Классификация химических реакций. Исходные вещества и методы экспериментов

Пусть в школе мы и относимся к химии как к одному из наиболее сложных и поэтому «нелюбимых» предметов, но спорить с тем, что химия важна и значима, не стоит, ибо спор обречен на неуспех. Химия, как и физика, окружает нас: это молекулы , атомы , их которых состоят вещества , металлы, неметаллы , соединения и др. Поэтому химия – одна из важнейших и обширных областей естествознания.

Химия это наука о веществах, их свойствах и превращениях.

Предметом химии являются формы существования объектов материального мира. В зависимости от того, какие объекты (вещества) химия изучает, химию принято делить на неорганическую и органическую . Примерами неорганических веществ являются кислород, вода, кремнезём, аммиак и сода, примерами веществ органических – метан, ацетилен, этанол, уксусная кислота и сахароза.

Все вещества, как здания, построены из кирпичиков-частиц и характеризуются определенной совокупностью химических свойств – способностью веществ принимать участие в химических реакциях.

Химические реакции – это процессы образования сложных по составу веществ из более простых, переход одних сложных веществ в другие, разложение сложных веществ на несколько более простых по составу веществ. Иными словами, химические реакции – это превращения одних веществ в другие.

В настоящее время известно много миллионов веществ , к ним постоянно добавляются новые вещества – как открытые в природе, так и синтезированные человеком, т.е. полученные искусственным путем. Число химических реакций не ограничено , т.е. безмерно велико.

Вспомним основные понятия химии – вещество, химические реакции и др.

Центральным понятием химии является понятие вещество . Каждое вещество обладает уникальным набором признаков – физических свойств, определяющих индивидуальность каждого конкретного вещества, например, плотность, цвет, вязкость, летучесть, температуру плавления и кипения.

Все вещества могут находиться в трех агрегатных состояниях твердом (лед), жидком (вода) и газообразном (пар), зависящих от внешних физических условий. Как видим, вода H 2 O представлена во всех заявленных состояниях.

Химические свойства вещества от агрегатного состояния не зависят, а вот физические свойства, напротив, зависят. Так, в любом агрегатном состоянии сера S при сгорании образует сернистый газ SO 2 , т.е. проявляет одно и то же химическое свойство, но свойства физические серы весьма различны в разных агрегатных состояниях: например, плотность жидкой серы равна 1,8 г/см 3 , твердой серы 2,1 г/см 3 и газообразной серы 0,004 г/см 3 .

Химические свойства веществ выявляются и характеризуются химическими реакциями. Реакции могут протекать как в смесях различных веществ, так и внутри одного вещества. При протекании химических реакция всегда образуются новые вещества.

Химические реакции изображаются в общем виде уравнением реакции: Реагенты → Продукты , где реагенты – это исходные вещества, взятые для проведения реакции, а продукты – это новые вещества, которые образовались в результате проведения реакции.

Всегда химические реакции сопровождаются физическими эффектами – это может быть поглощение или выделение теплоты, изменения агрегатного состояния и окраски веществ ; о протекании реакций часто судят по наличию этих эффектов. Так, разложение зеленого минерала малахит сопровождается поглощением теплоты (именно поэтому реакция идет при нагревании), а в результате разложения образуется твердый черный оксид меди (II) и бесцветные вещества – углекислый газ CO 2 и жидкая вода H 2 O.

Химические реакции необходимо отличать от физических процессов , которые изменяют лишь внешнюю форму или агрегатное состояние вещества (но не его состав); наиболее распространены такие физические процессы, как дробление, прессование, совместное сплавление, смешивание, растворение, фильтрирование осадка, перегонка.

С помощью химических реакций можно получать практически важные вещества, которые в природе находятся в ограниченных количествах (азотные удобрения ) или вообще не встречаются (синтетические лекарственные препараты, химические волокна, пластмассы ). Иными словами, химия позволяет синтезировать необходимые для жизнедеятельности человека вещества . Но химическое производство приносит и много вреда окружающему миру – в виде загрязнений, вредных выбросов, отравления флоры и фауны , поэтому использование химии должно быть рациональным, бережным и целесообразным.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Cтраница 1


Исходные вещества: натрий углекислый (натрий карбат) безводный для спектрального анализа, МРТУ 6 - 09 - 6170 - 69, хч и фосфорная ортокислота, ГОСТ 6552 - 58, хч.  

