Химические свойства иттрия. Керамика для нагревательных элементов. Иттрий в природе

История иттрия

Иттрий (Yttrium) — это редкоземельный химический элемент, имеющий атомный номер 39, согласно периодической системе элементов. Его принято обозначать Y. Свое название он получил по названию деревни Иттербю в Швеции.

Очень необычна история открытия этого элемента. В 1794 году химик из Финляндии Юхан Гадолин, после проведенного эксперимента над породой иттербит, получил из породы оксид иттрия с примесью других элементов. При этом он ошибочно считал, что получил чистый иттрий и назвал полученный элемент экебертом.

Карл Мосандер спустя 50 лет, в 1843 году, обосновал, что полученный Гадолином экеберт является соединением из окислов эрбия, иттрия , тербия. Металлический иттрий , с незначительным содержанием других лантаноидов, был выделен первый раз только в 1828 году, в виде порошка светло-серого цвета.

Удалось это химику из Фридриху Вёлеру. В Российской литературе по химии, датированной первой половиной 19 века, элемент назывался так: основание иттрийской земли , иттрин (Страхов), иттрий (Гесс).

Месторождения иттрия

В земной коре иттрий содержится в размере 0,0028 весовых процентов и находится в числе тридцати самых распространенных элементов. В морской воде его концентрация составляет 0,0003 мг/л. Он входит в состав многих пород и минералов, больше всего содержится иттрия в фергюсоните, гадолините, цирконе, черчите, ксенотиме.

Мировые запасы сырья, из которого может быть получен иттрий, оцениваются в объеме 544,4 тысячи тонн. В год его добывают около 9 тысяч тонн во всем мире. Основным типом его месторождений являются россыпи. Крупнейшие месторождения иттрия расположены в таких странах, как: Китай, США, Австралия, Индия, Россия.

Свойства и цена иттрия

В чистом виде иттрий представляет собой относительно мягкий металл , который хорошо поддается обработке. Он относительно легко растворяется кислотами при комнатной температуре.

При нагревании до 400 °C на поверхности образовывается плотный слой окисла цвета. Температура плавления иттрия составляет 1530 °C, кипения 3318 °C.

Стоимость одного килограмма иттрия находится в районе 140 долларов. Использование его в промышленности очень обширно и будет расти в ближайшее время. В большинстве сфер потребления ему нет равноценной замены.

Применение иттрия

Металлический иттрий используется как добавка при изготовлении из и металлов, увеличивая их предел прочности, температуру плавления и меняя их магнитные свойства.

Из него изготавливают трубопроводы для транспортировки расплавленного ядерного топлива, потому что он не вступает во взаимодействие с расплавленными и .

Иттрий используется как стабилизатор, электролит и катализатор. Из него изготовляют керамику и высокотемпературные сверхпроводники. Его применяют при производстве драгоценных .

Также широко используются соли иттрия и другие его соединения. Крайне устойчив к нагреву в контакте с жидкой сталью и не имеет равноценных аналогов оксид иттрия.

Его используют для изготовления оптических, инфракрасных лазеров большой мощности, компонентов микроволновых радаров, производства иттриевых ферритов для радиоэлектроники.

Радиоактивный изотоп иттрия применяется для лечения раковых заболеваний, как источник бета-излучения. Нанесение соединений иттрия на компоненты двигателей внутреннего сгорания усиливает их износостойкость в 300 раз. Из оксосульфида иттрия производят красную компоненту люминофора для телевизоров и компьютерных мониторов.

(Yttrium; от назв. швед, селения Иттербю), Y - хим. элемент III группы периодической системы элементов; ат. н. 39, ат. м. 88,9059; относится к редкоземельным элементам. Металл светло-серого цвета, на воздухе тускнеет. В соединениях проявляет степень окисления + 3. Известны с массовыми числами от 82 до 97. К важнейшим долго-живущим относятся с массовыми числами 91; 90; 88 и 89. Открыт в 1794 финск. химиком И. Гадолином. Металлический И. получил в 1828

И. в земной коре около 2,8 х 10-3%. И. входит в состав лопарита, монацита, иттропаризита, эвксенита, ксе нотима и др. минералов. Полиморфен, т-ра полиморфного превращения 1490-1495° С. Кристаллическая решетка низкотемпературной модификации - гексагональная плотноупа-кованная типа магния, с периодами а = 3,6474 А и с = 5,7306 А, а высокотемпературной - кубическая объемноцентрированная с периодом а = 4,11 А. Плотность 4,472 г/см3; tпл 1526° С; tкип 3340° С; коэфф. термического расширения (т-ра 25- 1000° С) 10,1 х 10-6 град»-1; теплоемкость 6,34 кал/г-атом град; электрическое сопротивление 57 мком см; сечение захвата тепловых нейтронов 1,31 барн; парамагнитен; работа выхода электронов 3,07 эв. Модуль норм, упругости 6600 кгс/мм2; модуль сдвига 2630 кгс/мм2; предел прочности 31,5 кгс/мм2; предел текучести 17,5 кгс/мм2; сжимаемость 26,8 х 10-7 см2/кг; удлинение 35%; HV = 38.

