Примеры из истории научных открытий. Величайшие научные открытия. Борная кислота в молоке

На протяжении веков было бесчисленное множество величайших научных открытий, которые потрясли мир и внесли изменения в существование человечества. Многие из этих открытий улучшали и украшали нашу жизнь, делали её более комфортной и безопасной. Бывали случаи, что идеи ученых, воплощенные на практике, несли за собой угрозу, разрушения и зло. А большая часть событий современного научного мира в будущем приведут к последствиям или же достижениям, о которых сейчас можно лишь догадываться.

Тем не менее, среди этого огромного количества научных открытий есть те, без которых наша жизнь имела бы совершенно иной вид и иное содержание. попытались создать список из 10 величайших научных открытий всех времен в произвольном порядке. Возможно, с чем-то вы не сможете согласиться. А, может быть, у вас на этот счет совершенно иное мнение. Попробуйте создать свой список и выдвинуть его на обсуждение.

1. Электричество

Это поистине магическая сила, явление без которого мы бы в прямом и переносном смысле остались бы в темноте. Ни лампы в вечернее время, ни телевизора, компьютера, лифта, обогревателя, микроволновой печки…тут действительно можно перечислять до бесконечности. Ведь наше общество в высшей степени зависимо от электричества, которое питает так горячо любимый нами образ жизни.

2.Пенициллин

Действительно, каким гением должен быть человек, чтобы увидев кусочек плесени на хлебе подумать о том, что это может быть лекарством, которое спасет жизни миллионов. И таким гением был Александр Флемминг. Именно ему мы обязаны существованием антибиотиков. Конечно, не все происходит быстро, ведь после обнаружения бактерицидного действия плесневого гриба Флеммингом, должно было пройти больше 10 лет, чтобы другие выдающиеся деятели Х.У. Флори и Э. Чейн сумели ввести в промышленное производство, а,соответственно, массовое пользование этот антибиотик.

3. Порох

Заслуга открытия пороха приписывается китайским алхимикам, жившим в 9 веке. С момента открытия, эту гремучую смесь использовали для охоты, войны, развлечений. В своё время порох способствовал развитию ракетных технологий. Несмотря на то, что порох во многом служил не для хороших целей, все- таки мы должны отдать должное и включить его в список самых великих научных открытий, история выглядела бы в корне иначе, не будь в руках человека этой субстанции.

4. Колесо

Было ли это научное открытие, случайная находка или же выдающееся изобретение? Мир возможно так никогда и не узнает. Археологические раскопки обнаружили прототип колеса, который датируется пятым тысячелетием до нашей эры. Изобретение колеса стало катализатором развития науки в целом. А в частности усовершенствованием ремесел и механики, важнейшее значение это изобретение имело также в хозяйственной жизни людей.

5. Пластик

В 1969 году Джон Весли Хайат открыл способ производства вещества, которое стало революцией в повседневной жизни людей. Пластик. Сегодня большая часть предметов быта, а другими словами, окружающей нас искусственной среды состоит из пластика. Пластиковые стулья, одноразовые пакеты, упаковка, техника, игрушки и многое, многое другое. Что примечательно, так это возможность вторичной переработки этого материала.

6. Компьютер

Невозможно приписать изобретение компьютера лишь одному ученому, так как компьютер в современном виде преобразовывался постепенно из различных приборов. И конечно каждый согласится с тем, какое громадное значение эта техника имеет в нашем мире. Она организует нашу жизнь, делает её более упорядоченной и совершенной. Мы имеем неограниченный доступ к любого вида информации на расстоянии вытянутой руки. Человечество достигло уровня глобальной коммуникации, явления, о котором еще 20 лет никто не слышал.

7. Печатный станок.

Это изобретение не кажется таким уж значимым на первый взгляд, но, призадумавшись, вы увидите всю его весомость. Станок Гутенберга открыл дверь возможности публикации знаний и информации, массового распространения этих знаний. Доступ книгам больше не был привилегией избранного числа людей. Независимость мышления индивидуума стала ключевым элементом общества, книгопечатание унифицировало знания и литературу.

8. Механические часы.

Время, по сути, было мерой событий еще задолго до изобретения хронометра. В основном оно определялось по движению солнца на небе. Фактически не существовало универсального времени, лишь время строго определенное для конкретной местности. И то, что изобретение часов сделало возможным, вскоре стало обязательным. В мире, управляемом часами, ты либо «во время», либо «опережаешь график», или же «опаздываешь».

9. Телескоп

Изобретение телескопа доказало тот факт, что Земля это не больше чем круглый кусок камня в необъятном космическом пространстве, а не центр всего, в том числе и вселенной. Многие не согласились в тот момент, и некоторые не соглашаются по сей день.

10. Туалет

Проведите такой эксперимент: вообразите современный мегаполис, будь-то Лондон, Нью-Йорк или Токио без туалета. Ведь это невозможно. Современные города могут существовать благодаря умению людей обеспечивать плотно заселенные места чистой водой, и избавляться от отходов. Без туалетов и водопровода не смогут функционировать ни один небоскреб, ни одно высотное здание. Уберите многоэтажные дома, офисные центры и гипермаркеты из вашей картины мира, и вам придется изменить всю картину в целом.

За последние несколько веков мы совершили бесчисленное множество открытий, которые помогли значительно улучшить качество нашей повседневной жизни и понять, как устроен мир вокруг нас. Оценить всю важность этих открытий очень сложно, если не сказать, что почти невозможно. Но одно ясно наверняка – некоторые из них буквально изменили нашу жизнь раз и навсегда. От пенициллина и винтового насоса до рентгена и электричества, перед вами список из 25 величайших открытий и изобретений человечества.

