Где применяют полупроводники. Применения полупроводников. Два вида проводимости полупроводников – электронная и дырочная

Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu 2 O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 - неметаллами, из которых 13 обладают полупроводниковыми свойствами и 12 - диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие полиацетилен (СН) n, - полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd 1-x Mn x Te) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO 3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La 2 CuO 4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La 1-x Sr x) 2 CuO 4 .

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10 -4 до 10 7 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника - от 0 до 3 эВ. Металлы и полуметаллы - это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs - 1,5 эВ. GaN, материал для в синей области, имеет запрещённую зону шириной 3,5 эВ.

Энергетический зазор

Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней - свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.

Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01-3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.

Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом - участком запрещённых энергий электронов.

В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.

Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.

В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно - энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.

Примесная и собственная проводимость полупроводников

Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.

Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости. Примесные полупроводники - это проводники, обладающие примесной проводимостью.

Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут - это донорные примеси кремния.

Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.

Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь - основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.

Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий - акцепторные примеси для кремния.

Характеристики полупроводника находятся в зависимости от дефектов его кристаллической структуры. Это является причиной необходимости выращивания предельно чистых кристаллов. Параметрами проводимости полупроводника управляют путем добавления легирующих присадок. Кристаллы кремния легируют фосфором (элемент V подгруппы), который является донором, чтобы создать кристалл кремния n-типа. Для получения кристалла с дырочной проводимостью в кремний вводят акцептор бор. Полупроводники с компенсированным уровнем Ферми для перемещения его в середину запрещённой зоны создают подобным образом.

Одноэлементные полупроводники

Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.

Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа - фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).

Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва - dE = 5,47 эВ.

Кремний - полупроводник, используемый в солнечных батареях, а в аморфной форме - в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.

Германий - полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.

Селен - полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.

Двухэлементные соединения

Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают 4 группы. Переход от 4 группы элементов к соединениям 3-4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа - антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.

Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути - полупроводник без энергетического зазора, полуметалл, подобно α-олову.

Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2- 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1-7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Рост энергии сцепления кристалла по причине кулоновского межионного взаимодействия способствует структурированию атомов с шестикратной, а не квадратичной координацией. Соединения 4-6 групп - сульфид и теллурид свинца, сульфид олова - также полупроводники. Степень ионности данных веществ тоже содействует образованию шестикратной координации. Значительная ионность не препятствует наличию у них очень узких запрещённых зон, что позволяет использовать их для приёма ИК-излучения. Нитрид галлия - соединение 3-5 групп с широким энергетическим зазором, нашёл применение в и светодиодах, работающих в голубой части спектра.

GaAs, арсенид галлия - второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.

ZnS, сульфид цинка - цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.

SnS, сульфид олова - полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.

Оксиды

Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа - оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.

Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La 2 CuO 4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La 2 CuO 4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa 2 Cu 3 O 8 . При высоком давлении её значение составляет 134 К.

ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.

Слоистые кристаллы

Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов - интеркаляцией.

MoS 2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.

Органические полупроводники

Примеры полупроводников на основе органических соединений - нафталин, полиацетилен (CH 2) n , антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида -С=С-С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки - тоже полупроводниками.

Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С 60 щелочным металлом превращает его в сверхпроводник.

Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью

Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Магнитные полупроводники

Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа - сульфид европия, селенид европия и твёрдые растворы, подобные Cd 1-x- Mn x Te. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники - это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.

Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn 0,7 Ca 0,3 O 3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики

Этот тип кристаллов отличается наличием в них электрических моментов и возникновением спонтанной поляризации. Например, такими свойствами обладают полупроводники титанат свинца PbTiO 3 , титанат бария BaTiO 3 , теллурид германия GeTe, теллурид олова SnTe, которые при низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в нелинейно-оптических, запоминающих устройствах и пьезодатчиках.

Разнообразие полупроводниковых материалов

Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-5 2 (AgGaS 2) и 2-4-5 2 (ZnSiP 2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3-5 и 2-6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As 2 Se 3), - полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.

С открытием полупроводников и изучением их свойств стало возможным создание схем на диодах и транзисторах. Вскоре из-за лучших эксплуатационных характеристик и меньших размеров они вытеснили электронные лампы, затем стало возможным производить интегральные микросхемы на основе полупроводниковых элементов.

Что такое полупроводники

Дать определение полупроводникам – это охарактеризовать их с точки зрения способности к проведению электротока. У данных кристаллических веществ увеличивается электропроводность при возрастании температуры, воздействии света, присутствии различных примесей.

Полупроводники бывают широкозонные и узкозонные, что обуславливает свойства полупроводниковых материалов. От ширины запрещенной зоны, измеряемой в электронвольтах (эВ), зависит электропроводность. Этот параметр можно представить как энергию, которая требуется электрону для проникновения в зону проведения электротока. В среднем для полупроводников она 1 эВ, может быть больше или меньше.

Если правильность кристаллической решетки полупроводников нарушается чужеродным атомом, то такая проводимость будет примесной. Когда полупроводниковые вещества предназначены для создания элементов микросхемы, в них специально добавляют примеси, которые образуют повышенные скопления дырок или электронов:

  • донорные – с большей валентностью, отдают электроны;
  • акцепторные – с меньшей валентностью, забирают электроны, образуя дырки.

Важно! Главный фактор, влияющий на электропроводность проводников, – температура.

Как обеспечивается проводимость

Примерами полупроводников являются кремний, германий. В кристаллах этих веществ атомы имеют ковалентные связи. Когда растет температура, некоторые электроны могут освобождаться. После этого атом, потерявший электрон, становится положительно заряженным ионом. А электрон, не будучи способным перейти к другому атому из-за насыщенности связей, оказывается свободным. Под воздействием электрического поля освободившиеся электроны могут двигаться в направленном потоке.