Чистый иттрий легко поддается мех. обработке и деформированию. Его куют и прокатывают до лент толщиной 0,05 мм на холоду с промежуточными отжигами в вакууме при т-ре 900-1000° С. И.- химически активный металл, реагирует со щелочами и к-тами, сильно окисляется при нагревании на воздухе. Работы с И. проводят в защитных камерах и высоком вакууме. И. с металлами Iа, IIа и Va подгрупп, а также с хромом и ураном образует несмешиваю-щиеся двойные системы; с титаном, цирконием, гафнием, молибденом и вольфрамом - двойные системы эвтектического типа; с редкоземельными элементами, скандием и торием - непрерывные ряды твердых растворов и широкие области растворов; с остальными элементами - сложные системы с наличием хим. соединений.

Получают иттрий металлотер-мическим восстановлением, действуя на его фторид кальцием при т-ре выше т-ры плавления металла. Затем металл переплавляют в вакууме и дистиллируют, получая И. чистотой до 99,8-т-99,9%. Чистоту металла повышают двух- и трехкратной дис тилляцией. И. выпускают в виде монокристаллов, слитков различной чистоты и массы, а также в виде сплавов с магнием и алюминием. Чистый И. используют для исследовательских целей. В качестве основы сплавов его применяют редко. Наиболее широко И. используется как легирующая и модифицирующая добавка к сплавам почти на всех основах. И. используют при произ-ве легированной стали (его добавка уменьшает величину зерна, улучшает мех., Электр, и магн. св-ва) и модифицированного чугуна. Он повышает жаростойкость и жаропрочность сплавов на основе никеля, хрома, молибдена и др. металлов; увеличивает пластичность тугоплавких металлов и сплавов на основе ванадия, тантала, вольфрама и молибдена; упрочняет титановые, медные, магниевые и алюминиевые ; увеличивает жаропрочность магниевых и алюминиевых сплавов.

В атомной энергетике иттрий используют как носитель водорода, разбавитель ядерного горючего, как конструкционный материал реакторов. Широкое применение находит И. в электронике и радиотехнике в качестве катодных материалов ( И.), геттеров ( И. с лантаном, алюминием, цирконием), ферритов-гранатов, люминофоров. Из тугоплавких и огнеупорных материалов на основе боридов, сульфидов и окислов И. изготовляют катоды для мощных генераторных установок, тигли для плавки тугоплавких металлов и др.; ортованадат И.- эффективный материал для цветного телевидения. И. и его применяют как катализаторы органических реакций, при произв. нефти См. также Иттрийсодержащие .

Иттрий в природе

Встречается в виде устойчивого изотоп 89 Y (100%) . В литосфере содержится иттрия 5 ⋅ 10 ⁻ ⁴ . Встречаются достаточно богатые этим элементом, например, тортвейтит Y 2 Si 2 O 7 , однако эти настолько рассеяны, что переработка связана с концентрированием (отделением больших количеств пустой породы) , что связано с большими энергозатратами.

Поскольку иттрий имеет отрицательное значение стандартных электронных потенциалов, получают его электролизом расплавленных хлоридов или нитратов, а для понижения температур плавления добавляют соли других металлов.

Помимо электролиза его получают восстанавливая при высоких температурах из их хлоридов или фторидов наиболее активными металлами (калием и кальцием) :

YCl 3 + 3K = Y + 3KCl

Физические и химические свойства

Иттрий — серебристо — белый металл, существующий в двух кристаллических видоизменениях с различными типами и параметрами решеток.

В химических реакциях атом иттрия теряет по три электрона и ведёт себя как сильный восстановитель.

При обычных температурах поверхность его окисляется кислородом с образованием защитных плёнок. Но при нагревании в кислороде горит и образуются оксиды Sc 2 O 3 .