25. Пенициллин

Если бы в 1928 году шотландский ученый Александр Флеминг (Alexander Fleming) не открыл пенициллин, первый антибиотик, мы до сих пор бы умирали от таких болезней, как язва желудка, от абсцессов, стрептококковых инфекций, скарлатины, лептоспироза, болезни Лайма и многих других.

24. Механические часы


Фото: pixabay

Существуют противоречивые теории о том, как же на самом деле выглядели первые механические часы, но чаще всего исследователи придерживаются версии, что в 723 году нашей эры их создал китайский монах и математик Ай Ксинг (I-Hsing). Именно это основополагающее изобретение позволило нам измерять время.

23. Гелиоцентризм Коперника


Фото: WP / wikimedia

В 1543 году практически на смертном одре польский астроном Николай Коперник обнародовал свою знаменательную теорию. Согласно трудам Коперника стало известно, что Солнце – нашей планетной системы, а все ее планеты вращаются вокруг нашей звезды каждая по своей орбите. До 1543 года астрономы полагали, что именно Земля была центром Вселенной.

22. Кровообращение


Фото: Bryan Brandenburg

Одним из самых важных открытий в медицине стало открытие системы кровообращения, о чем в 1628 году объявил английский врач Вильям Харви (William Harvey). Он стал первым человеком, описавшим всю систему циркуляции и свойства крови, которую сердце качает по всему нашему телу от мозга до кончиков пальцев.

21. Винтовой насос


Фото: David Hawgood / geographic.org.uk

Один из известнейших древнегреческих ученых, Архимед, считается автором одного из первых в мире водяных насосов. Его устройство представляло собой вращающийся штопор, который проталкивал воду вверх по трубе. Это изобретение продвинуло ирригационные системы на новый уровень и до сих пор используется на многих заводах по очистке сточных вод.

20. Гравитация


Фото: wikimedia

Все знают эту историю – Исаак Ньютон, знаменитый английский математик и физик, открыл гравитацию после того, как в 1664 году ему на голову упало яблоко. Благодаря этому событию мы впервые узнали, почему предметы падают вниз, и почему планеты вращаются вокруг Солнца.

19. Пастеризация


Фото: wikimedia

Пастеризация была открыта в 1860-х годах французским ученым Луи Пастером (Louis Pasteur). Она представляет собой процесс термической обработки, во время которой в определенных продуктах питания и напитках (вино, молоко, пиво) происходит разрушение патогенных микроорганизмов. Это открытие возымело значительное влияние на общественное здравоохранение и развитие пищевой промышленности во всем мире.

18. Паровой двигатель


Фото: pixabay

Всем известно, что современная цивилизация ковалась на заводах, построенных во время промышленной революции, и что все это происходило с использованием паровых двигателей. Двигатель, приводимый в действие силой пара, был создан давно, но за последнее столетие он был существенно доработан тремя британскими изобретателями: Томасом Сэйвери, Томасом Ньюкаменом и самым знаменитым из них – Джеймсом Ваттом (Thomas Savery, Thomas Newcomen, James Watt).

17. Кондиционер


Фото: Ildar Sagdejev / wikimedia

Примитивная система климат-контроля существовала с древних времен, но она существенно изменилась, когда в 1902 году появился первый современный электрический кондиционер. Его изобрел молодой инженер по имени Виллис Карриер (Willis Carrier), выходец из Баффало, штат Нью-Йорк (Buffalo, New York).

16. Электричество


Фото: pixabay

Судьбоносное открытие электричества причисляется английскому ученому Майклу Фарадею (Michael Faraday). Среди его ключевых открытий стоит отметить принципы действия электромагнитной индукции, диамагнетизм и электролиз. Эксперименты Фарадея также привели к созданию первого генератора, ставшего предшественником огромных генераторов, которые сегодня производят привычное нам в повседневной жизни электричество.

15. ДНК


Фото: pixabay

Многие считают, что именно американский биолог Джеймс Ватсон и английский физик Фрэнсис Крик (James Watson, Francis Crick) в 1950-х годах открыли , но на самом деле впервые эта макромолекула была выявлена еще в конце 1860-х годов швейцарским химиком Фридрихом Майшером (Friedrich Miescher). Затем спустя несколько десятилетий после открытия Майшера уже другие ученые провели ряд исследований, которые наконец-то помогли нам прояснить, как организм передает свои гены следующему поколению, и как координируется работа его клеток.

14. Анестезия


Фото: Wikimedia

Простые формы анестезии, такие как опиум, мандрагора и алкоголь, использовались людьми издавна, и первые упоминания о них ссылаются аж на 70 год нашей эры. Но с 1847 года обезболивание перешло на новый уровень, когда американский хирург Генри Бигелоу (Henry Bigelow) впервые ввел в свою практику эфир и хлороформ, сделав крайне болезненные инвазивные процедуры намного более переносимыми.

13. Теория относительности

Фото: Wikimedia

Включая две взаимосвязанные теории Альберта Эйнштейна (Albert Einstein), специальную и общую теорию относительности, теория относительности, опубликованная в 1905 году, преобразовала всю теоретическую физику и астрономию 20 века и затмила 200-летнюю теорию механики, предложенную Ньютоном. Теория относительности Эйнштейна стала основой для большей части научных работ современности.

12. Рентгеновские лучи


Фото: Nevit Dilmen / wikimedia

Немецкий физик Вильгельм Конрад Рентген (Wilhelm Conrad Rontgen) нечаянно открыл рентгеновские лучи в 1895 году, когда он наблюдал за флюоресценцией, возникающей при работе катодно-лучевой трубки. За это поворотное открытие в 1901 году ученый был удостоен Нобелевской премии, ставшей первой в своем роде в области физических наук.