Ион, потерявший электрон, стремится «отобрать» другой у ближайшего атома. Если у него это получается, то уже этот атом остановится ионом, в свою очередь, пытаясь заместить потерянный электрон. Таким образом, происходит движение «дырок» (положительных зарядов), которое тоже может стать упорядоченным в электрическом поле.

Повышенная температура позволяет электронам энергичнее освобождаться, что приводит к уменьшению сопротивления полупроводника и возрастанию проводимости. Электроны и дырки соотносятся примерно в равных пропорциях в беспримесных кристаллах, такая проводимость называется собственной.

Проводимость p-типа и n-типа

Примесные виды проводимости подразделяются на:

  1. Р-типа. Образуется при добавлении акцепторной примеси. Более низкая валентность примеси вызывает формирование повышенного числа дырок. Для четырехвалентного кремния такой примесью может служить трехвалентный бор;
  2. N-типа. Если к кремнию добавить пятивалентную сурьму, то в полупроводнике возрастет число освободившихся электронов-носителей отрицательного заряда.

Полупроводниковые элементы в основном функционируют на основе особенностей p-n-перехода. Когда два материала с разным типом проводимости привести в соприкосновение, на границе между ними будет происходить взаимопроникновение электронов и дырок в противоположные зоны.

Важно! Процесс взаимообмена полупроводниковых материалов положительными и отрицательными зарядоносителями имеет временные границы – до формирования запирающего слоя.

Носители положительного и отрицательного заряда накапливаются в соединенных частях, с двух сторон от линии соприкосновения. Возникающая разность потенциалов может достигать 0,6 В.

Когда элемент с p-n-переходом попадает в электрическое поле, его проводимость будет зависеть от подключения источника питания (ИП). При «плюсе» на части с р-проводимостью и «минусе» на части с n-проводимостью запирающий слой уничтожится, и через переход пойдет ток. Если ИП подключить противоположным образом, запирающий слой еще больше увеличится и пропустит электроток ничтожно малой величины.

Важно! Р-n-переход обладает односторонней проводимостью.

Использование полупроводников

На основе свойств полупроводников созданы различные приборы, применяющиеся в радиотехнике, электронике и других областях.

Диод

Односторонняя проводимость полупроводниковых диодов определила область их применения – в основном, при выпрямлении переменного тока. Другие виды диодов:

  1. Туннельный. В нем применяются полупроводниковые материалы с таким содержанием примесей, что ширина p-n-перехода резко уменьшается, и становится возможным эффект туннельного пробоя при прямом включении. Используются в ВЧ-устройствах, генераторах, технике для измерений;
  2. Обращенный. Несколько измененный туннельный диод. При прямом подключении напряжение, его открывающее, намного ниже в сравнении с классическими диодами. Это предопределяет использование туннельного диода для преобразования токов малых напряжений;
  3. Варикап. Когда p-n-переход закрыт, его емкость достаточно высока. Варикап используется как конденсатор, емкость которого можно варьировать изменением напряжения. Емкость будет снижаться, если обратное напряжение растет;

  1. Стабилитрон. Подключается параллельно, стабилизирует напряжение на заданном участке;
  2. Импульсный. Из-за коротких переходных процессов применяются для импульсных ВЧ-схем;
  3. Лавинно-пролетный. Используется для генерации колебаний сверхвысокой частоты. В основе – лавинообразное размножение зарядоносителей.

Этот диод состоит не из двух полупроводниковых материалов, вместо этого полупроводник контактирует с металлом. Так как металл не имеет кристаллическую структуру, дырок в нем быть не может. Значит, в месте соприкосновения его с полупроводниковым материалом к проникновению способны только электроны с обеих сторон, совершая работу выхода. Это становится возможным, когда:

  • имеется полупроводник n-типа, и работа выхода его электронов меньше, чем у металла;
  • имеется полупроводник р-типа с работой выхода его электронов большей, чем у металла.

В месте контакта полупроводник потеряет зарядоносители, проводимость его снизится. Создается барьер, который преодолевается прямым напряжением необходимого значения. Обратное напряжение практически запирает диод, работающий как выпрямитель. Диоды Шоттки из-за высокого быстродействия используются в импульсных схемах, в вычислительных устройствах, служат они и качестве силовых диодов для выпрямления тока значительной величины.

Практически ни одна микросхема не обходится без транзисторов, полупроводниковых элементов с двумя p-n-переходами. Транзисторный элемент имеет три выводных контакта:

  • коллектор;
  • база;
  • эммитер.

Если на базу подается маломощный сигнал управления, между коллектором и эммитером пропускается намного больший ток. Когда на базу сигнал не подается, ток не проводится. Таким образом, можно регулировать силу тока. Используется прибор для усиления сигнала и бесконтактной коммутации цепи.

Виды полупроводниковых транзисторов:

  1. Биполярные. Обладают положительными и отрицательными зарядоносителями. Протекающий ток способен проходить в прямом и обратном направлении. Применяются в качестве усилителей;
  2. Полевые. Их выводы называются сток, исток, затвор. Управление производится посредством электрического поля определенной полярности. Сигнал, подаваемый на затвор, может изменять проводимость транзистора. Зарядоносители в полевых приборах могут быть только с одним знаком: положительные либо отрицательные. Мощные полевые транзисторы используются в усилителях звука. Основное их применение – интегральные схемы. Компактные размеры и малое энергопотребление делают возможным устанавливать их в приборах с источниками напряжения малой мощности (часы);
  3. Комбинированные. Могут располагаться совместно с другими транзисторными элементами, резисторами в одной монолитной структуре.

Легирование полупроводников

Легирование – это введение примесных элементов, донорных и акцепторных, в кристаллы полупроводников для регулирования их проводимости. Это происходит в период выращивания кристаллов или путем местного внедрения в отдельных зонах.