С водой иттрий взаимодействует медленно, образующиеся при этом гидроксиды покрывают его защитной плёнкой:

2Y + 6H 2 O = 2Y(OH) 3 ↓ + 3H 2

2Y + 3H 2 SO 4 = Y 2 (SO 4 ) 3 + 3H 2

и растворяется в кислотах.

Соединения иттрия

Проявляет степень окисления +3 , их ионы имеют на внешнем уровне по 8 электронов, большой заряд этих ионов Э ⁺ ³ обусловливается склонность иттрия к комплексообразованию.

Его оксиды отвечают формуле Y2O3 , бесцветны, тугоплавки, получаются разложением нитратов:

4Y(NO 3 ) 3 = 2YO 3 + 12NO 2 + 3O 2

Он обладает основным характером, энергично реагировать с водой, образуя гидроксиды:

Y 2 O 3 + 3H 2 O = 2Y(OH) 3

Он мало растворим в воде, но легко растворяется в кислотах, гидроксид иттрия Y(OH) 3 проявляет признаки амфотерности.

Соли иттрия из воды кристаллизуются в виде аквасоединений. , нитраты и ацетаты растворимы в воде и гидролизуются в незначительной степени.

Мало растворимые в воде фториды, и оксалаты иттрия переходят в раствор под действием избытка осадителя с образованием комплексных соединений.

Положительные ионы иттрия имеют координационные числа от 3 до 6 . Важнейшие лиганды в комплексе металла — это фторид — , карбонат — , сульфат — , оксалат- ионы. Ион иттрия Y ⁺ ³ образует с фторид — ионами комплексные соединения:

В 1794 г.в шведском минерале из Иттербю финский химик Юхан Гадолин обнаружил оксид неизвестного элемента, который был назван в 1797 г. Экебертом "иттриевой землей". Впоследствии оказалось, что "иттриевая земля" - смесь оксидов, из которой были выделены оксид иттрия, а также оксиды 10 других редкоземельных элементов. Только в 1828 г. немецкий ученый Фридрих Велер получил металлический иттрий в виде серого ппорошка при восстановлении безводного хлорида иттрия калием.

Получение:

Физические свойства:

Чистый иттрий - мягкий металл, по своим механическим свойствам он напоминает алюминий. Температура плавления примерно 1500°С, плотность 4,47 г/см 3 .

Химические свойства:

Иттрий медленно разлагает кипящую воду, легко растворим в обычных кислотах. При температуре около 400 0 С на иттрии образуется плотно пристающая пленка оксида Y 2 O 3 .

Важнейшие соединения:

Оксид: В свободном виде кристаллы Y 2 O 3 - бесцветны, гигроскопичны и поглощают из воздуха CO 2 . Y 2 O 3 проявляет слабоосновные свойства, практически не растворим в воде (0,0002 г. в 100 г. Н 2 O), растворяется в кислотах.

Гидроксид иттрия(III) не растворим в воде,имеет характер слабого основания. При стоянииY(OH) 3 постепенно под действием двуокиси углерода воздуха переходит в карбонат:
2Y(OH) 3 +3CO 2 = Y 2 (CO 3) 3 + 3H 2 O

Соли иттрия. Большинство солей иттрия (III) представляют собой белые порошки, образуют кристаллогидраты:
карбонат -Y 2 (CO 3) 3 *3H 2 O, хлорид - YCl 3 *6H 2 O, сульфат - Y 2 (SO 4) 5 *8H 2 O и т.п.

Применение:

Металлический иттрий используется добавка при производстве легированной стали, модифицированного чугуна, других сплавов. Из иттрия изготовляют трубопроводы для транспортирования жидкого ядерного горючего - расплавленного урана или плутония. Оксид иттрия(III) расходуется на изготовление иттриевых ферритов, применяемых в радиоэлектрике, в слуховых приборах, ячейках памяти.

Оксид иттрия также находит применение в производстве керамики, катализаторов, ювелирных украшений, оптических лазеров. См. также: Металлический иттрий. Оксид иттрия марки ИтО-ЛЮМ.

См. также:
С.И. Венецкий О редких и рассеянных. Рассказы о металлах

ИТТРИЙ

1. Иттрий металлический

Физические и химические свойства

Иттрий — светло-серый металл. Температура плавления около 1500°С, плотность 4,47 г/см 3 , твердость по Бринеллю 628 МПа, модуль упругости 66 ГПа, модуль сдвига 264 ГПа, коэффициент Пуассона 0,265, коэффициент сжимаемости 26,8.10 -7 см 2 /кг. По своим механическим свойствам он напоминает алюминий. Легко поддается механической обработке.

