэлектриков, компаундов и лаков;

Кинематическая и условная вязкость;

Водопоглощаемость;

Водостойкость;

Влагостойкость;

Дугостойкость;

Трекингстойкость;

Радиоционная стойкость и др.

Все жидкие и твердые вещества по характеру действия на них электростатического поля делятся на проводники, полупроводники и диэлектрики.

Диэлектрики (изоляторы) – вещества, которые плохо проводят или совсем не проводят электрический ток. К диэлектрикам относят воздух, некоторые газы, стекло, пластмассы, различные смолы, многие виды резины.

Если поместить в электрическое поле нейтральные тела из таких материалов, как стекло, эбонит, можно наблюдать их притяжение как к положительно заряженным, так и к отрицательно заряженным телам, но значительно более слабое. Однако при разделении таких тел в электрическом поле их части оказываются нейтральными, как и всё тело в целом.

Следовательно, в таких телах нет свободных электрически заряженных частиц, способных перемещаться в теле под действием внешнего электрического поля. Вещества, не содержащие свободных электрически заряженных частиц, называют диэлектриками или изоляторами .

Притяжение незаряженных тел из диэлектриков к заряженным телам объясняется их способностью к поляризации.

Поляризация – явление смещения связанных электрических зарядов внутри атомов, молекул или внутри кристаллов под действием внешнего электрического поля. Самый простой пример поляризации – действие внешнего электрического поля на нейтральный атом. Во внешнем электрическом поле сила, действующая на отрицательно заряженную оболочку, направлена противоположно силе, которая действует на положительное ядро. Под действием этих сил электронная оболочка несколько смещается относительно ядра и деформируется. Атом остаётся в целом нейтральным, но центры положительного и отрицательного заряда в нём уже не совпадают. Такой атом можно рассматривать как систему из двух равных по модулю точечных зарядов противоположного знака, которую называют диполем.

Если поместить пластину из диэлектрика между двумя металлическими пластинами с зарядами противоположного знака, все диполи в диэлектрике под действием внешнего электрического поля оказываются обращёнными положительными зарядами к отрицательной пластине и отрицательными зарядами к положительно заряженной пластине. Пластина диэлектрика остаётся в целом нейтральной, но её поверхности покрыты противоположными по знаку связанными зарядами.

В электрическом поле поляризационные заряды на поверхности диэлектрика создают электрическое поле, противоположно направленное внешнему электрическому полю. В результате этого напряжённость электрического поля в диэлектрике уменьшается, но не становиться равной нулю.

Отношение модуля напряжённости E 0 электрического поля в вакууме к модулю напряжённости Е электрического поля в однородном диэлектрике называется диэлектрической проницаемостью ɛ вещества:

ɛ = Е 0 / Е

При взаимодействии двух точечных электрических зарядов в среде с диэлектрической проницаемостью ɛ в результате уменьшения напряжённости поля в ɛ раз кулоновская сила также убывает в ɛ раз:

F э = k (q 1 · q 2 / ɛr 2)

Диэлектрики способны ослаблять внешнее электрическое поле. Это их свойство применяется в конденсаторах.

Конденсаторы – это электрические приборы для накопления электрических зарядов. Простейший конденсатор состоит из двух параллельных металлических пластин, разделённым слоем диэлектрика. При сообщении пластинам равных по модулю и противоположных по знаку зарядов +q и –q между пластинами создаётся электрическое поле с напряжённостью Е . Вне пластин действие электрических полей, направленное противоположно заряженных пластин, взаимно компенсируется, напряжённость поля равна нулю. Напряжение U между пластинами прямо пропорционально заряду на одной пластине, поэтому отношение заряда q к напряжению U

C = q / U

является для конденсатора величиной постоянной при любых значениях заряда q. Это отношение С называется электроёмкостью конденсатора.

Остались вопросы? Не знаете, что такое диэлектрики?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Лекция 1.3.1. Поляризация диэлектриков

Диэлектрические материалы

Диэлектрики - вещества, способные поляризоваться и сохранять электростатическое поле. Это широкий класс электротехнических материалов: газообразных, жидких и твердых, природных и интетических, органических, неорганических и элементоорганических. По выполняемым функциям они делятся на пассивные и активные. Пассивные диэлектрики применяются в качестве электроизоляционных материалов. В активных диэлектриках (сегнетоэлектрики, пьезоэлектрики и др.), электрические свойства зависят от управляющих сигналов, способных изменять характеристики электротехнических устройств и приборов.

По электрическому строению молекул различают неполярные и полярные диэлектрики. Неполярные диэлектрики состоят из неполярных (симметричных) молекул, в которых центры положительных и отрицательных зарядов совпадают. Полярные диэлектрики состоят из несимметричных молекул (диполей). Дипольная молекула характеризуется дипольным моментом – р.

В процессе работы электротехнических устройств диэлектрик нагревается, так как часть электрической энергии в нем рассеивается в виде тепла. Диэлектрические потери сильно зависят от частоты тока, особенно у полярных диэлектриков, поэтому они являются низкочастотными. В качестве высокочастотных используются неполярные диэлектрики.

Основные электрические свойства диэлектриков и их характеристики приведены в табл. 3.

Таблица 3 - Электрические свойства диэлектриков и их характеристики

Поляризация – это ограниченное смещение связанных зарядов или ориентация дипольных молекул в электрическом поле. Под влиянием силовых линий электрического поля заряды диэлектрика смещаются по направлению действующих сил в зависимости величины напряженности. При отсутствии электрического поля заряды возвращаются в прежнее состояние.