Применяемые методы:

  1. Высокотемпературная диффузия. Полупроводниковый кристалл разогревают, и примесные атомы, находящиеся в контакте с его поверхностью, попадают вглубь. В некоторых узлах кристаллической решетки примесные атомы замещают атомы основного вещества;
  2. Ионная имплантация. Происходят ионизация и ускорение примесных атомов, которые бомбардируют монокристалл, создавая местные неоднородности и формируя p-n-переходы;
  3. Лазерное облучение. Преимущество способа в том, что, используя направленное излучение, отдельные участки можно разогреть до любых температурных значений, что облегчает ввод примесей;
  4. Нейтронное легирование. Применяется сравнительно недавно. Заключается в облучении монокристалла тепловыми нейтронами в реакторе, в результате чего происходит мутация атомных ядер. Атомы кремния преобразуются в фосфорные.

Существуют и другие способы легирования: химическое травление, создание тонких пленок путем напыления.

Как получают полупроводники

Главным в получении полупроводников является их очистка от ненужных примесей. Среди множества способов их получения можно выделить два, наиболее часто применяемых:

  1. Зонная плавка. Процесс осуществляется в запаянном кварцевом контейнере, куда подается инертный газ. Расплавляется узкая зона слитка, которая постепенно перемещается. В процессе плавления примеси перераспределяются и рекристаллизируются, выделяя чистую часть;
  2. Метод Чохральского. Заключается в выращивании кристалла из затравки путем постепенного вытягивания из расплавленного состава.

Разновидности полупроводниковых материалов

Различия в составе определяют область применения полупроводников:

  1. К простым – относятся однородные вещества, применяющееся самостоятельно, а также в качестве примесей и составляющих частей сложных материалов. Кремний, селен и германий используются самостоятельно. Бор, сурьма, теллур, мышьяк, сера, иод служат добавками;
  2. Сложные материалы представляют собой химические соединения из двух или нескольких элементов: сульфиды, теллуриды, карбиды;
  3. Оксиды кобальта, меди, европия используются в выпрямительных и фотоэлементах;
  4. Органические полупроводники: индол, акридон, флавантрон, пентацен. Одна из областей их использования – оптическая электроника;
  5. Магнитные полупроводники. Это ферромагнетические материалы, например, сульфид и оксид европия, а также антиферромагнетические – оксид никеля, теллурид европия. Применяются в радиотехнике, оптических устройствах, управляемых магнитным полем.

Сейчас трудно назвать область техники, где не было бы полупроводниковых материалов, используемых в том числе при отсутствии p-n-перехода, например, термосопротивления в температурных датчиках, фотосопротивления в пультах ДУ и другие.

Видео

В нашей статье будут рассмотрены примеры полупроводников, их свойства и сферы применения. Эти материалы имеют свое место в радиотехнике и электронике. Они являются чем-то средним между диэлектриком и проводником. Кстати, простое стекло тоже можно считать полупроводником - в обычном состоянии оно ток не проводит. Зато при сильном нагреве (практически до жидкого состояния) происходит изменение свойств и стекло становится проводником. Но это исключительный пример, у других материалов все обстоит немного иначе.

Основные особенности полупроводников

Показатель проводимости составляет около 1000 Ом*м (при температуре 180 градусов). Если сравнивать с металлами, то у полупроводников происходит уменьшение удельной проводимости при возрастании температуры. Такое же свойство имеется у диэлектриков. У полупроводниковых материалов имеется достаточно сильная зависимость показателя удельной проводимости от количества и типа примесей.

Допустим, если ввести в чистый германий всего тысячную долю мышьяка, произойдет увеличение проводимости примерно в 10 раз. Все без исключения полупроводники чувствительны к воздействиям извне - ядерному облучению, свету, электромагнитным полям, давлению и т. д. Можно привести примеры полупроводниковых материалов - это сурьма, кремний, германий, теллур, фосфор, углерод, мышьяк, йод, бор, а также различные соединения этих веществ.

Особенности применения полупроводников

Благодаря тому, что у полупроводниковых материалов такие специфические свойства, они получили довольно широкое распространение. На их основе изготавливают диоды, транзисторы, симисторы, лазеры, тиристоры, датчики давления, магнитного поля, температуры, и т. д. После освоения полупроводников произошло коренное преобразование в автоматике, радиотехнике, кибернетике и электротехнике. Именно при помощи использования полупроводников удалось достичь таких маленьких габаритов техники - нет нужды использовать массивные блоки питания и радиолампы размером с полуторалитровую банку.

Ток в полупроводниках

В проводниках ток определяется тем, куда двигаются свободные электроны. В полупроводниковых материалах свободных электронов очень много, на это есть причины. Все валентные электроны, которые имеются в полупроводнике, не свободны, так как они связываются со своими атомами.

В полупроводниках ток может появляться и меняться в достаточно широких пределах, но только при наличии воздействия извне. Ток меняется при нагреве, облучении, введении примесей. Все воздействия способны значительно увеличить у валентных электронов энергию, что способствует их отрыву от атомов. А приложенное напряжение заставляет эти электроны перемещаться в определенном направлении. Другими словами, эти электроны становятся носителями тока.

Дырки в полупроводниках

При повышении температуры или интенсивности внешнего облучения происходит увеличение количества свободных электронов. Следовательно, увеличивается ток. Те атомы в веществе, которые потеряли электроны, становятся положительными ионами, они не перемещаются. С внешней стороны атома, с которого ушел электрон, остается дырка. В нее может встать другой электрон, который покинул свое место в атоме поблизости. В результате этого на внешней части у соседнего атома образуется дырка - он превращается в ион (положительный).

Если к полупроводнику приложить напряжение, то электроны начнут двигаться от одних атомов к соседним в определенном направлении. Дырки же начнут перемещаться во встречном направлении. Дырка - это положительно заряженная частица. Причем заряд у нее по модулю такой же, как у электрона. С помощью такого определения можно существенно упростить анализ всех процессов, которые протекают в полупроводниковом кристалле. Ток дырок (обозначается I Д) - это перемещение частиц в направлении, обратном движению электронов.