Исходные вещества: барий азотнокислый (барий нитрат), ГОСТ 51468 - 72, техн.  

Исходное вещество было синтезировано карбоксиметилированием М - р-ок-сиэтилэтилендиамина и последующей дегидратацией азеотропной перегонкой с ксилолом или толуолом. Для полимеризации мономер суспендируют в диокса-не с водой, кипятят 5 - 10 час с обратным холодильником, а затем очищают.  

Исходные вещества, применяемые в объемном анализе для определения нормальности растворов и установления их титров, будут указаны при рассмотрении отдельных методов анализа.  

Изменение молекулярного.| Изменение группового состава крекинг-остатка в процессе коксования смеси грозненских парафинистых нефтей от начала деструктивного разложения (365 С до образования коксового пирога (430 С.  

Исходное вещество А способно превращаться двумя или более независимыми путями, которые приводят к образованию одинаковых или различных продуктов.  

Исходные вещества (фосфор и кислород) электронейтральные. Атом фосфора, отдавая пять электронов, становится положительно пятизарядным ионом (Р 5); фосфор окисляется и является восстановителем. Атом кислорода, принимая два электрона, превращается в отрицательно заряженный ион (О-2); кислород восстанавливается и является окислителем.  

Исходные вещества и процессы должны быть приспособлены к самоорганизации, стабильны за счет систем обратных связей, которая, в свою очередь, является динамической структурой.  

Исходные вещества, составляющие основу молекулы конечного продукта, называют основным сырьем. Таким сырьем являются прежде всего ароматические углеводороды: бензол, толуол, нафталин, а также фенол и крезолы. Эти вещества содержатся в продуктах переработки каменного угля - коксовом газе и каменноугольной смоле.  

Исходные вещества, используемые для получения промежуточного продукта или органического красителя, но не составляющие основу его молекулы, называют вспомогательным сырьем.  

Исходное вещество для производства Аш-кислоты - нафталин.  

Исходное вещество взвешивают и, определив по табличным данным растворимость, подсчитывают примерное количество воды, необходимое для его растворения. Вещество помещают в стакан, коническую колбу или в фарфоровую чашку и приливают к нему воду, нагретую до определенной температуры.  

Исходное вещество помещают в фарфоровую или в кварцевую лодочку /, которую вставляют в реактор 2 (фарфоровая или кварцевая трубка) и нагревают в токе водорода до требуемой температуры. Концы трубки закрывают резиновыми или корковыми пробками, в которые вставляют с одного конца трубку, подводящую водород, а с другого - трубку, отводящую пары воды и непрореагировавший водород. Предварительно установку проверяют на герметичность. Для этого конец газоотводной трубки погружают на 4 - 5 см в воду и пропускают водород.  

Исходные вещества (окислы), а также реактор (тигель) необходимо предварительно просушить при 150 - 200 С. После этого окислы растирают в порошок и отделяют на сите от неразмельченных частичек.  

Исходные вещества отвешивают в соответствии с уравнением реакции на аналитических весах и растирают их смесь в течение 15 - 20 мин в фарфоровой или агатовой ступке. Затем смесь пересыпают в фарфоровый тигель или лодочку и прокаливают.  

Из неочищенной нефти, добываемой из недр земли, получают путем перегонки различные нефтяные и воскообразные продукты. В косметике используют, прежде всего, жидкое текучее парафиновое (или белое) масло, вязкий плотный вазелин, твердый, воскообразный горный воск (или озокерит) и более чистый парафин.

Парафиновое масло - прозрачное маслообразное вещество без запаха и вкуса, которое может быть различной плотности.

Вазелин представляет собой белое, вязкое, липкое маслообразное вещество, не имеющее запаха. В таком виде его применяют в качестве мази для массажа, а также в качестве основы для приготовления различных лекарственных мазей.

Озокерит и парафин - твердые переменной плотности белые вещества.

Все эти сырьевые продукты, получаемые из нефти, находят широкое применение в косметической промышленности благодаря их дешевой цене и хорошей устойчивости при хранении. Они не могут с легкостью впитываться в кожу, но являются прекрасным исходным материалом для изготовления, например, геля и косметического молочка, а также и для декоративной косметики.