11. Телеграф


Фото: wikipedia

С 1753 года многие исследователи проводили свои эксперименты для установления связи на расстоянии с помощью электричества, но значительный прорыв произошел лишь спустя несколько десятилетий, когда в 1835 году Джозеф Генри и Эдвард Дэйви (Joseph Henry, Edward Davy) изобрели электрическое реле. С помощью этого устройства они и создали первый телеграф 2 года спустя.

10. Периодическая система химических элементов


Фото: sandbh / wikimedia

В 1869 году русский химик Дмитрий Менделеев заметил, что если упорядочить химические элементы по их атомной массе, они условно выстраиваются в группы с похожими свойствами. На основании этой информации он создал первую периодическую систему, одно из величайших открытий в химии, которое позже прозвали в его честь таблицей Менделеева.

9. Инфракрасные лучи


Фото: AIRS / flickr

Инфракрасное излучение было открыто британским астрономом Вильямом Хершелем (William Herschel) в 1800 году, когда он изучал нагревательный эффект света разных цветов, используя для разложения света в спектр призму, и измеряя изменения термометрами. Сегодня инфракрасное излучение используется во многих областях нашей жизни, включая метеорологию, системы подогрева, астрономию, отслеживание теплоемких объектов и многие другие сферы.

8. Ядерный магнитный резонанс


Фото: Mj-bird / wikimedia

Сегодня ядерный магнитный резонанс постоянно используют в качестве чрезвычайно точного и эффективного диагностического инструмента в области медицины. Впервые это явление было описано и вычислено американским физиком Исидором Раби (Isidor Rabi) в 1938 году во время наблюдения за молекулярными пучками. В 1944 году за это открытие американскому ученому вручили Нобелевскую премию по физике.

7. Отвальный плуг


Фото: wikimedia

Изобретенный в 18-ом столетии, отвальный плуг стал первым плугом, который не только вскапывал почву, но и размешивал ее, что позволило обрабатывать в сельскохозяйственных целях даже очень неподатливую и каменистую землю. Без этого орудия сельское хозяйство, каким мы знаем его сегодня, в северной Европе или в центральной Америке не существовало бы.

6. Камера-обскура


Фото: wikimedia

Предшественником современных фотоаппаратов и видеокамер стала камера-обскура (в переводе темная комната), которая была оптическим устройством, используемым художниками создания быстрых набросков во время выездов за пределы своих мастерских. Отверстие в одной из стенок устройства служило для создания перевернутого изображения того, что происходило снаружи камеры. Картинка отображалась на экране (на противоположной от отверстия стенке темного ящика). Эти принципы были известны веками, но в 1568 году венецианец Даниель Барбаро (Daniel Barbaro) внес изменения в устройство камеры-обскура, дополнив его собирающими линзами.

5. Бумага


Фото: pixabay

Первыми примерами современной бумаги часто считают папирус и амате, которые использовали древние средиземноморские народы и доколумбовые американцы. Но было бы не совсем верно считать их настоящей бумагой. Ссылки на первое производство писчей бумаги относятся к Китаю во времена правления империи Восточная Хань (25-220 годы нашей эры). Первая бумага упоминается в летописях, посвященных деятельности судебного сановника Цай Луна (Cai Lun).

4. Тефлон


Фото: pixabay

Материал, благодаря которому ваша сковорода не пригорает, на самом деле был изобретен абсолютно случайно американским химиком Роем Планкетт (Roy Plunkett), когда тот искал замену холодильным агентам, чтобы обезопасить домашний быт. Во время одного из своих экспериментов ученый открыл странную скользкую смолу, которая позже стала больше известной как тефлон.

3. Теория эволюции и естественного отбора

Фото: wikimedia

Вдохновленный своими наблюдениями в ходе второго исследовательского путешествия в 1831-1836 годах, Чарльз Дарвин (Charles Darwin) приступил к написанию своей знаменитой теории эволюции и естественного отбора, ставшей по мнению ученых со всего света ключевым описанием механизма развития всего живого на Земле

2. Жидкие кристаллы


Фото: William Hook / flickr

Если бы австрийский ботаник и физиолог Фридрих Райницер (Friedrich Reinitzer) не открыл жидкие кристаллы во время проверки физико-химических свойств различных производных холестерина в 1888 году, сегодня вы бы не знали, что такое телевизоры с жидкокристаллическими экранами или плоские LCD мониторы.

1. Вакцина от полиомиелита


Фото: GDC Global / flickr

26 марта 1953 года американский медицинский исследователь Йонас Солк (Jonas Salk) объявил, что ему удалось провести успешные испытания вакцины против полиомиелита, вируса, который вызывает тяжелое хроническое заболевание. В 1952 году из-за эпидемии этого недуга диагноз был поставлен 58 000 жителей США, и болезнь унесла 3 000 невинных жизней. Это подстегнуло Солка на поиски спасения, и теперь цивилизованный мир в безопасности хотя бы от этой беды.

Научные открытия совершаются постоянно. На протяжении года публикуется огромное количество докладов и статей, посвящённых различным темам, и оформляются тысячи патентов на новые изобретения. Среди всего этого можно найти поистине невероятные достижения. В данной статье представлено десять самых интересных научных открытий, которые были сделаны в первой половине 2016 года.

1. Небольшая генетическая мутация, произошедшая 800 миллионов лет назад, привела к возникновению многоклеточных форм жизни

Согласно результатам исследований, древняя молекула, GK-PID, стала причиной того, что одноклеточные организмы начали эволюционировать в многоклеточные организмы примерно 800 миллионов лет назад. Было установлено, что молекула GK-PID выступала в роли «молекулярного карабина»: она собирала хромосомы вместе и закрепляла их на внутренней стенке клеточной мембраны, когда происходило деление. Это позволяло клеткам размножаться должным образом и не становиться злокачественными.