Иттрий легко растворяется в минеральных кислотах. В кипящей воде он постепенно окисляется, на воздухе при температуре 400 °C окисление иттрия идет достаточно быстро. Но при этом образуется темная блестящая пленка окиси, плотно окутывающая металл и препятствующая окислению в массе. Лишь при 760°C эта пленка теряет защитные свойства, и тогда окисление превращает светло-серый металл в бесцветную или черную (от примесей) окись.

Хранение

В нормальной атмосфере иттрий весьма устойчив, он лишь слегка тускнеет, но никогда не теряет металлический блеск. Иттрий окисляется при более высокой температуре. С иттриевыми стружками следует обращаться осторожно, так как при нагревании они энергично сгорают. В атмосфере водяного пара при 750°C иттрий покрывается окисной пленкой, предохраняющей металл от дальнейшего окисления.

Производство

Как и многие лантаноиды, иттрий относится к числу довольно распространенных металлов. По данным геохимиков, содержание иттрия в земной коре 0,0028% - это значит, что элемент входит в число 30 наиболее распространенных элементов Земли.

Свыше ста минералов содержат иттрий. Среди них есть собственно иттриевые - ксенотим, фергюсонит, эвксенит, таленит и другие, промышленное значение имеют только ксенотим и эвксенит.

Главнейшие месторождения иттрия расположены в КНР, США, Канаде, Австралии, Индии, Малайзии, Бразилии. Китай является основным мировым поставщиком иттрия. Промышленное месторождение иттрия и иттриевых редких земель (тяжелых лантаноидов) имеется в Киргизии.

Извлечь чистый иттрий из руды чрезвычайно трудно. Мешает сходство с другими редкими землями.

Процесс переработки руд на иттрий и редкоземельные элементы, разработанный Спеллингом и Лоуэллом, заключается в следующем. Исходный ксенотим вскрывают путем обработки серной кислотой при высокой температуре. Полученный после такой обработки раствор подают на колонки с катионообменной смолой. Для их элюирования применяют раствор этилендиаминтетрауксусной кислоты. Иттрий и редкоземельные элементы содержатся в разных фракциях элюата. Их осаждают из этих фракций в виде оксалатов и прокаливают до окисей.

Универсальный способ получения совершенно чистых редко­земельных металлов и иттрия заключается в восстановлении безводных фторидов кальцием. Безводные фториды редкоземельных металлов получают либо фторированием окислов безводным фтористым водородом при 575°С, либо прокаливанием фтори­дов, осажденных из водных растворов плавиковой кислотой, либо же сплавлением окислов редкоземельных металлов с бифторидом аммония.

Безводный фторид смешивают с порошком металлического кальция, Танталовый тигель с загрузкой нагревают в атмосфере аргона, пока не начнется реакция. По завершении реакции и редкоземельный металл, и шлак (фторид кальция) должны на­ходиться в расплавленном состоянии.

Полученный таким способом иттрий кальциетермический по содержанию контролируемых примесей должен удовлетворять требованиям и нормам ТУ 48-4-208-72:

Марка

Сумма гадолиния, тербия, диспрозия, гольмия

железо

кальций

медь

Тантал, вольфрам (в зависимости от материала аппаратуры)

ИтМ-1

0,10

0,01

0,01

0,03

0,02

ИтМ-2

0,20

0,02

0,03

0,05

0,20

ИтМ-3

0,50

0,05

0,05

0,10

0,30

ИтМ-4

2,80

0,05

0,50

0,10

0,70

ИтМ-5

3,80

0,05

1,60

0,10

1,00

Применение металлического иттрия

Сплавы иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм). Очень важным качеством, как металлического иттрия, так и ряда его сплавов является то обстоятельство, что, будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида предохраняющих его от дальнейшего окисления до 1000 °C .

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно, что иттрий и некоторые его сплавы не взаимодействуют с расплавленным ураном и плутонием, и их использование позволяет применить их в ядерном газофазном ракетном двигателе.

Изучается перспективный магнитный сплав - неодим -иттрий-кобальт .

Легирование

Иттрий широко используется в черной и цветной металлургии.

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.

Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а, кроме того, у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).

Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2-3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет громадное экономическое значение.

Введение незначительных количеств иттрия в сталь делает ее структуру мелкозернистой, улучшает механические, электрические и магнитные свойства. При добавлении небольших количеств иттрия (десятые, сотые доли процента) в чугун, твердость его возрастет почти вдвое, а износостойкость - в четыре раза. Такой чугун становится менее хрупким, по прочностным характеристикам он приближается к стали, легче переносит высокие температуры. И особенно важно, что иттриевый чугун можно переплавлять несколько раз, но прочностные характеристики при этом сохраняются.