Природные масла благодаря наличию в них ненасыщенных связей менее вязки и более текучи, чем жиры. И масла, и жиры - это сложные эфиры жирных кислот и глицерина; в природе они всегда встречаются в виде различных смесей. Природные жиры быстро портятся из-за своей химической ненасыщенности. Поэтому их часто гидрируют, присоединяя по ненасыщенным связям атомы водорода. В таком виде жир становится твердым и лучше сохраняется, зато одновременно становится менее пригодным для использования в косметике Вилламо Х. Косметическая химия. - М.: Мир, 1990..

Жиры растительного и животного происхождения еще используются для изготовления косметических веществ, хотя по вышеупомянутым причинам они все более уступают место синтетическим веществам, жирным кислотам, жирным спиртам и др. Важнейшими растительными и животными маслами и жирами являются следующие (табл.1) Химия в быту и в производстве. / Под ред. Селиванова М.И. - М.: Химия, 2000..

Таблица 1 Растительные и животные масла и жиры

Помимо приведенных выше находят применение также и некоторые другие природные масла, поскольку в них содержатся определенные дополнительные вещества. В качестве примера можно привести следующие.

Черепаховое масло в сыром виде желтого цвета и имеет очень неприятный запах (его получают путем экстрагирования из половых органов и мышц одного из видов черепах). В нем содержатся, в частности, витамины А, О, К и Н, а также линолевая и линоленовая кислоты. После очистки оно становится пригодным к употреблению косметическим сырьем.

Норковое масло, подобно предыдущему, является животным маслом, насыщенным витаминами (его получают из мышц норки).

В масле из проросших пшеничных семян помимо масел всегда содержится еще 2-12% жирных кислот. Оно хорошо сохраняется и богато, в частности, витамином Е, каротином, линолевой и линоленовой кислотами, эргостерином, а также содержит в небольшом количестве витамин К.

Важнейшим натуральным воском, применяемым в изготовлении гелей, является пчелиный воск. Это твердое желтое или (будучи отбеленным) белое вязкое вещество. В пчелином воске содержится 72% различных натуральных восков (восковых эфиров), около 14% свободных высокомолекулярных жирных кислот, свободных жирных спиртов и др.

Карнаубский воск получают из листьев карнаубской пальмы. Это самый твердый из натуральных восков. Он хорошо смешивается со многими жирами, маслами, восками и т. п., повышая их температуру плавления и увеличивая твердость композиции.

Шерстяной жир - это жироподобное вещество, получаемое из овечьей шерсти в результате ее мытья. Когда к шерстяному жиру добавляют 25% воды, то получают вещество, называемое ланолином. Сырой ланолин по цвету желто-коричневый, а в очищенном виде почти белый. В нем содержится большое количество холестерина (в значительной мере этерифицированного различными жирными кислотами), различных восков, а также свободных высокомолекулярных жирных кислот и жирных спиртов.

Таким образом, очищенный ланолин вполне пригоден в качестве исходного сырья. Кроме того, из него изготавливают для различных целей всевозможные продукты, как, например, ланолиновое масло, разнообразные фракции ланолина.

Все природные жиры и масла являются триглицеридами, т. е. эфирами трехосновного спирта глицерина. В природе нет жиров и масел, в которых глицерин был бы этерифицирован только одной жирной кислотой; природные жиры всегда являются эфирами двух или нескольких жирных кислот.

Животные жиры (такие, как сало) и растительные жиры можно при высокой температуре и давлении гидролизовать с помощью воды на жирные кислоты и глицерин. В результате этого получают главным образом стеариновую кислоту, пальмитиновую кислоту и миристиновую кислоту. Все три кислоты - твердые воскообразные вещества без цвета и запаха. В таком виде они представляют собой прекрасное сырье для приготовления кремов, гелей и различных эмульсий.