Различают два вида поляризации: поляризация мгновенная, вполне упругая, без выделения энергии рассеяния, т.е. без выделения тепла, за время 10 -15 – 10 -13 с; поляризация не совершается мгновенно, а нарастает или убывает замедленно и сопровождается рассеянием энергии в диэлектрике, т.е. его нагревает - это релаксационная поляризация за время от 10 -8 до 10 2 с.

К первому виду относятся электронная и ионная поляризации.



Электронная поляризация (C э, Q э) – упругое смещение и деформация электронных оболочек атомов и ионов за время 10 -15 с. Наблюдается такая поляризация для всех видов диэлектриков и не связана с потерей энергии, а диэлектрическая проницаемость вещества численно равна квадрату показателя преломления света n 2 .

Ионная поляризация (C и, Q и) характерна для твердых тел с ионным строением и обуславливается смещением (колебанием) упруго связанных ионов в узлах кристаллической решетки за время 10 -13 с. С повышением температуры смещение усиливается и в результате ослабления упругих сил между ионами, а температурный коэффициент диэлектрической проницаемости ионных диэлектриков оказывается положительным.

Ко второму виду относят все релаксационные поляризации.

Дипольно-релаксационная поляризация (C др, r др, Q др) связана с тепловым движением диполей при полярной связи между молекулами. Поворот диполей в направлении электрического поля требует преодоления некоторого сопротивления, выделения энергии в виде тепла (r др). Время релаксации здесь порядка 10 -8 – 10 -6 с – это промежуток времени, в течение которого упорядоченность ориентированных электрическим полем диполей после снятия поля уменьшится вследствие наличия тепловых движений в 2,7 раза от первоначального значения.

Ионно-релаксационная поляризация (C ир, r ир, Q ир) наблюдается в неорганических стеклах и в некоторых веществах с неплотной упаковкой ионов. Слабосвязанные ионы вещества под воздействием внешнего электрического поля среди хаотических тепловых движений получают избыточные набросы в направлении поля и смещаются по силовой линии его. После снятия электрического поля ориентация ионов ослабевает по экспоненциальному закону. Время релаксации, энергия активации и частота собственных колебаний происходит в течение 10 -6 – 10 -4 с и связано законом

где f – частота собственных колебаний частиц; v - энергия активации; k –постоянная Больцмана (8,63 10 -5 ЭВ/град); T – абсолютная температура по К 0 .

Электронно - релаксационная поляризация (C эр, r эр, Q эр) возникает за счет возбужденных тепловых энергий избыточных, дефектных электронов или «дырок» за время 10 -8 – 10 -6 с. Она характерна для диэлектриков с высокими показателями преломления, большим внутренним полем и электронной электропроводностью: двуокись титана с примесями, Са+2, Ва+2, ряда соединений на основе окислов металлов переменной валентности – титана, ниобия, висмута. При этой поляризации имеет место высокая диэлектрическая проницаемость и при отрицательных температурах наличие максимума в температурной зависимости e (диэлектрической проницаемости). e для титаносодержащей керамики уменьшается с возрастанием частоты.

Структурные поляризации различают:

Миграционная поляризация (C м, r м, Q м) протекает в твердых телах неоднородной структуры при макроскопических неоднородностях, слоях, границ раздела или наличии примесей за время порядка 10 2 с.Эта поляризация проявляется при низких частотах и связана со значительным рассеянием энергии. Причинами такой поляризации являются проводящие и полупроводящие включения в технических, сложных диэлектриках, наличие слоев с различной проводимостью и т.д. На границах раздела между слоями в диэлектрике и в при электродных слоях идет накопление зарядов медленно движущихся ионов – это эффект межслоевой или структурной высоковольтной поляризации. Для сегнетоэлектриков различают спонтанную или самопроизвольную поляризацию,(C сп, r сп, Q сп), когда идет значительное рассеяние энергии или выделение тепла за счет доменов (отдельные области, вращающихся электронных оболочек) , смещающихся в электрическом поле, т. е. еще в отсутствии электрического поля в веществе есть электрические моменты, а при некоторой напряженности внешнего поля наступает насыщение и наблюдается возрастание поляризации.

Классификация диэлектриков по виду поляризации.

Первая группа – диэлектрики, обладающие электронной и ионной мгновенной поляризациями. Структура таких материалов состоит из нейтральных молекул, может быть слабополярной и характерна для твердых кристаллических и аморфных материалов таких, как парафин, сера, полистирол, а также жидкие и газообразные материалы как бензол водород и др.

Вторая группа – диэлектрики, обладающие электронной и дипольно-релаксационной поляризациями – это полярные органические жидкие, полужидкие, твердые вещества как маслоканифольные компаунды, эпоксидные смолы, целлюлоза, хлорированные углеводороды и т.п. материалы.

Третья группа – диэлектрики твердые неорганические, которые делятся на две подгруппы, отличающиеся по электрическим характеристикам – а) диэлектрики, обладающие электронной и дипольно-релаксационной поляризациями, такие как кварц, слюда, каменная соль, корунд, рутил; б) диэлектрики с электронной и ионной релаксационными поляризациями – это стекла, материалы со стекловидной фазой (фарфор, микалекс и т.п.) и кристаллические диэлектрики с неплотной упаковкой ионов.

Четвертая группа – это диэлектрики, обладающие электронной и ионной мгновенными и структурной поляризациями, что свойственно многим позиционным, сложным, слоистым и сегнетоэлектрикам материалам.