Электронно-дырочный переход

У полупроводника имеется два типа электропроводимости - электронная и дырочная. В чистых полупроводниках (без примесей) у дырок и электронов концентрация (N Д и N Э соответственно) одинаковая. По этой причине такая электропроводность называется собственной. Суммарное значение тока будет равно:

Но если учесть тот факт, что у электронов значение подвижности больше, чем у дырок, можно прийти к такому неравенству:

Подвижность заряда обозначается буквой М, это одно из главных свойств полупроводников. Подвижность - это отношение двух параметров. Первый - скорость перемещения носителя заряда (обозначается буквой V с индексом «Э» или «Д», в зависимости от типа носителя), второй - это напряженность электрического поля (обозначается буквой Е). Можно выразить в виде формул:

М Э = (V Э / Е).

М Д = (V Д / Е).

Подвижность позволяет определить путь, который проходит дырка или электрон за одну секунду при значении напряженность 1 В/см. можно теперь вычислить собственный ток полупроводникового материала:

I = N * e * (М Э + М Д) * E.

Но нужно отметить, что у нас есть равенства:

N = N Э = N Д.

Буквой е в формуле обозначается заряд электрона (это постоянная величина).

Полупроводниковые приборы

Сразу можно привести примеры полупроводниковых приборов - это транзисторы, тиристоры, диоды, и даже микросхемы. Конечно, это далеко не полный список. Чтобы изготовить полупроводниковый прибор, нужно использовать материалы, у которых проводимость дырочная или электронная. Чтобы получить такой материал, необходимо в идеально чистый полупроводник с концентрацией примесей менее 10 -11 % ввести добавку (ее называют легирующей примесью).

Те примеси, у которых валентность оказывается больше, чем у полупроводника, отдают свободные электроны. Эти примеси называются донорами. А вот те, у которых валентность меньше, чем у полупроводника, имеют свойство хватать и удерживать электроны. Их называют акцепторами. Для того чтобы получился полупроводник, который будет обладать лишь проводимостью электронного типа, в исходный материал достаточно ввести вещество, у которого валентность будет всего на единицу больше. Для примера полупроводников в физике школьного курса рассматривается германий - его валентность равна 4. В него добавляется донор - фосфор или сурьма, у них валентность равна пяти. Металлов-полупроводников немного, они практически не используются в технике.

При этом 4 электрона в каждом атоме осуществляют установку четырех парных (ковалентных) связей с германием. Пятый электрон не имеет такой связи, а значит, он в свободном состоянии. И если приложить к нему напряжение, он будет образовывать электронный ток.

Токи в полупроводниках

Когда ток электронов больше, чем дырок, полупроводник называют n-типа (отрицательного). Рассмотрим пример - в идеально чистый германий вводят немного примеси акцептора (допустим, бор). При этом каждый атом акцептора начнет устанавливать ковалентные связи с германием. Но вот четвертый атом германия не имеет связи с бором. Следовательно, у определенного количества атомов германия будет иметься только один электрон без связи ковалентного типа.

Но достаточно незначительного воздействия извне, чтобы электроны начали покидать свои места. При этом у германия образовываются дырки.

По рисунку видно, что на 2, 4 и 6 атомах свободные электроны начинают присоединяться к бору. По этой причине не создается ток в полупроводнике. На поверхности атомов германия образуются дырки с номерами 1, 3 и 5 - с их помощью происходит переход на них электронов от расположенных рядом атомов. На последних же начинают появляться дырки, так как электроны с них улетают.

Каждая дырка, которая возникает, начнет переходить между атомами германия. При воздействии напряжения дырки начинают двигаться упорядоченно. Другими словами, в веществе появляется ток дырок. Такой тип полупроводников называется дырочным или p-типа. При воздействии напряжения двигаются не только электроны, но и дырки - они встречают на своем пути разнообразные препятствия. При этом происходит потеря энергии, отклонение от изначальной траектории. Иными словами, заряд носителей рассеивается. Все это происходит из-за того, что в полупроводнике содержатся загрязняющие примеси.

Чуть выше были рассмотрены примеры веществ-полупроводников, которые используются в современной технике. У всех материалов имеются свои особенности. В частности, одно из ключевых свойств - это нелинейность вольт-амперной характеристики.

Иными словами, когда происходит увеличение напряжения, которое прикладывается к полупроводнику, происходит быстрое возрастание тока. Сопротивление при этом резко уменьшается. Такое свойство нашло применение в разнообразных вентильных разрядниках. Примеры неупорядоченных полупроводников можно более детально рассмотреть в специализированной литературе, их применение строго ограничено.

Хороший пример: при рабочем значении напряжения у разрядника сопротивление высокое, поэтому от ЛЭП ток не уходит в землю. Но как только в провод или опору ударяет молния, сопротивление очень быстро уменьшается практически до нуля, весь ток уходит в землю. И напряжение снижается до нормального значения.

Симметричная ВАХ

Когда происходит смена полярности напряжения, в полупроводнике ток начинает протекать в обратном направлении. И меняется он по тому же закону. Это говорит о том, что полупроводниковый элемент обладает симметричной вольт-амперной характеристикой. В том случае, если одна часть элемента имеет дырочный тип, а вторая - электронный, то на границе их соприкосновения появляется p-n-переход (электронно-дырочный). Именно такие переходы имеются во всех элементах - транзисторах, диодах, микросхемах. Но только в микросхемах на одном кристалле собирается сразу несколько транзисторов - иногда их количество более десятка.

Как происходит образование перехода

А теперь давайте рассмотрим, как происходит образование p-n-перехода. Если контакт дырочного и электронного полупроводников не очень качественный, то происходит образование системы, состоящей из двух областей. Одна будет иметь дырочную проводимость, а вторая - электронную.