В натуральных маслах, помимо приведенных выше кислот, содержатся также ненасыщенные жирные кислоты, такие, например, как олеиновая кислота с одной двойной связью, линолевая кислота с двумя двойными связями и линоленовая кислота с тремя двойными связями. Ненасыщенные жирные кислоты и их эфиры являются жидкими при комнатной температуре. Благодаря наличию в них двойных связей они весьма чувствительны к реакциям разложения, например, к действию микробов, и легко распадаются на более мелкие молекулы, имеющие зачастую неприятный запах. Таким образом, они быстро портятся. Поэтому их обычно гидрируют по двойным связям, и из всех трех вышеназванных ненасыщенных жирных кислот образуется стеариновая кислота; одновременно все они становятся твердыми, почему этот метод и называется отверждением жиров.

Воск образуется из эфира низкомолекулярной карбоновой кислоты, например уксусной, и макромолекулярного так называемого жирного спирта; жирные спирты получают, в частности, путем разложения натуральных восков. Для приготовления гелей важнейшими сырьевыми веществами являются стеариновый спирт и цетиловый спирт.

Эти сравнительно высокомолекулярные соединения, получаемые в результате переработки натуральных жиров и восков, широко используются в косметике. Они представляют собой воскообразные или жироподобные вещества, хорошо ложащиеся на кожу. Они легко смешиваются с кожным салом и создают прекрасное дополнение к основе кремов, гелей и других средств, улучшая их свойства.

Как было отмечено ранее, натуральные жиры, масла и воски всегда представляют собой смеси, содержащие большое количество различных органических соединений. Поэтому в зависимости от места происхождения и других факторов среды они различаются по своему составу и свойствам. Современная промышленность стремится, однако, производить косметические изделия постоянного качества, поэтому устойчивые синтетические вещества заметно потеснили собственно натуральные продукты.

Путем переработки натуральных жиров и восков получают, как было изложено выше, необходимые для промышленного производства жирные кислоты, жирные спирты и, конечно, глицерин. Соединяя их вновь синтетическим способом, получают чистые и с устойчивыми характеристиками жиры и воски. В соответствии с происхождением и способом изготовления их называют полусинтетическими продуктами.

Из синтетических восков можно назвать эфиры стеариновой, пальмитиновой и миристиновой кислот, получаемые в большом количестве из природных веществ. Вторым компонентом в них является чаще всего изопропиловый спирт.

Силиконы представляют собой весьма важную группу синтетических жировых и воскообразных сырьевых веществ. Эти вещества имеют в своей основе цепь чередующихся атомов кремния и кислорода, к которой присоединены боковые органические группы. В качестве примера силиконов можно привести силиконовое масло, являющееся относительно низкомолекулярным производным метилсилоксана.

Говоря о свойствах силиконов, необходимо отметить, что они устойчивы при хранении и, кроме того, отлично переносятся организмом. Они не размягчаются с ростом температуры (это очень важно для использования их в качестве жидкого компонента плотной косметики), хорошо смешиваются с кожным салом и при обильном употреблении образуют водоотталкивающую пленку.

Полиспирт (полиол) - это органическое соединение, в молекуле которого содержится более одной гидроксильной группы ОН. Этиленгликоль и глицерин, имеющие соответственно две и три группы ОН, являются самыми простыми полиспиртами. К этой группе относятся также и все сахара и различные производные гликоля, такие, как, полиэтиленгликоли, которые уже рассматривались выше. В гелях полиспирты используются в качестве увлажнителей; в этом смысле наиболее важными являются глицерин, пропиленгликоль, сорбит и фруктоза.

К коллоидам можно отнести разнообразные вещества растительного и животного происхождения, которые образуют с водой коллоидные растворы; многие из них являются полисахаридами. Из коллоидов, имеющих полисахаридную основу, можно упомянуть следующие (табл. 2).

Таблица 2 Коллоиды, имеющие полисахаридную основу

Клеи являются обычно продуктами растительного происхождения. Здесь указана лишь незначительная часть растительных клеев. Хорошо известен агар-агар, относящийся к группе альгинатов; его получают из морских водорослей и используют для производства сладостей мармеладного типа.

Декстран изготовляется с помощью некоторых микроорганизмов из тростникового сахара. Это полимер, молекулярная масса которого колеблется между 75 000 и 1 000 000. Помимо того, что он используется в качестве заменителя плазмы крови, его можно применять, например, для регулирования вязкости растворов.