Увлекательное открытие указывает на то, что древняя версия GK-PID вела себя раньше не так, как сейчас. Причина, почему она превратилась в «генетический карабин», связана с небольшой генетической мутацией, которая воспроизвела саму себя. Выходит, что возникновение многоклеточных форм жизни - это результат одной идентифицируемой мутации.

2. Открытие нового простого числа

В январе 2016 года математики открыли новое простое число в рамках "Great Internet Mersenne Prime Search", широкомасштабного проекта добровольных вычислений по поиску простых чисел Мерсенна. Это 2^74,207,281 - 1.

Вы, наверное, хотели бы уточнить, для чего был создан проект "Great Internet Mersenne Prime Search". Современная криптография для расшифровки кодированной информации использует простые числа Мерсенна (всего известно 49 таких чисел), а также комплексные числа. "2^74,207,281 - 1" на данный момент является самым длинным из всех существующих простых чисел (оно длиннее своего предшественника почти на 5 миллионов цифр). Общее количество цифр, из которых состоит новое простое число, составляет около 24 000 000, поэтому "2^74,207,281 - 1" - единственный практический способ записать его на бумаге.

3. В солнечной системе была обнаружена девятая планета

Ещё до открытия Плутона в ХХ веке учёные выдвинули предположение о том, что за пределами орбиты Нептуна находится девятая планета, Планета Х. Это допущение было обусловлено гравитационной кластеризацией, которая могла быть вызвана только массивным объектом. В 2016 году исследователи из Калифорнийского технологического института представили доказательства того, что девятая планета - с орбитальным периодом 15 000 лет - действительно существует.

По словам астрономов, сделавших данное открытие, существует «всего лишь 0,007%-ная вероятность (1:15 000) того, что кластеризация является совпадением». На данный момент существование девятой планеты остаётся гипотетическим, однако астрономы вычислили, что её орбита является огромной. Если Планета Х действительно существует, то она приблизительно в 2-15 раз весит больше Земли и находится от Солнца на расстоянии 600-1200 астрономических единиц. Астрономическая единица равна 150 000 000 километров; это означает, что девятая планета удалена от Солнца на 240 000 000 000 километров.

4. Обнаружен практически вечный способ хранения данных

Рано или поздно всё устаревает, и на данный момент не существует способа, который позволил бы хранить данные на одном устройстве в течение действительно длительного периода времени. Или существует? Недавно учёные из Саутгемптонского университета сделали удивительное открытие. Они использовали нано-структурированное стекло для того, чтобы успешно создать процесс записи и извлечения данных. Запоминающее устройство представляет собой небольшой стеклянный диск размером с монету в 25 центов, который способен хранить 360 терабайт данных и не подвержен влиянию высоких температур (до 1000 градусов Цельсия). Средний срок его годности при комнатной температуре составляет приблизительно 13,8 миллиарда лет (примерно столько же времени существует наша Вселенная).

Данные записываются на устройство при помощи сверхбыстрого лазера посредством коротких, интенсивных световых импульсов. Каждый файл представляет собой три слоя наноструктурных точек, которые находятся друг от друга на расстоянии всего 5 микрометров. Считывание данных выполняется в пяти измерениях благодаря трёхмерному расположению наноструктурных точек, а также их размеру и направленности.

5. Слепоглазковые рыбы, которые способны «ходить по стенам», проявляют черты сходства с четвероногими позвоночными

За последние 170 лет наука выяснила, что позвоночные, обитающие на суше, произошли от рыб, которые плавали в морях древней Земли. Однако исследователи из Института технологий Нью-Джерси обнаружили, что тайваньские слепоглазковые рыбы, которые способны «ходить по стенам», имеют те же анатомические особенности, что и земноводные или рептилии.

Это очень важное открытие с точки зрения эволюционной адаптации, поскольку оно может помочь учёным лучше понять, каким образом доисторические рыбы эволюционировали в наземных четвероногих. Разница между слепоглазковыми и другими видами рыб, которые способны передвигаться по суше, заключается в их походке, которая обеспечивает при подъёме «поддержку тазового пояса».

6. Частная компания "SpaceX" осуществила успешное вертикальное приземление ракеты

В комиксах и мультфильмах Вы обычно видите, что ракеты приземляются на планеты и Луну вертикальным образом, однако в реальности сделать это крайне сложно. Правительственные учреждения вроде НАСА и Европейского космического агентства разрабатывают ракеты, которые либо падают в океан, откуда их потом достают (дорогое удовольствие), либо целенаправленно сгорают в атмосфере. Существование возможности вертикально посадить ракету позволило бы сэкономить невероятное количество денег.

8 апреля 2016 года частная компания "SpaceX" осуществила успешное вертикальное приземление ракеты; ей удалось это сделать на автономном беспилотном корабле-космопорте (англ. autonomous spaceport drone ship). Это невероятное достижение позволит сэкономить деньги, а также время между запусками.

Для генерального директора компании "SpaceX", Элона Маска, данная цель оставалась приоритетной в течение многих лет. Несмотря на то, что достижение принадлежит частному предприятию, технология вертикального приземления станет доступна и правительственным учреждениям вроде НАСА, чтобы они смогли продвинуться дальше в освоении космоса.

7. Кибернетический имплантат помог парализованному человеку пошевелить своими пальцами

Мужчина, который был парализован в течение шести лет, смог пошевелить своими пальцами благодаря небольшому чипу, вживленному в его мозг.