Остров Руслаген – один из многочисленных островков на Балтике близ столицы Швеции Стокгольма – знаменит тем, что здесь находится городок Иттербю, название которого отражено в именах четырех химических элементов – иттрия, иттербия, тербия и эрбия. В 1787 г. лейтенант шведской армии минералог-любитель Карл Аррениус нашел здесь, в заброшенном карьере, неизвестный прежде черный блестящий минерал. Этот минерал назвали иттербитом. Спустя 130 лет финский минералог Флинт скажет, что он «сыграл в истории неорганической химии, быть может, большую роль, чем какой-либо другой минерал».

В этом утверждении безусловно есть преувеличение. Но так же, безусловно, что минерал, в котором нашли семь новых химических элементов, – вещь незаурядная. Тем не менее, ни в одном минералогическом справочнике названия «иттербит» сейчас не найти.

Первым серьезным исследователем этого минерала и первооткрывателем окиси иттрия был финский химик Юхан Гадолин (1760...1852). Это он, проанализировав иттербит, обнаружил в нем окислы железа, кальция, магния и кремния, а также 38% окиси неизвестного еще элемента. Через три года шведский ученый Экеберг подтвердил результат финского коллеги и ввел в химический обиход название «иттриевая земля». Позже, еще при жизни Гадолина, было решено называть открытый им элемент иттрием, а минерал из Иттербю переименовали в гадолинит.

Впрочем, впоследствии оказалось, что упоминавшиеся 38% приходятся на долю не одного, а нескольких новых элементов. «Расщепление» окиси иттрия заняло больше 100 лет.

В 1843 г. Карл Мозандер поделил ее на три компонента, три окисла: бесцветный, коричневый и розовый. Три окисла – три элемента, название каждого происходит от фрагментов также «расщепленного» слова Иттербю. От «итт» – иттрий (бесцветная окись), от «тер» – тербий (коричневая) и от «эрб» – эрбии (розовая окись).

В 1879 г. из окиси иттрия были выделены окислы еще трех элементов – иттербия, тулия и предсказанного Менделеевым скандия. А в 1907 г к ним прибавился еще один элемент – лютеций.

Это единственный случай в истории науки: один минерал, причем редкий минерал, оказался «хранителем» семи новых элементов.

С позиции современной химии этот факт легко объясним: электронное строение атомов редкоземельных элементов – а к ним относится скандий, иттрий, лантан и 14 лантаноидов – очень сходно. Химические свойства их, в том числе свойства, определяющие поведение элемента в земной коре, трудноразличимы. Очень близки размеры их ионов. В частности, у иттрия и тяжелых элементов семейства лантаноидов – гадолиния, тербия, диспрозия, гольмия, эрбия, тулия – размеры трехвалентного иона практически одинаковы, разница в сотые доли ангстрема.

Трудность выделения иттрия (как, впрочем, и любого из его аналогов) привела к тому, что на протяжении десятилетий свойства этого элемента оставались почти не изученными. Первый металлический иттрий (сильно загрязненный примесями) получен Фридрихом Вёлером в 1828 г., но и через 100 лет плотность иттрия не была определена достаточно точно. Даже состав окиси иттрия никто не определил верно до появления периодического закона. Считали, что это YO; правильную формулу – Y 2 O 3 – первым указал Менделеев.

Ближайший аналог лантаноидов

К числу «редких земель» иттрий отнесли не случайно. Всем своим обликом и поведением он подобен лантану и лантаноидам.

Иттрий легко растворяется в минеральных кислотах, кроме, как это ни странно, плавиковой. В кипящей воде он постепенно окисляется, а на воздухе при температуре 400°C окисление иттрия идет достаточно быстро. Но при этом образуется темная блестящая пленка окиси, плотно окутывающая металл и препятствующая окислению в массе. Лишь при 760°C эта пленка теряет защитные свойства, и тогда окисление превращает светло-серый металл в бесцветную или черную (от примесей) окись.

Как и многие лантаноиды, иттрий относится к числу довольно распространенных металлов. По данным геохимиков, содержание иттрия в земной коре 0,0028% – это значит, что элемент №39 входит в число 30 наиболее распространенных элементов Земли. Тем не менее, о нем до последнего времени говорили и писали как о перспективном, но пока «безработном» элементе. Объясняется это прежде всего чрезвычайной рассеянностью элемента №39, что еще раз подчеркивает его «кровное родство» со скандием, лантаном и лантаноидами.