И электроны, которые находятся в n-области, начнут диффундировать туда, где их концентрация меньше - то есть, в р-область. Одновременно с электронами дырки двигаются, но направление у них обратное. При взаимной диффузии происходит уменьшение концентрации в n-области электронов и в р-области дырок.

Основное свойство p-n-перехода

Рассмотрев примеры проводников, полупроводников и диэлектриков, можно понять, что свойства у них различные. Например, основное качество полупроводников - это возможность пропускания тока только лишь в одном направлении. По этой причине приборы, изготовленные с использованием полупроводников, получили широкое распространение в выпрямителях. На практике, используя несколько измерительных приборов, можно увидеть работу полупроводников и оценить массу параметров - как в режиме покоя, так и при воздействии внешних «раздражителей».

Какие у него особенности? Какова физика полупроводников? Как они построены? Что такое проводимость полупроводников? Какими физическими показателями они обладают?

Что называют полупроводниками?

Так обозначают кристаллические материалы, которые не проводят электричество столь хорошо, как это делают металлы. Но всё же этот показатель лучше, чем имеют изоляторы. Такие характеристики обусловлены количеством подвижных носителей. Если рассматривать в общем, то здесь существует крепкая привязанность к ядрам. Но при введении в проводник нескольких атомов, допустим, сурьмы, которая обладает избытком электронов, это положение будет исправляться. При использовании индия получают элементы с позитивным зарядом. Все эти свойства широко применяются в транзисторах - специальных устройствах, которые могут усиливать, блокировать или пропускать ток только в одном направлении. Если рассматривать элемент NPN-типа, то можно отметить значительную усиливающую роль, что особенно бывает важным при передаче слабых сигналов.

Конструктивные особенности, которыми обладают электрические полупроводники

Проводники имеют много свободных электронов. Изоляторы ими вообще практически не обладают. Полупроводники же содержат и определённое количество свободных электронов, и пропуски с позитивным зарядом, которые готовы принять освободившиеся частицы. И что самое главное - они все проводят Рассмотренный ранее тип NPN-транзистора - не единый возможный полупроводниковый элемент. Так, существуют ещё PNP-транзисторы, а также диоды.

Если говорить про последний кратко, то это такой элемент, что может передавать сигналы только в одном направлении. Также диод может превратить переменный ток в постоянный. Каков механизм такого превращения? И почему он двигается только в одном направлении? Зависимо от того, откуда идёт ток, электроны и пропуски могут или расходиться, или идти навстречу. В первом случает из-за увеличения расстояния происходит прерывание подачи снабжения, поэтому и осуществляется передача носителей негативного напряжения только в одну сторону, то есть проводимость полупроводников является односторонней. Ведь ток может передаваться исключительно в случае, если составляющие частицы находятся рядом. А это возможно только при подаче тока с одной стороны. Вот такие типы полупроводников существуют и используются на данный момент.

Зонная структура

Электрические и оптические свойства проводников связаны с тем, что при заполнении электронами уровней энергии они отделены от возможных состояний запрещенной зоной. Какие у неё особенности? Дело в том, что в запрещенной зоне отсутствуют уровни энергии. При помощи примесей и дефектов структуры это можно изменить. Высшая полностью заполненная зона называется валентной. Затем следует разрешенная, но пустая. Она называется зоной проводимости. Физика полупроводников - довольно интересная тема, и в рамках статьи она будет хорошо освещена.

Состояние электронов

Для этого используются такие понятия, как номер разрешенной зоны и квазиимпульс. Структура первой определяется законом дисперсии. Он говорит о том, что на неё влияет зависимость энергии от квазиимпульса. Так, если валентная зона является целиком заполненной электронами (которые переносят заряд в полупроводниках), то говорят, что в ней отсутствуют элементарные возбуждения. Если по какой-то причине частицы нет, то это значит, что здесь появилась положительно заряженная квазичастица - пропуск или дыра. Они являются носителями заряда в полупроводниках в валентной зоне.

Вырожденные зоны

Валентная зона в типичном проводнике является шестикратно вырожденной. Это без учета спин-орбитального взаимодействия и только когда квазиимпульс равен нулю. Она может расщепляться при этом же условии на двукратно и четырехкратно вырожденные зоны. Энергетическое расстояние между ними называется энергией спин-орбитального расщепления.

Примеси и дефекты в полупроводниках

Они могут быть электрически неактивными или активными. Использование первых позволяет получать в полупроводниках плюсовой или минусовой заряд, который может быть компенсирован появлением дыры в валентной зоне или электрона в проводимой зоне. Неактивные примеси являются нейтральными, и они относительно слабо влияют на электронные свойства. Причем часто может иметь значение то, какую валентность имеют атомы, которые берут участие в процессе передачи заряда, и строение

Зависимо от вида и количества примесей может меняться и соотношение между количеством дыр и электронов. Поэтому материалы полупроводников должны всегда тщательно подбираться, чтобы получить желаемый результат. Этому предшествует значительное количество расчетов, а в последующем и экспериментов. Частицы, которые большинство называют основными носителями заряда, являются неосновными.

Дозированное введение примесей в полупроводники позволяет получать устройства с требуемыми свойствами. Дефекты в полупроводниках также могут быть в неактивном либо активном электрическом состоянии. Важными здесь являются дислокация, межузельный атом и вакансия. Жидкие и некристаллические проводники реагируют на примеси по-другому, чем кристаллические. Отсутствие жесткой структуры в конечном итоге выливается в то, что перемещенный атом получает другую валентность. Она будет отличаться от той, с которой он первоначально насыщает свои связи. Атому становится невыгодно отдавать или присоединять электрон. В таком случае он становится неактивным, и поэтому примесные полупроводники имеют большие шансы на выход из строя. Это приводит к тому, что нельзя менять тип проводимости с помощью легирования и создать, к примеру, р-n-переход.