Целлюлозы представляют собой широко употребляемую и довольно разнообразную группу веществ, из которой выше приведены лишь три примера. Из многообразных форм применения для целей косметики важны их функции регулятора вязкости растворов и стабилизатора эмульсий.

Коллоидами, имеющими белковую основу, являются, в частности, желатин, получаемый из костей и кож, соевые и кукурузные белки, казеин - белковое вещество молока, а также альбумин, который получают из яичного белка.

Для коллоидов характерно то, что они пригодны для образования гелей и увеличения вязкости растворов и эмульсий.

В современной эмульсионной технике используют различные типы целлюлозы, главным образом в качестве стабилизаторов. Их применяют также в качестве основного компонента масок для лица, а также в различных препаратах для ухода за волосами.

Помимо того, белковые коллоиды применяются в препаратах для ухода за кожей, поскольку они построены из аминокислотных цепей различной длины и, в зависимости от способа обработки, могут также содержать свободные аминокислоты; таким образом, их вполне можно сравнивать с белковыми гидролизатами Химия для косметической продукции. / Под ред. Ованесяна П.Ю. - Красноярск: Марта, 2001. .

Исходные вещества Активированный комплекс Продукты реакции - раздел Химия, Общая химия Для Образования Активного Комплекса Нужно Преодолеть Некоторый Энергетический...

Энергия активации Е А – один из основных параметров, который характеризует скорость химического взаимодействия. Она зависит от природы реагирующих веществ. Чем больше Е А, тем меньше (при прочих равных условиях) скорость реакции.

Обычно реакции между веществами с прочными ковалентными связями характеризуются большими значениями Е А и идут медленно, например:

Низкими значениями Е А и очень большими скоростями характеризуются ионные взаимодействия в растворах электролитов. Например:

Ca +2 + SO= CaSO 4 .

Объясняется это тем, что разноименно заряженные ионы притягиваются друг к другу и не требуется затрат энергии на преодоление сил отталкивания взаимодействующих частиц.

Конец работы -

Эта тема принадлежит разделу:

Общая химия

Государственное образовательное учреждение высшего профессионального образования.. тюменский государственный нефтегазовый университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая химия
Курс лекций Тюмень 2005 УДК 546(075) Севастьянова Г.К., Карнаухова Т. М.Общая химия: Курс лекций. – Тюмень: ТюмГНГУ, 2005. – 210 с.

Основные законы химии
1. Закон сохранения массы веществ (М.В. Ломоносов; 1756 г.): масса веществ, вступивших в реакцию, равна массе веществ, образовавшихся в результате реакции. 2. За

Общие положения
Согласно современным представлениям, атом – это наименьшая частица химического элемента, являющаяся носителем его химических свойств. Атом электрически нейтрален и состоит из положительно заряженно

Развитие представлений о строении атома
До конца 19 столетия большинство учёных представляло атом как неразложимую и неделимую частицу элемента – "конечный узел" материи. Считалось также, что атомы неизменны: атом данного элеме

Модель состояния электрона в атоме
В соответствии с квантово – механическими представлениями, электрон – это такое образование, которое ведёт себя и как частица, и как волна, т.е. он обладает, как и другие микрочастицы, корпускул

Квантовые числа
Для характеристики поведения электрона в атоме введены квантовые числа: главное, орбитальное, магнитное и спиновое. Главное квантовое число n определяет энергию электрона на энергетичес

Электронные конфигурации (формулы) элементов
Запись распределения электронов в атоме по уровням, подуровням и орбиталям получила название электронной конфигурации (формулы) элемента. Обычно электронная формула приводится для основного

Порядок заполнения электронами уровней, подуровней, орбиталей в многоэлектронных атомах
Последовательность заполнения электронами уровней, подуровней, орбиталей в многоэлектронных атомах определяют: 1) принцип наименьшей энергии; 2) правило Клечковского; 3)

Электронные семейства элементов
В зависимости от того, какой подуровень последним заполняется электронами, все элементы делятся на четыре типа – электронные семейства: 1. s – элементы; заполняется электронами s –

Понятие об электронных аналогах
Атомы элементов с одинаковым заполнением внешнего энергетического уровня носят название электронных аналогов. Например:

Периодический закон и периодическая система элементов Д.И. Менделеева
Важнейшим событием химии в 19 веке было открытие периодического закона, сделанное в 1869 г. гениальным русским ученым Д. И. Менделеевым. Периодический закон в формулировке Д. И. Менделеева гласи

Структура периодической системы химических элементов Д. И. Менделеева
Элементы в периодической системе располагаются в последовательности возрастания порядковых номеров Z от 1 до 110. Порядковый номер элемента Z соответствует заряду ядра его атома, а также числу д

Периодическая система Д.И. Менделеева и электронная структура атомов
Рассмотрим связь между положением элемента в периодической системе и электронным строением его атомов. У каждого последующего элемента периодической системы на один электрон больше, чем у предыдуще

Периодичность свойств элементов
Так как электронное строение элементов изменяется периодически, то соответственно периодически изменяются и свойства элементов, определяемые их электронным строением, такие, как атомный радиус, эне

Теория метода валентных связей
Метод разработан В. Гейтлером и Дж. Лондоном. Большой вклад в его развитие внесли также Дж. Слейтер и Л. Полинг. Основные положения метода валентных связей: 1. Химическая связь

Ковалентная связь
Химическая связь между атомами, осуществляемая обобществленными электронами, называется ковалентной. Ковалентная связь (означает – «совместно действующая») возникает за счет образования общи

Насыщаемость ковалентной связи
Насыщаемость ковалентной связи (валентные возможности атома, максимальная валентность) характеризует способность атомов участвовать в образовании определенного ограниченного числа ковалентных св

Направленность ковалентной связи
Согласно МВС наиболее прочные химические связи возникают в направлении максимального перекрывания атомных орбиталей. Поскольку атомные орбитали имеют определённую форму, их максимал

Полярность и поляризуемость химической связи
Ковалентная связь, в которой обобществленная электронная плотность (обобществленные электроны, связующее электронное облако) симметрична по отношению к ядрам взаимодействующих атомов, называется

Полярность молекул (типы ковалентных молекул)
Следует отличать полярность молекулы от полярности связи. Для двухатомных молекул типа АВ эти понятия совпадают, как это уже показано на примере молекулы HCl. В таких молекулах чем больше разнос

Ионная связь
При взаимодействии двух атомов, обладающих весьма различными электроотрицательностями, общая пара электронов может быть практически полностью смещена к атому с большей электроотрицательностью. В ре

Металлическая связь
Само название «металлическая связь» указывает, что речь пойдет о внутренней структуре металлов. Атомы большинства металлов на внешнем энергетическом уровне содержат небольшое число валентн

Гидроксиды
Среди многоэлементных соединений важную группу составляют гидроксиды – сложные вещества, содержащие гидроксогруппы OH. Некоторые из них (основные гидроксиды) проявляют свойства оснований - N

Кислоты
Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка (с позиций теории электролитической диссоциации). Кислоты классифици

Основания
Основаниями с позиций теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид - ионов OH ‾ и ионов металлов (исключение NH4OH

Первый закон термодинамики
Взаимосвязь между внутренней энергией, теплотой и работой устанавливает первый закон (начало) термодинамики. Его математическое выражение: Q = DU + A, или для беско

Тепловой эффект химической реакции. Термохимия. Закон Гесса
Все химические процессы сопровождаются тепловыми эффектами. Тепловым эффектом химической реакции называется теплота, выделяемая или поглощаемая в результате превращения исходных веществ

Энтропия
Если на систему оказать внешнее воздействие, в системе происходят определенные изменения. Если после снятия этого воздействия система может вернуться в первоначальное состояние, то процесс является

Свободная энергия Гиббса
Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называет

Свободная энергия Гельмгольца
Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F): DF =

Закон действующих масс
Зависимость скорости химической реакции от концентрации реагирующих веществ определяется законом действующих масс. Этот закон установлен норвежскими учеными Гульдбергом и Вааге в 1867 г. Он формули

Зависимость скорости химической реакции от температуры
Зависимость скорости химической реакции от температурыопределяется правилом Вант-Гоффа и уравнением Аррениуса. Правило Вант-Гоффа:при увеличении температуры на каждые 1

Влияние катализатора
Изменение скорости реакции под воздействием малых добавок особых веществ, количество которых в ходе процесса не меняется, называется катализом. Вещества, изменяющие скорость хими