Минералов, в которых обнаружен иттрий, известно больше сотни. Он есть в полевых шпатах и слюдах, минералах железа, кальция и марганца, в цериевых, урановых и торцевых рудах. Но даже если примесь иттрия сравнительно велика – 1...5% (напомним, что медная руда, содержащая 3% Cu, считается очень богатой), извлечь чистый иттрий чрезвычайно трудно. Мешает сходство, прежде всего сходство с другими редкими землями и, более отдаленное – с кальцием, цирконием и гафнием, ураном и торием, другими «крупноатомными» элементами (радиус ионов 0,8...1,2 Å).

Иттрий плотно заперт в кристаллической решетке минерала и вырвать его оттуда далеко не просто. Правда, сейчас уже во многих странах налажено попутное извлечение иттрия при переработке цериевых, урановых и ториевых руд; как источник элемента №39 используют и некоторые минералы самого иттрия, прежде всего бастнезит. Но во всех случаях извлечение этого металла – дело трудное и долгое.

Вот как, к примеру, получают иттрий из ксенотима.

Казалось бы, просто. Формула минерала – YPО 4 . Давно известно, что лучше всего восстанавливать иттрий из его галогенидов. Значит, нужно провести обменную реакцию: вместо фосфата иттрия получить фторид или хлорид, а затем восстановить его. Всего две производственных стадии – чего проще!

Но просто все лишь на бумаге. В действительности в ксенотиме, уже обогащенном на магнитном сепараторе, всего 36% Y 2 O 3 (в виде фосфата) и 24% окислов других редкоземельных элементов. И здесь мешает ставшая уже притчей во языцех общность всех этих элементов.

«Вскрывают» минерал, обрабатывая его серной кислотой при высокой температуре. Полученный раствор подают на ионообменную колонну, заполненную катионообменной смолой. Избирательная способность катионита не слишком высока: он принимает почти все трехвалентные положительно заряженные ионы. Значит, на этой стадии иттрий отделяется лишь от «неродственных» элементов, а редкоземельные остаются в колонне вместе с ним.

Чтобы «смыть» иттрий с катионита, через колонку начинают пропускать элюент – раствор этилендиаминтетрауксусной кислоты. Такой «душ» полезен потому, что на этой стадии образуются комплексные соединения иттрия и других редких земель, отличающиеся одно от другого больше, чем классические соединения этих элементов, отчего ионы иттрия и ионы прочих редкоземельных элементов удерживаются катионитом с неодинаковой силой. Значит, в разных фракциях элюента будут преобладать уже разные элементы.

Отобрав иттриевую фракцию и подвергнув ее дополнительной очистке, на нее воздействуют щавелевой кислотой и получают оксалат иттрия. Его прокаливают, превращая в окись. Этим способом на 12 колоннах (высотой 3 и диаметром 0,75 м) за месяц получают чуть больше 100 кг Y 2 O 3 . Впрочем, считать месячную производительность неразумно: процесс длится два месяца. Выход 99,9%-ной окиси иттрия за два месяца – 225 кг.

Еще раз напомним, что описанная схема – одна из многих; чаще всего окись иттрия получают из бастнезита совсем другим путем.

Окись иттрия находит самостоятельное применение. Известно, что она, как и окись скандия, входит в состав ферритов – элементов памяти электронно-вычислительных машин.

От окисла к металлу

После того как иттрий отделен от основной массы редкоземельных элементов, его нужно восстановить. Для этого окись превращают в один из галогенидов иттрия, например, во фторид:

Y 2 О 3 + 6HF →(700°C)→ 2YF 3 + 3H 2 О.

Это соединение смешивают с дважды перегнанным металлическим кальцием, помещают все в танталовый тигель и закрывают перфорированной крышкой. Тигель отправляют в кварцевую индукционную печь. Печь закрывают, откачивают из нее воздух и начинают медленно нагревать. Когда температура достигнет 600°C, в печь пускают аргон, а прекращают его подачу, когда давление в печи достигнет 500 мм ртутного столба. Затем температуру повышают до 1000°C, и восстановление начинается. Реакция 2YF 3 + 3Ca → 2Y + 3CaF 2 – экзотермическая, и температура в печи продолжает расти. Тогда еще «поддают жару», доводят температуру до 1600°C (в этих условиях лучше разделяются металл и шлак), после чего дают печи остыть.