Это заслуга исследователей из Университета штата Огайо. Им удалось создать устройство, которое представляет собой небольшой имплантат, связанный с электронным рукавом, надеваемым на руку пациента. Этот рукав использует провода для стимуляции определённых мышц, чтобы вызвать движение пальцев в реальном времени. Благодаря чипу, парализованный мужчина смог даже сыграть в музыкальную игру "Guitar Hero", к превеликому удивлению врачей и учёных, принявших участие в проекте.

8. Стволовые клетки, вживлённые в мозг пациентов, которые перенесли инсульт, позволяют им снова ходить

В ходе клинических испытаний исследователи из Школы медицины при Стэнфордском университете вживили модифицированные стволовые клетки человека прямо в мозг восемнадцати пациентов, перенёсших инсульт. Процедуры прошли успешно, без каких-либо негативных последствий, за исключением слабой головной боли, наблюдавшейся у некоторых пациентов после наркоза. У всех пациентов период восстановления после инсульта проходил довольно быстро и успешно. Более того, пациенты, которые ранее передвигались только на инвалидных креслах, смогли снова свободно ходить.

9. Углекислый газ, закачанный в грунт, способен превращаться в твёрдый камень

Улавливание углерода является важной частью поддержания баланса выбросов CO2 на планете. Когда топливо сгорает, происходит высвобождение углекислого газа в атмосферу. Это является одной из причин глобального изменения климата. Исландские учёные, возможно, обнаружили способ, как сделать так, чтобы углерод не попадал в атмосферу и не усугублял проблему парникового эффекта.

Они закачали CO2 в вулканические породы, ускорив естественный процесс превращения базальта в карбонаты, которые затем становятся известняком. Этот процесс обычно занимает сотни тысяч лет, однако исландским учёным удалось сократить его до двух лет. Углерод, закачанный в грунт, может храниться под землёй или использоваться в качестве строительного материала.

10. У Земли есть вторая Луна

Учёные НАСА обнаружили астероид, который находится на орбите Земли и, следовательно, является вторым постоянным околоземным спутником. На орбите нашей планеты есть множество объектов (космические станции, искусственные спутники и прочее), однако видеть мы можем только одну Луну. Тем не менее, в 2016 году НАСА подтвердило существование 2016 HO3.

Астероид находится далеко от Земли и больше находится под гравитационным воздействием Солнца, нежели нашей планеты, однако он действительно вращается вокруг её орбиты. 2016 HO3 значительно меньше Луны: его диаметр составляет всего 40-100 метров.

По словам Пола Чодаса, менеджера Центра НАСА по изучению околоземных объектов, 2016 HO3, который более ста лет был квазиспутником Земли, через несколько столетий покинет орбиту нашей планеты.

В детстве мы рассказывали друг другу страшилки, пугая вампирами, зомби, демонами, привидениями... Однако порой реальность может быть более странной и жуткой, чем вымысел, причем даже в такой серьезной области, как наука. Предлагаем вам подборку самых страшных научных открытий и явлений.

Космическое безумие

В последние годы много говорят о полетах на Марс и даже его колонизации, утверждая, что она начнется в 2030 году. Однако недавно проведенное исследование привело к пугающим выводам. Лабораторных мышей подвергли воздействию заряженных частиц, аналогичных тем, от которых астронавты - покорители Красной планеты - не будут защищены в глубоком космосе.

Воздействие этих частиц привело к воспалению мозга грызунов, что вызвало потерю познавательной способности и состояние постоянной тревоги.

Это «космическое безумие» не прошло и спустя шесть месяцев после облучения.

В настоящее время не существует метода полной защиты космонавтов от воздействия космического излучения, так что не исключено, что будущих покорителей Марса ждет страшная судьба.

Кража ДНК

Теперь, благодаря ядовитым свойствам, он способен моментально растворять оболочки клеток и беспрепятственно проникать внутрь, чтобы начать бурно размножаться.

Авторы исследования утверждают, что это совершенно уникальный случай - до сих пор считалось, что вирусы «воруют» гены только у бактерий, а не у многоклеточных существ. Неизвестно, сколько имеется подобных вирусов и чьи свойства они способны присваивать.

Разлом Солтон-си

В течение многих лет сейсмологи утверждали, что знаменитый разлом Сан-Андреас в США давно созрел для страшного землетрясения магнитудой восемь или выше баллов по шкале Рихтера.

Однако недавно была найдена причина, по которой катастрофа до сих пор не произошла. Оказалось, что параллельно Сан-Андреас находится другой разлом под озером Солтон-си, который, возможно, удерживает тектоническую плиту от разрушения, «оттягивая» на себя напряженность в земной коре.

Открытие вызвало полную переоценку сейсмической опасности для региона, в котором расположен Лос-Анджелес. Несмотря на то что пока разлом озера Солтон-си служит для снижения нагрузки на Сан-Андреас, его наличие в случае серьезной катастрофы в два раза увеличивает опасность разрушения западного побережья США.

Машина-убийца

Искусственный интеллект - бесспорно, одна из самых важных технологий ближайшего будущего. Однако исследователи американского Университета Карнеги - Меллон недавно показали, что он может быть очень жестоким. Они создали искусственную нейронную сеть, которая может убивать всех и каждого. Правда, сделали они это в виртуальном мире, а именно в популярной сетевой игре Doom.

Искусственный интеллект научился играть, получая от создателей «поощрения» за убийства, и вскоре начал побеждать всех игроков-людей. Пока он всего лишь играет в компьютерные игры, но кто знает, что будет завтра...

Каролинский мясник

Палеонтологи государственного Университета Северной Каролины недавно обнаружили неизвестный науке вид животного, которое старше динозавров и древних крокодилов. Несмотря на то что это жуткое существо вымерло больше 200 миллионов лет назад, осознание того, что оно когда-то бродило по планете, может вызвать дрожь и ночные кошмары.