Некоторые аморфные полупроводники могут изменять свои электронные свойства под воздействием легирования. Но это относится к ним в значительно меньшей степени, чем к кристаллическим. Чувствительность аморфных элементов к легированию можно повысить с помощью технологической обработки. В конечном итоге хочется отметить, что благодаря длительной и упорной работе примесные полупроводники все же представлены целым рядом результатов с хорошими характеристиками.

Статистика электронов в полупроводнике

Когда существует то количество дыр и электронов определяется исключительно температурой, параметрами зонной структуры и концентрацией электрически активных примесей. Когда рассчитывается соотношение, то считается, что часть частиц будет находиться в зоне проводимости (на акцепторном или донорном уровне). Также принимается во внимание тот факт, что часть может уйти с валентной территории, и там образуются пропуски.

Электропроводность

В полупроводниках, кроме электронов, в качестве носителей зарядов могут выступить и ионы. Но их электропроводность в большинстве случае пренебрежительно мала. В качестве исключения можно привести только ионные суперпроводники. В полупроводниках действует три главных механизма электронного переноса:

  1. Основной зонный. В этом случает электрон приходит в движение благодаря изменению его энергии в пределах одной разрешенной территории.
  2. Прыжковый перенос по локализованным состояниям.
  3. Поляронный.

Экситон

Дыра и электрон могут образовывать связанное состояние. Оно называется экситоном Ванье-Мотта. При этом которая соответствует краю поглощения, понижается на размер величины связи. При достаточной в полупроводниках может образоваться значительное количество экситонов. При увеличении их концентрации происходит конденсация, и образовывается электронно-дырочная жидкость.

Поверхность полупроводника

Такими словами обозначают несколько атомных слоев, что расположены около границы устройства. Поверхностные свойства отличаются от объемных. Наличие данных слоев нарушает трансляционную симметрию кристалла. Это приводит к так называемым поверхностным состояниям и поляритонам. Развивая тему последних, следует ещё сообщить и про спиновые и колебательные волны. Из-за своей химической активности поверхность укрывается микроскопичным слоем сторонних молекул или атомов, которые были адсорбированы из окружающей среды. Они-то и определяют свойства тех нескольких атомных слоев. На счастье, создание технологии сверхвысокого вакуума, при котором создаются полупроводниковые элементы, позволяет получить и сохранить на протяжении нескольких часов чистую поверхность, что позитивно сказывается на качестве получаемой продукции.

Полупроводник. Температура влияет на сопротивление

Когда температура металлов возрастает, то растёт и их сопротивление. С полупроводниками всё наоборот - при таких же условиях этот параметр у них уменьшится. Дело тут в том, что электропроводность у любого материала (а данная характеристика обратно пропорциональна сопротивлению) зависит от того, какой заряд тока имеют носители, от скорости их передвижения в электрическом поле и от их численности в одной единице объема материала.

В полупроводниковых элементах при росте температуры возрастает концентрация частиц, благодаря этому увеличивается теплопроводность, и уменьшается сопротивление. Проверить это можно при наличии нехитрого набора юного физика и необходимого материала - кремния или германия, также можно взять и сделанный из них полупроводник. Повышение температуры снизит их сопротивление. Чтобы удостовериться в этом, необходимо запастись измерительными приборами, которые позволят увидеть все изменения. Это в общем случае. Давайте рассмотрим пару частных вариантов.

Сопротивление и электростатическая ионизация

Это связано с туннелированием электронов, проходящих через очень узкий барьер, который поставляет примерно одну сотую микрометра. Находится он между краями энергетических зон. Его появление возможно только при наклоне энергетических зон, который происходит только под влиянием сильного электрического поля. Когда происходит туннелирование (что являет собой квантовомеханический эффект), то электроны проходят через узкий потенциальный барьер, и при этом не меняется их энергия. Это влечёт за собой увеличение концентрации носителей заряда, причем в обеих зонах: и проводимости, и валентной. Если развивать процесс электростатической ионизации, то может возникнуть туннельный пробой полупроводника. Во время этого процесса поменяется сопротивление полупроводников. Оно является обратимым, и как только будет выключено электрической поле, то все процессы восстановятся.

Сопротивление и ударная ионизация

В данном случае дыры и электроны ускоряются, пока проходят длину свободного пробега под воздействием сильного электрического поля до значений, которые способствуют ионизации атомов и разрыва одной из ковалентных связей (основного атома или примеси). Ударная ионизация происходит лавинообразно, и в ней лавинообразно размножаются носители заряда. При этом только что созданные дыры и электроны ускоряются электрическим током. Значение тока в конечном результате умножается на коэффициент ударной ионизации, который равен числу электронно-дырочных пар, что образовываются носителем заряда на одном отрезке пути. Развитие данного процесса в конечном итоге приводит к лавинному пробою полупроводника. Сопротивление полупроводников также меняется, но, как и в случае с туннельным пробоем, обратимо.

Применение полупроводников на практике

Особенную важность этих элементов следует отметить в компьютерных технологиях. Почти не сомневаемся, что вас бы не интересовал вопрос о том, что такое полупроводники, если бы не желание самостоятельно собрать предмет с их использованием. Невозможно представить работу современных холодильников, телевизоров, компьютерных мониторов без полупроводников. Не обходятся без них и передовые автомобильные разработки. Также они применяются в авиа- и космической технике. Понимаете, что такое полупроводники, насколько они важны? Конечно, нельзя сказать, что это единственные незаменимые элементы для нашей цивилизации, но и недооценивать их тоже не стоит.

Применение полупроводников на практике обусловлено ещё и целым рядом факторов, среди которых и широкая распространённость материалов, из которых они изготавливаются, и легкость обработки и получения желаемого результата, и другие технические особенности, благодаря которым выбор ученых, разрабатывавших электронную технику, остановился на них.