Шлак легко откалывается, и остается слиток иттрия чистотой до 99%. Примесь кальция без труда удаляется вакуумной переплавкой; трудное избавиться от тантала (0,5...2%) и кислорода (0,05...0,2%). Но и это можно сделать и получить слитки, пригодные для промышленного использования и для уточнения физико-химических характеристик элемента №39.

Рассказывая о своиствах иттрия, обороты «только один» или «только одна» можно применить лишь дважды.

Во-первых, для этого элемента неприменимо такое общее, казалось бы, понятие, как «природная смесь изотопов». Нет у него природной смеси: весь естественный иттрий – это только один стабильныи изотоп иттрий-89.

И только одну валентность (3+) проявляет иттрий во всех известных соединениях. Но, возможно, это утверждение не есть «истина в последней инстанции». Сложности получения элементарного иттрия и высокая цена (килограмм иттрия еще недавно стоил 440 долларов) в течение многих лет сдерживали исследования элемента №39 и его соединений. Поэтому не исключено, что когда-нибудь будут получены соединения иттрия с «нестандартной» валентностью, как это случилось, например, с алюминием. Ведь во времена, когда алюминиевая посуда была привилегией королей, ни один химик не подозревал о существовании соединений одновалентного алюминия.

Не только перспективы

Иттрий долго ходил в «перспективных». Еще в книгах, изданных в начале 60-х годов нашего века, этот металл считали перспективным и не больше. Так, во втором издании известного английского справочника «Rare Metalls Handbook», вышедшем в Лондоне в 1961 г., последняя часть раздела «Иттрий» посвящена не применению этого элемента, а лишь перспективам его применения. В «Курсе общей химии» Б.В. Некрасова (издание 1962 г.) говорится: «Практического применения отдельные элементы подгруппы скандия (а значит, и иттрий. – Ред.) и их производные еще не находят...» И это отражало истинное положение вещей.

Можно было считать иттрий перспективным. Залогом тому – его свойства: высокие температуры плавления и кипения – соответственно 1520 и 3030°C; упругость примерно такая же, как у алюминия и магния; прочность, сравнимая с прочностью титана. И плюс к этому относительная легкость (плотность иттрия 4,47 г/см 3) и малое эффективное сечение захвата тепловых нейтронов, т.е. способность почти не тормозить цепную реакцию, если иттрий применен в конструкции атомного реактора.

Но по каждой отдельно взятой характеристике иттрий уступал тому или иному металлу. Авиаконструкторы и проектировщики новых реакторов могут пока обойтись без него. Они, видимо, охотно применили бы иттрий, будь он более доступен, но каждый раз закладывали в свои проекты другие материалы – или с лучшими «природными данными», или менее дефицитные.

Лишь в последние годы положение стало меняться. Все чаще в печати появляются сообщения о том, что иттрий и его сплавы применили в том или ином детище новейшей техники. В частности, из иттрия стали делать трубопроводы, по которым транспортируют жидкое ядерное горючее – расплавленный уран или плутоний. Иттрий высокой чистоты легко вытягивается в трубы, хорошо сваривается в атмосфере инертного газа и, что очень важно, отлично шлифуется. С ураном и плутонием он практически не реагирует, что, естественно, делает иттриевые трубы более долговечными. Из сплавов иттрия с бериллием стали делать отражатели и замедлители нейтронов, работающие в атомных реакторах при температуре более 1100°C.

Появились и первые «сигналы» о применении иттрия в авиастроении. Это тоже понятно: известно, что иттрий-алюминиевые сплавы по прочности почти не уступают стали, что добавка элемента №39 значительно повышает прочность легких авиационных сплавов на основе магния, особенно при повышенных температурах.

Наконец, иттрий начали применять и как «витамин витаминов». «Витаминами стали» называют хром, ванадий, молибден и другие легирующие металлы. Небольшие добавки иттрия улучшают многие свойства этих «витаминов». Всего 0,1...0,2% элемента №39, добавленные в хром, цирконий, титан, молибден, делают структуру этих металлов более мелкозернистой. Облагороженный иттрием ванадий становится и более пластичным – иттрий действует как раскислитель, связывает кислород и азот, в результате чего промышленный ванадий утрачивает присущую ему хрупкость.

Начинается проникновение иттрия и в черную металлургию – работа его в качестве легирующего металла. Так, нержавеющая сталь, содержащая 25% хрома, устойчива против окисления при температурах до 1093°C. Добавка 1% иттрия повышает этот предел до 1371°C.