Реконструкция Carnufex carolinensis

Назвали этого монстра Carnufex carolinensis («каролинский мясник») - подходящее название для крокодилообразного существа высотой около трех метров, которое ходило на двух ногах, как человек.

Обитало это животное на суше и имело страшные зубы, похожие на лезвия огромного клинка. Вероятно, это существо было самым опасным хищником до появления динозавров.

Червь Бадди

Профессор-биолог из США Джонатан Аллен в 2012 году однажды почувствовал, что у него странным образом огрубел участок кожи на лице. Самым пугающим оказалось то, что этот участок начал перемещаться по лицу. Однажды, когда профессор принимал экзамены, пятно переместилось к его рту, и в нем стал просматриваться небольшой червяк.

Тот самый червь с научным названием Gongylonema pulchrum (слева). Он же в губе другого заболевшего (справа)

Выяснилось, что это редкий червяк, которым были заражены всего 13 человек в Соединенных Штатах, включая самого профессора. Дело закончилось тем, что Джонатан Аллен опубликовал статью про своего незваного гостя, которого назвал Бадди.

Ужасный саундтрек Юпитера

Перед автоматической межпланетной станцией НАСА под названием «Юнона» была поставлена задача собирать данные о Юпитере, таинственном газовом гиганте. Пролетая над планетой, «Юнона» собирала информацию о радиоизлучениях планеты.

Инженеры на Земле затем декодировали данные, полученные аппаратом, в звуковые файлы. И были шокированы результатом - из глубин космоса как будто доносилась музыка, написанная для фильма ужасов, с визгливыми звуками, которые напоминают испуганные человеческие голоса. Ученые надеются выяснить природу этих звуков.

Призрак за спиной

Иногда нам безо всяких на то причин начинает казаться, что за нами наблюдают. Даже если вы знаете, что вокруг никого нет, это ощущение не исчезает и очень нервирует.

Недавно был проведен такой эксперимент. Человека просили беспорядочно размахивать руками. За его спиной при этом находился робот, повторявший все движения человека.

Пока движения совпадали, испытуемый не ощущал ничего особенного. Но когда движения робота переставали быть синхронными с движениями, совершаемыми участниками эксперимента, людям начинало казаться, что за спиной стоит нечто страшное. Они испытывали такой ужас, что просили остановить эксперимент.

Паук-зомби

Оказывается, самка осы откладывает яйцо в брюшко паука. Созревшая в паучьем теле личинка питается его кровью, в ответ выпуская в носителя вещество, которое, воздействуя на нервную систему членистоногого, делает его бездумным строителем прочного осиного гнезда. После завершения работы личинка пожирает своего зомби-раба, а затем селится в построенном им коконе.

Лицо «Мэтью»

Ураган «Мэтью» свирепствовал осенью этого года и привел к катастрофическим разрушениям и многочисленным людским потерям. Его основной удар принял на себя и без того измученный нищетой народ Гаити - на острове не только оказались разрушенными строения, но и погибли больше 1000 человек.

На инфракрасном изображении урагана, сделанном с метеорологического спутника НАСА 4 октября, мы видим, что он очень похож на череп с глазом, который и был центром урагана.

Кто не знает о «яблоке Ньютона» о лампаде , о лягушке Гальвани? Известно, что Рентген занимался с трубкой Крукса, накрытой футляром из черного картона. На столе случайно оказался лист бумаги, покрытой платиносинеродистым барием. Пропустив ток через трубку, ученый заметил, что бумага ярко люминесцирует (опыт проходил в затемненной комнате). Ученый убедился, что свечение бумаги вызывают лучи, иознинающие в трубке и проникающие через черный картон.

А вот как Лавуазье пришел к закону постоянства вещества. Изучая распад сахара при брожении он установил: вес образующегося спирта и углекислоты точно соответствовал весу сброженного сахара. А между тем при этом брожении образуется также целый ряд побочных продуктов, не замеченных ученым. Баланс у него сошелся только благодаря случайности: ошибки, случайности опыта покрыли друг друга. (Хотя может только кажется что к научному открытию привела череда случайностей, хотя может и действительно привела, но ведь и случайности не случайны. И уж точно не обладай ученный таким важным качеством как осознанность , уж точно он не сделал бы научного открытия, какие бы случайности с ним не случались).

Открытие или… монета под ногами

Американский ученый А. Ромер пишет: «поступаем несправедливо по отношению к Рентгену, когда настаиваем на случайном открытии. Научное открытие - это нечто большее, чем случайное наблюдение, это больше, чем поднять валяющуюся монетку с тротуара». Иначе говоря, нужно обладать большим запасом знаний, могучей силой ума, одаренностью, чтобы понять и оценить «случай». Рентген заметил то, на что другие исследователи, занятые подобными же опытами, просто не обращали внимания. Наука необходимо разрешает задачи, поставленные самой логикой ее развития. Но решают эти задачи в конкретных обстоятельствах ученые, и каждый из них имеет свои индивидуальные особенности, поэтому любое разрешение научной проблемы становится «ожидаемой» случайностью, облекается в форму случайности.

Что же было с Рентгеном

Но вернемся к Рентгену. Открытие Х-лучей в то время уже становилось своего рода необходимостью: изучением катодных лучей занимались тогда многие физики, а поскольку Х-лучи сопутствуют катодным лучам, то обнаружение Х-лучей не заставило бы себя долго ждать. Более того, уже было известно, что фотоматериалы вуалируются там, где работают с круксовой трубкой. Достаточно было кому-нибудь расценить порчу фотопластинок не как случайное совпадение, а как факт, достойный изучения,- и открытие совершилось бы. Кстати, обнаружение рентгеновских лучей натолкнуло на еще более важное открытие - открытие радиоактивности.