Заключение

Мы подробно рассмотрели, что такое полупроводники, как они работают. В основе их сопротивления заложены сложные физико-химические процессы. И можем вас уведомить, что описанные в рамках статьи факты не дадут в полной мере понять, что такое полупроводники, по той простой причине, что даже наука не изучила особенности их работы до конца. Но нам известны их основные свойства и характеристики, которые и позволяют нам применять их на практике. Поэтому можно поискать материалы полупроводников и самому поэкспериментировать с ними, соблюдая осторожность. Кто знает, возможно, в вас дремлет великий исследователь?!

Полупроводники - широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной элек-тропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоля-торами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

Свойства:

1) С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается. Причем как правило в широком интервале температур возрастание это происходит экспоненционально. Удельное сопротивление полупроводниковых кристаллов может также уменьшаться при воздействии света или сильных электронных полей.

2) Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводни-ковых приборов: диодов, транзисторов, тиристоров и др.

3) Контакты различных полупроводников в определенных условиях при осве-щении или нагревании являются источниками фото - э. д. с. или, соответственно, термо - э. д. с.

Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются :

1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;

2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов;

3) большие значения термоэлектродвижущей силы по сравнению с металлами;

4) высокая чувствительность свойств полупроводников к ионизирующим излучениям;

5) способность резкого изменения физических свойств под влиянием ничтожно малых концентраций примесей;

6) эффект выпрямления тока или неомическое поведение на контактах.

3. Физические процессы в p-n – переходе.

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-n -переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, а другая - дырочную.

Образование p-n перехода. P-n переход в равновесном состоянии

Рассмотрим подробнее процесс образования p-n перехода. Равновесным называют такое состояние перехода, когда отсутствует внешнее напряжение. Напомним, что в р -области имеются два вида основных носителей заряда: неподвижные отрицательно заряженные ионы атомов акцепторной примеси и свободные положительно заряженные дырки; а в n -области имеются также два вида основных носителей заряда: неподвижные положительно заряженные ионы атомов акцепторной примеси и свободные отрицательно заряженные электроны.

До соприкосновения p и n областей электроны дырки и ионы примесей распределены равномерно. При контакте на границе p иn областей возникает градиент концентрации свободных носителей заряда и диффузия. Под действием диффузии электроны из n -области переходит в p и рекомбинирует там с дырками. Дырки из р -области переходят в n -область и рекомбинируют там с электронами. В результате такого движения свободных носителей заряда в пограничной области их концентрация убывает почти до нуля и в тоже время в р области образуется отрицательный пространственный заряд ионов акцепторной примеси, а в n -области положительный пространственный заряд ионов донорной примеси. Между этими зарядами возникает контактная разность потенциалов φ к и электрическое поле Е к , которое препятствует диффузии свободных носителей заряда из глубины р- иn- областей через р-n- переход. Таким образом область, объединённая свободными носителями заряда со своим электрическим полем и называется р-n- переходом.

P-n -переход характеризуется двумя основными параметрами:

1. Высота потенциального барьера . Она равна контактной разности потенциалов φ к . Это разность потенциалов в переходе, обусловленная градиентом концентрации носителей заряда. Это энергия, которой должен обладать свободный заряд чтобы преодолеть потенциальный барьер:

где k – постоянная Больцмана; е – заряд электрона; Т – температура; N а и N Д – концентрации акцепторов и доноров в дырочной и электронной областях соответственно; р р и р n – концентрации дырок в р- и n- областях соответственно; n i – собственная концентрация носителей заряда в нелигированном полупроводнике,  т =кТ/е - температурный потенциал. При температуре Т =27 0 С  т =0.025В, для германиевого перехода  к =0,6В, для кремниевого перехода к =0,8В.

2. Ширина p-n-перехода (рис.1) – это приграничная область, обеднённая носителями заряда, которая располагается в p и n областях: l p-n = l p + l n :

Отсюда ,

где ε – относительная диэлектрическая проницаемость материала полупроводника; ε 0 - диэлектрическая постоянная свободного пространства.

Толщина электронно-дырочных переходов имеет порядок (0,1-10)мкм. Если , то и p-n -переход называется симметричным, если , то и p-n -переход называется несимметричным, причём он в основном располагается в области полупроводника с меньшей концентрацией примеси.

В равновесном состоянии (без внешнего напряжения) через р-n переход движутся два встречных потока зарядов (протекают два тока). Это дрейфовый ток неосновных носителей заряда и диффузионный ток, который связан с основными носителями заряда. Так как внешнее напряжение отсутствует, и тока во внешней цепи нет, то дрейфовый ток и диффузионный ток взаимно уравновешиваются и результирующий ток равен нулю

I др + I диф = 0.

Это соотношение называют условие динамического равновесия процессов диффузии и дрейфа в изолированном (равновесном) p-n -переходе.

Поверхность, по которой контактируют p и n области называется металлургической границей. Реально она имеет конечную толщину - δ м . Если δ м << l p-n , то p-n -переход называют резким. Если δ м >>l p-n , то p-n -переход называют плавным.

Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. P-n -переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода . Р-n- переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р -области, а отрицательный к n -области (рис.1.2)

При прямом смещении, напряжения  к и U направлены встречно, результирующее напряжение на p-n -переходе убывает до величины  к - U . Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. l p-n ≈ ( к – U) 1/2 . Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n -переход протекает прямой ток

I р-n =I пр =I диф +I др I диф .

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией , а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

2) Обратное смещение , возникает когда к р -области приложен минус, а к n -области плюс, внешнего источника напряжения (рис.1.3).

Такое внешнее напряжение U включено согласно  к . Оно: увеличивает высоту потенциального барьера до величины  к + U ; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. l p-n ≈( к + U) 1/2 ; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I 0 , т.е.

I р-n =I обр =I диф +I др I др = I 0 .

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n -областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией . Экстракция и создает обратный ток p-n перехода – это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .

Тепловой ток кремниевого перехода много меньше теплового тока перехода на основе германия (на 3-4 порядка). Это связано с  к материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

Итак, главное свойство p-n -перехода – это его односторонняя проводимость.

4. Вольтамперная характеристика p-n – перехода.

Получим вольт-амперную характеристику p-n перехода. Для этого запишем уравнение непрерывности в общем виде:

Будем рассматривать стационарный случай dp/dt = 0.

Рассмотрим ток в квазинейтральном объеме полупроводника n-типа справа от обедненной области p-n перехода (x > 0). Темп генерации G в квазинейтральном объеме равен нулю: G = 0. Электрическое поле E тоже равно нулю: E = 0. Дрейфовая компонента тока также равна нулю: I E = 0, следовательно, ток диффузионный . Темп рекомбинации R при малом уровне инжекции описывается соотношением:

Воспользуемся следующим соотношением, связывающим коэффициент диффузии, длину диффузии и время жизни неосновных носителей: Dτ = L p 2 .

С учетом отмеченных выше допущений уравнение непрерывности имеет вид:

Граничные условия для диффузионного уравнения в p-n переходе имеют вид:

Решение дифференциального уравнения (2.58) с граничными условиями (*) имеет вид:

Соотношение (2.59) описывает закон распределения инжектированных дырок в квазинейтральном объеме полупроводника n-типа для электронно-дырочного перехода (рис. 2.15). В токе p-n перехода принимают участие все носители, пересекшие границу ОПЗ с квазинейтральным объемом p-n перехода. Поскольку весь ток диффузионный, подставляя (2.59) в выражение для тока, получаем (рис. 2.16):

Соотношение (2.60) описывает диффузионную компоненту дырочного тока p-n перехода, возникающую при инжекции неосновных носителей при прямом смещении. Для электронной компоненты тока p-n перехода аналогично получаем:

При V G = 0 дрейфовые и диффузионные компоненты уравновешивают друг друга. Следовательно, .

Полный ток p-n перехода является суммой всех четырех компонент тока p-n перехода:

Выражение в скобках имеет физический смысл обратного тока p-n перехода. Действительно, при отрицательных напряжениях V G < 0 ток дрейфовый и обусловлен неосновными носителями. Все эти носители уходят из цилиндра длиной L n со скоростью L n /τ p . Тогда для дрейфовой компоненты тока получаем:

Рис. 2.15. Распределение неравновесных инжектированных из эмиттера носителей по квазинейтральному объему базы p-n перехода

Нетрудно видеть, что это соотношение эквивалентно полученному ранее при анализе уравнения непрерывности.

Если требуется реализовать условие односторонней инжекции (например, только инжекции дырок), то из соотношения (2.61) следует, что нужно выбрать малое значение концентрации неосновных носителей n p0 в p-области. Отсюда следует, что полупроводник p-типа должен быть сильно легирован по сравнению с полупроводником n-типа: N A >> N D . В этом случае в токе p-n перехода будет доминировать дырочная компонента (рис. 2.16).

Рис. 2.16. Токи в несимметричном p-n nереходе при прямом смещении

Таким образом, ВАХ p-n перехода имеет вид:

Плотность тока насыщения J s равна:

ВАХ p-n перехода, описываемая соотношением (2.62), приведена на рисунке 2.17.

Рис. 2.17. Вольт-амперная характеристика идеального p-n перехода

Как следует из соотношения (2.16) и рисунка 2.17, вольт-амперная характеристика идеального p-n перехода имеет ярко выраженный несимметричный вид. В области прямых напряжений ток p-n перехода диффузионный и экспоненциально возрастает с ростом приложенного напряжения. В области отрицательных напряжений ток p-n перехода - дрейфовый и не зависит от приложенного напряжения.

5. Емкость p-n – перехода.

Любая система, в которой при изменении потенциала φ меняется электрический заряд Q, обладает емкостью. Величина емкости С определяется соотношением: .

Для p-n перехода можно выделить два типа зарядов: заряд в области пространственного заряда ионизованных доноров и акцепторов Q B и заряд инжектированных носителей в базу из эмиттера Q p . При различных смещениях на p-n переходе при расчете емкости будет доминировать тот или иной заряд. В связи с этим для емкости p-n перехода выделяют барьерную емкость C B и диффузионную емкость C D .

Барьерная емкость C B - это емкость p-n перехода при обратном смещении V G < 0, обусловленная изменением заряда ионизованных доноров в области пространственного заряда.

Величина заряда ионизованных доноров и акцепторов Q B на единицу площади для несимметричного p-n перехода равна:

Дифференцируя выражение (2.65), получаем:

Из уравнения (2.66) следует, что барьерная емкость C B представляет собой емкость плоского конденсатора, расстояние между обкладками которого равно ширине области пространственного заряда W. Поскольку ширина ОПЗ зависит от приложенного напряжения V G , то и барьерная емкость также зависит от приложенного напряжения. Численные оценки величины барьерной емкости показывают, что ее значение составляет десятки или сотни пикофарад.

Диффузионная емкость C D - это емкость p-n перехода при прямом смещении V G > 0, обусловленная изменением заряда Q p инжектированных носителей в базу из эмиттера Q p .

Зависимость барьерной емкости С B от приложенного обратного напряжения V G используется для приборной реализации. Полупроводниковый диод, реализующий эту зависимость, называется варикапом. Максимальное значение емкости варикап имеет при нулевом напряжении V G . При увеличении обратного смещения емкость варикапа уменьшается. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряжения V G . Задавая профиль легирования в базе варикапа N D (x), можно получить различные зависимости емкости варикапа от напряжения C(V G) - линейно убывающие, экспоненциально убывающие.

6. Полупроводниковые диоды: классификация, особенности конструкции, условные обозначения и маркировка.

Полупроводниковый диод - полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n -перехода.