Все эти примеры показывают, что сегодня считать иттрий только «перспективным» неправильно, его служба людям уже началась. И мы не ошибемся, утверждая, что в статье об иттрии, которую напишут лет через десять, число подобных примеров станет несравненно больше.

Фридрих Энгельс писал, что когда у общества появляется техническая потребность, то она продвигает науку быстрее, чем десяток университетов. Техническая потребность в иттрии уже появилась.

Попутно извлеченный

Собственно иттриевые минералы (20...30% Y 2 O 3 ,) – ксенотим Y 2 PO 4 , фергюсонит Y 2 Si 2 O 4 , эвксентит YNbTiO 6 , таленит Y 2 Si 2 O 7 и другие – слишком редки, чтобы считаться реальным источником элемента №39 в будущем. Будущее иттрия во многом зависит от того, насколько успешно будет решена проблема комплексного использования горно-химического сырья. Многие тысячи тонн иттрия и других редкоземельных металлов можно будет получать, в частности, из фосфоритов Каратау и хибинского апатита. А поскольку иттрий предполагается извлекать попутно (из некоторых минералов его уже получают в процессе комплексной переработки), он будет становиться все доступнее и дешевле. Уже сейчас за рубежом расходуют более 100 т иттрия в год, и почти весь этот иттрий попутно извлеченный.

Минерал гагаринит

Сравнительно недавно, в 1961 г., советские минералоги А.В. Степанов и Э.А. Северов обнаружили в Казахстане скопления неизвестного ранее иттрийсодержащего минерала. Он был назван гагаринитом в честь первого космонавта. Анализ, выполненный А.В. Быковой, показал, что минерал представляет собой щелочной фторид кальция и иттрия. Всестороннее кристаллохимическое исследование гагаринита, предпринятое А.А. Воронковым, Ю.А. Пятенко и Н.Г. Шумяцкой, привело к полной расшифровке структуры минерала: его формула NaYCaF 6 . Один из первых образцов гагаринита – крупные светло-желтые шестигранные кристаллы – первооткрыватели подарили Юрию Алексеевичу Гагарину. Сейчас друзу гагаринита можно увидеть в Минералогическом музее АН СССР им. А.Е. Ферсмана.

Иттрий и цветное телевидение

Развитию массового производства цветных телевизоров долго препятствовала исключительная сложность получения светящихся покрытий для их экранов. Люминофоры трех цветов нужно нанести так, чтобы луч каждой из трех электронных пушек возбуждал лишь частицы одного цвета. А ведь частицы эти – их на экране более миллиона – должны быть рационально «перемешаны». Отсюда масса требований к веществам, дающим цветное свечение экрана. Сейчас за рубежом чаще всего применяют красные люминофоры на основе соединений иттрия. Японские специалисты используют окись иттрия, активированную европием, в других странах распространен ванадиевокислый иттрий, опять-таки активированный европием. Для выпуска миллиона трубок цветных телевизоров нужно, по японским данным, примерно 5 т чистой окиси иттрия. Так что цветное телевидение становится еще одним довольно крупным потребителем элемента №39.

Иттрий и керамика

Несколько лет назад разработан новый жаропрочный материал циттрит. Это мелкозернистая циркониевая керамика, стабилизированная иттрием. Она обладает минимальной теплопроводностью и сохраняет свои свойства до 2200°C. Другой керамический материал, известный под названием иттрий-локс, – твердый раствор двуокиси тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, и, кроме того, он хорошо пропускает инфракрасное излучение. Поэтому его можно использовать для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также вставлять в смотровые «глазки» высокотемпературных печей. Плавится иттрийлокс лишь при 2204°C.

Пятнадцать против одного

На один стабильный изотоп иттрия 89 Y приходятся пятнадцать радиоактивных с массовыми числами от 82 до 97 и периодами полураспада от минуты до 105 дней. Некоторые из этих изотопов образуются при спонтанном делении ядер урана. Именно поэтому в таблице Менделеева указано, что атомная масса природного иттрия равна 88,905, а не ровно 89. Наиболее изучен радиоактивный иттрий-91, образующийся, в частности, при ядерных взрывах. Наряду со стронцием-90 этот изотоп считается одним из наиболее опасных продуктов распада. Опасен и дочерний продукт стронция-90 – иттрий-90. Эти изотопы накапливались в мировом океане в результате экспериментальных ядерных взрывов и захоронения на океанском дне радиоактивных отходов. Ученые считают, что они стали причиной существенного уменьшения рыбных запасов мирового океана.