Общие представления о химическом равновесии. Константа химического равновесия
Химические реакции, в результате которых хотя бы одно из исходных веществ расходуется полностью, называются необратимыми, протекающими до конца. Однако большинство реакций являют

Смещение химического равновесия. Принцип Ле Шателье
Химическое равновесие остается неизменным до тех пор, пока постоянны параметры, при которыхоно устано

Фазовые равновесия. Правило фаз Гиббса
Гетерогенные равновесия, связанные с переходом вещества из одной фазы в другую без изменения химического состава, называются фазовыми. К ним относятся равновесия в процессах испарен

Работа добавлена на сайт сайт: 2015-07-05

">24. "> ">Признаки обратимых и необратимых реакций. Критерии равновесия. Константа равновесия. Принцип Ле-Шателье.

;color:#000000;background:#ffffff">1. Реакцию называют ;color:#000000;background:#ffffff">обратимой ;color:#000000;background:#ffffff">, если её направление зависит от концентраций веществ — участников реакции. Например N ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> + 3H ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> = 2NH ;vertical-align:sub;color:#000000;background:#ffffff">3 ;color:#000000;background:#ffffff"> при малой концентрации аммиака в газовой смеси и больших концентрациях азота и водорода происходит образование аммиака; напротив, при большой концентрации аммиака он разлагается, реакция идёт в обратном направлении. По завершении обратимой реакции, т. е. при достижении равновесия химического, система содержит как исходные вещества, так и продукты реакции.

;color:#000000;background:#ffffff">Необратимые реакции ;color:#000000;background:#ffffff"> — реакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например ;background:#ffffff">, ;color:#000000;background:#ffffff">горение ;background:#ffffff"> ;color:#000000;background:#ffffff">углеводородов ;background:#ffffff">, ;color:#000000;background:#ffffff">образование ;color:#000000;background:#ffffff">малодиссоциирующих ;background:#ffffff"> ;color:#000000;background:#ffffff">соединений, выпадение осадка, образование газообразных веществ.

">Химическое равновесие "> - состояние системы, в котором скорость прямой реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">1 ">) равна скорости обратной реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">2 ">). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

">Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">1 ">) и обратной (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">2 ">) реакций.

" xml:lang="en-US" lang="en-US">K = K ;vertical-align:sub" xml:lang="en-US" lang="en-US">1/ " xml:lang="en-US" lang="en-US">K ;vertical-align:sub" xml:lang="en-US" lang="en-US">2 " xml:lang="en-US" lang="en-US">= ([C] ;vertical-align:super" xml:lang="en-US" lang="en-US">c " xml:lang="en-US" lang="en-US"> [D] ;vertical-align:super" xml:lang="en-US" lang="en-US">d " xml:lang="en-US" lang="en-US">) / ([A] ;vertical-align:super" xml:lang="en-US" lang="en-US">a " xml:lang="en-US" lang="en-US"> [B] ;vertical-align:super" xml:lang="en-US" lang="en-US">b " xml:lang="en-US" lang="en-US">)

"> Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

">Смещение химического равновесия.

">1. Иземенение концентрации реаг. В-в

  1. ">Увеличение конц исх в-в сдвигает вправо
  2. ">Увеличение продуктов сместит равновесие влево

">2. Давление (только для газов)

  1. ">Увеличение давл. Смещает равновесие в сторону в-в занимающих меньший объём.
  2. ">Уменьшение давл смещает равновесие в сторону в-в занимающих больший объём

">3. Температура.

  1. ">Для экзотермических р-ий повыш. Т смещает влево
  2. ">Для эндотермических повышение Т смещает вправо.
  3. ">Катализаторы не оказывают влияние на хим. Равновесие, а лишь ускоряет его наступление

">Принцип Ле-Шателье ">если на систему находящуюся в состоянии динамического равновесия, оказать какое-либо воздействие, то преимущественно получается та реакция которая препятствует этому воздействию

" xml:lang="en-US" lang="en-US">N2+O2↔NO+ ∆H

" xml:lang="en-US" lang="en-US">→ t◦→

" xml:lang="en-US" lang="en-US">↓← ↓ t◦←

" xml:lang="en-US" lang="en-US"> ← p-