В 1896 году Беккерель занимался проверкой гипотезы Пуанкаре (которая оказалась ошибочной), предположившего, что испускание рентгеновских лучей связано с явлениями флуоресценции. Для проверки он брал фотографическую пластинку, заворачивал ее в два листа плотной черной бумаги и вместе с положенным поверх бумаги веществом, способным флуоресцировать, выставлял на несколько часов на . При проявлении пластинки на черном фоне становился заметным силуэт кристаллов соли .

Пасмурная погода помешала Беккерелю повторить опыт, и приготовленная для этого пластинка в черном пакете вместе с лежащими на ней кристаллами сернокислой соли урана несколько дней находилась в темном шкафу. Когда пластинка была проявлена, то оказалось, что она почернела гораздо сильнее, чем в первом опыте. Ученый исследовал большое количество различных химических соединений и обнаружил, что только вещества, содержащие уран, способны испускать лучи, проникающие через черную бумагу, покрывающую фотопластинку, причем большинство этих веществ не обладает способностью флуоресцировать. Так была открыта радиоактивность.

И, казалось, открытие не совершилось бы, если бы отец Беккереля, директор Парижского естественнонаучного музея, не обладал исключительно редким препаратом соли урана, которая попала в число первых веществ, исследованных Беккерелем. Другой элемент случайности: несмотря на затянувшуюся пасмурную погоду, Беккерель все же проявил пластинку. Казалось бы, сплошное сплетение случайностей! Но нет. Случай, благоприятствующий Беккерелю, был здесь лишь поводом к открытию, объективные предпосылки для которого возникли после открытия лучей Рентгена. Парижская Академия наук за 1895 год получила около 260 научных работ о всевозможных проникающих лучах (правда, большая часть этих открытий не подтвердилась). Иначе говоря, радиоактивность могла бы быть открыта и не физиками, а, например, метеорологами, изучающими ионизацию воздуха в ураноносных районах.

А может быть все же случай

Противопоставление одних открытий, будто бы чисто случайных, другим совершившимся с необходимостью, оказывается, как правило, несостоятельным, иногда даже вопреки свидетельству автора данного открытия. Часто за случай принимается элемент внезапности. Например, Пристли, открывший при прокаливании с помощью зажигательного стекла ртутной окалины, целиком приписывает это счастливому случаю.

В действительности открытие кислорода необходимо вызывалось кризисом теории флогистона. Поэтому не случайно, что одновременно с Пристли кислород открыл и Шееле. Гальвани тоже говорит о случайности своего открытия (речь идет об открытии контактного электричества и явления сокращения мышцы лягушки при прохождении через нее тока). Но если бы он не делал специального акцента на случайности, то мы, живущие спустя два века, учитывая современный Гальвани уровень знания по теории электричества, считали бы его опыты естественным следствием этих знаний.

Академик Вальдек писал: «Почти все великое, что у нас имеется и в науке и в технике, главным образом найдено при помощи случая». Творчество научное (и художественное) но может представляться игрой капризных фантазий, а является закономерным проявлением особой причинной связи творческих замыслов, уровнем научного развития. Зальдену можно ответить остроумным выражением психолога С. Грузенберга; «Наивно было бы приписывать, например, происхождение младенца случайному падению его матери, вызвавшему во время ее беременности преждевременные роды». Случай - не причина, а лишь повод к открытию.

Необходимость и случайность

«Случайность так же объективна и имеет свои причины, как и необходимость. Разница лишь с том, что необходимость имеет свои причины в самой сущности данного процесса, а случайность имеет свои причины в перекрещивании внешних и внутренних для данного процесса обстоятельств».

Эту мысль четно подтверждают случаи одновременных открытий. Давно уже замечено, что время от времени идеи, как говорят, носятся в воздухе. Не многим дано их «уловить». Случай не ставит преграду открытиям, но он исключает необходимости их появления, поскольку сама потребность в том или ином открытии, изобретении очень часто осознается одновременно несколькими учеными или изобретателями.

Случай наводит нас на нужную мысль, «только когда мысль эта для нас не случайна, когда мы сосредоточены на ней и ищем ее», - говорил один психолог. Поэтому внешний толчок к открытию, как мельчайший кристалл, падая на пересыщенный раствор, мгновенно вызывает его кристаллизацию.

Рассмотрим предысторию открытия Менделеевым периодического закона. Закономерность в мире элементов пытались найти многие. «Закон октав» Ньюлендса соотносился с музыкально-чувственным образом, а закономерности де Шанкуртуа, тоже явившиеся преддверием к открытию периодического закона, соотносились с абстрактно-геометрическим образом (сравнивалось периодическое повторение свойства элементов, расположенных по величине их атомных весов с наматыванием спиральной линии на боковую поверхность цилиндра). Менделеев прибег к составлению карточек элементов, мысленно связав задачу выработки общей системы элементов с раскладыванием карточного пасьянса, которым он любил заниматься в минуты отдыха.

Тот исторический факт, что почти одновременно в разных странах разные ученые взялись за выполнение одной и той же задачи, причем взялись по-разному, говорит о том, что, во-первых, эта задача необходимо и объективно назрела для развития науки, во-вторых, что нет субъективных и психологических ограничений возможных путей ее разрешения. Появление новых идей есть ответная реакция на зов эпохи. И если этот зов слышит один человек, то может услышать и другой.

Место случая в процессе открытия

Открытие - это последняя, завершающая и самая главная комбинация идей. Открытие Ньютона, например, было подготовлено работами Галилея, Кеплера. «Открытия заключаются именно в сближении идей, - считает Лаплас,- которые способны к взаимной комбинации, но оставались пока изолированными одна от другой».

Английский физик Рамзай говорил, что когда природе ставятся разумные вопросы в определенном порядке, путь науки ведет к открытиям. Оттого хронологический порядок научных открытий в какой-то мере соответствует логике развития науки.

С развитием науки роль случайности в открытии не уменьшается. Но сила случая вовсе не всеобъемлюща. Есть открытия, где случай или заведомо исключен, или сведен к минимуму. Случай больше всего действует в так называемых «исходных» открытиях, например, открытие Менделеевым периодического закона - исходное открытие, а открытие новых элементов с учетом закона Менделеева - последующее; теория Максвелла по электродинамике - исходное, а опыт физика П. Лебедева по световому давлению - последующее. Иначе говоря, опыт Лебедева не был случайным потому, что он знал, что ищет.

Исходные, первоосновные открытия ведут к цепной реакции последующих открытий, где роль случайности необходимо падает, сводится к минимуму. Таким образом, случайность действует преимущественно там, где речь идет о появлении новых разделов знания, совершенно новых представлений.

В общем виде случайное открытие намечает первые штрихи большой идеи, а дальше уже идет ее разработка, углубление, логическое расшифровывание. Любое открытие можно «разложить» на триаду:
1) гипотеза, появление идеи,
2) логический анализ гипотез и идей, умозрительное построение опыта, подтверждающего их,
3) постановка эксперимента.

В разной степени комбинация случайностей может проникать во все эти составные части открытия через стихию действия многих факторов; повод работы, широта эрудиции, сила соображения, культура логического мышления (то есть индивидуальные особенности мышления), обстоятельства выполнения работы. Рассмотрим некоторые примеры.

Гипотеза и случайность

Ученики Резерфорда рассказывают, что однажды вечером после длительной работы ученый вышел из лаборатории прогуляться и, глядя на звезды, по аналогии с планетной системой пришел к гипотезе строения атома (ядро атома - Солнце, электроны - планеты). Случайное чтение работы Мальтуса «О народонаселении» послужило для Чарльза Дарвина отправной точкой к идее биологической борьбы видов. Об этом факте сообщает сам Дарвин в своей «Автобиографии». Иногда даже абсурдность исходной гипотезы приводит к открытию. Так, средневековый ученый Бранд, отыскивая философский камень в моче… открыл .

Замысел опыта и случайность

Луи Пастер, прививая курице холеру и не имея под рукой свежей культуры, взял ту, которая простояла уже некоторое время. Курица выздоровела и не умерла. Так было впервые открыто действие ослабленного вируса.

Эксперимент и случайность

Химик Фальберг, как рассказывают его современники, сел за стол, не помыв руки, и во время обеда ощутил сладковатый привкус. Заинтересовавшись этим, он обнаружил среди веществ, выброшенных им после очередного опыта, сахарин. А Флеминг, перебирая свою коллекцию культур разных микробов, растущих в чашках Петри на питательном бульоне, случайно обратил внимание на одну чашку, где росли стафилококки. На одном ее участке образовалось светлое пятно плесени, вокруг которого была зона, свободная от стафилококков. Ученый очень сожалел с потерянной культуре. Но был вознагражден открытием пенициллина.

Преждевременные открытия

Как важно родиться ученому в свое время? «Предположим, - пишет один известный биолог, - что на островах Самоа родился ребенок, гений которого подобен гению Моцарта. Что мог бы он сделать? Самое большее - расширить гамму с трех до четырех или семи тонов и сочинить несколько более сложных мелодий, но он не мог бы создать симфонии, как не мог Архимед изобрести динамо-машину». Сколько творцов потерпело неудачу за недостатком необходимых условий. Бэкон предвидел многие из наших великих открытий, Кардано и Кубанский - интегральное и дифференциальное исчисление, Бан-Гельмонт - химию.

Один французский фотограф, Ньепс, за 30 лет до Беккереля почти при аналогичных обстоятельствах «открыл» явление радиоактивности. Но это не имело никаких последствий. Вот что значит «открытие не созрело»!

Бывает и так. Ученый не видит открытия, проходит мимо него. Один французский бактериолог в двадцатых годах прошлого века установил бактериостатическое действие некоторых видов плесени. Но он интересовался лишь туберкулезными бациллами, а плесень действовала только на другие микробы. Он остался к этому факту безучастным и таким образом «воздержался» от открытия пенициллина.

В связи с этим встает вопрос о преждевременных открытиях, упавших на неподготовленную почву и заглохших со временем. Чаще всего к таким открытиям принадлежат открытия (прежде всего случайные), оказывающиеся вне основной линии развития науки, вне возможности их истолкования и применения на данном уровне развития науки. Такие открытия или забываются, как открытие Ньепса, или, как в случае с Менделем, возвращаются в определенное время науке. По крайней мере, вероятность их возникновения почти равна вероятности их забвения.

По словам одного ученого, то что случайно найдено путем эксперимента и еще не осмыслено, не понято людьми, принадлежит им только лишь наполовину. Сколько легенд рассказывается о восточных бальзамах, о прочной и нержавеющей дамасской стали, о долговечных красках художников Возрождения, о железном столбе в Индии и т. д.! Многие секреты древности утрачены сейчас. Почему же люди забыли эти открытия? Причина, видимо, лежит в преждевременности их появления. Случай дал эти открытия в руки человеку, случай же и отнял их.

С другой стороны, даже самые безумные теории, граничащие с фантастикой, могут быть со временем реализованы, если они выражены с предельной отчетливостью и имеют хотя бы одну исходную конкретную точку, доступную экспериментальной проверке. Иначе такие теории будут находиться в состоянии анабиоза веками, несмотря на их ценность.